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Abstract: This study investigates the mechanical characteristics of friction stir processed dissimilar
joints between AA5083 and AA6082 alloys reinforced with coal particles. Employing friction stir
welding (FSW), the mean grain size measured 19.7 µm, but using the FSP technique with coal
reinforcement (FSP + Coal) significantly refined the grain size to 8.75 µm. In flexural testing, FSW
face samples exhibited failure at 12.7% strain and 535 MPa stress, while FSP + Coal face specimens
showed diminished performance at 3% strain and 222 MPa stress. Similar trends were observed
in root specimens. For FSW joints, the ultimate tensile strength (UTS) peaked at 145.90 MPa, with
the lowest recorded UTS at 93.43 MPa. FSP + Coal joints reached a maximum UTS at 142 MPa and
minimum UTS at 104.06 MPa. Fractures in both FSWed and FSPed samples occurred on the AA5083
side. In terms of hardness, FSW joints exhibited 80.33 HV, while FSP + Coal joints displayed a higher
hardness of 83.66 HV at the nugget zone. Fracture surface morphology analysis revealed a prominent
ductile failure mechanism for both FSWed and FSP + Coal joints. This study provides insight into
the enhanced mechanical properties achieved through FSP + Coal processing, offering valuable
implications for dissimilar alloy joints in various applications.

Keywords: aluminum alloys; metal matrix composites; mechanical properties; coal particles; friction
stir processing

1. Introduction

Friction stir processing (FSP) has emerged as a versatile solid-state joining and pro-
cessing technique, holding significant promise for enhancing the mechanical properties of
dissimilar metal joints [1,2]. In recent years, researchers have increasingly explored innova-
tive methodologies to improve these joints through the integration of reinforcing agents.
This incorporation of reinforcing agents via FSP into aluminum alloys is a fundamental
component of the broader concept known as friction stir processing of advanced metal ma-
trix composites (FSP AMMCs) [3,4]. These reinforcing agents can take the form of particles,
fibers, or other materials, imparting added mechanical, thermal, or functional attributes
to the base metal. In the context of aluminum alloys, FSP AMMCs entail introducing
nanoparticles, ceramic particles, carbon-based materials, or other strengthening agents into
the aluminum matrix [4,5]. The FSP process uniformly disperses these reinforcing agents
throughout the material, leading to improved mechanical properties such as increased
strength, enhanced wear resistance, and improved thermal stability.

The concept of FSP AMMCs has garnered attention due to their potential to combine
the desirable traits of traditional alloys with the heightened performance of reinforcing
particles. Early research on FSP AMMCs marked an innovative exploration into combining
advanced materials processing with composite fabrication. Among the early contributors,
Mishra et al. [6] shed light on enhancing metal properties through reinforcing agents.
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Their study examined the effect of augmenting AA5083 aluminum alloy with SiC particles,
evaluating the effect of various SiC volume fractions and particle sizes on microhardness.
Intriguingly, they found that the introduction of 27 vol% SiC with an average particle size of
0.7 µm significantly elevated microhardness. The alloy’s microhardness surged from 85 HV
to an impressive 173 HV upon SiC inclusion. By meticulously analyzing the influence of
SiC content and particle size on microhardness, Mishra et al. not only demonstrated the
feasibility of reinforcing aluminum alloys but also underscored the profound impact on
their mechanical attributes. This laid the foundation for subsequent research, prompting
deeper explorations into matrix materials and the interplay with reinforcing agents.

Jian and Mishra [7] investigated the production of dissimilar composite joints by com-
bining AA6061 and AA7075 alloys with micro-sized Al2O3 particles through friction stir
welding. The distribution pattern of varying Al2O3 microparticle volume fractions was ex-
plored in conjunction with different combinations of tool rotational speed (RS) and traverse
speed (TS), which influenced the quality of the welds. The composite joints underwent
tensile, microhardness, and wear resistance testing, and were assessed for microstructural
changes. The outcomes indicated that the weld quality significantly improved due to both
higher grain refinement resulting from dynamic recrystallization (DRX) and the anchoring
effect of Al2O3 microparticles. Additionally, an increase in the volume fraction of Al2O3
microparticles resulted in notable enhancements in the mechanical properties of the com-
posite joints. Consequently, the composite joint processed at an RS of 1100 rpm, TS of
40 mm/min, and 10% volume fraction of Al2O3 microparticles exhibited the highest tensile
strength at 241.35 MPa, with a joint efficiency of 83.80% and maximum microhardness
recorded at 157.5 HV. Furthermore, the incorporation of Al2O3 microparticles also led to an
improvement in the wear resistance of the composite joints compared to the base materials.
This research shed light on the synergistic relationship between nanoparticle dispersion,
microstructural refinement, and the resulting mechanical improvements, thereby offering
valuable insight for future applications of this technique in tailoring material properties for
enhanced performance.

In the study conducted by Acuña et al. [8], the focus was on investigating the use of
FSP to produce surface metal matrix composites (SMMCs) for AA2024 aluminum alloy with
structural hardening (T351) in a defect-free manner. The study primarily investigated how
the number and direction of FSP passes affected particle distribution and microstructural
changes in the processed region and their impact on the wear behavior of the composite
layers. The results affirmed that FSP can create SMMCs with a well-distributed particle
dispersion. By utilizing electron backscatter diffraction (EBSD), the researchers examined
the evolution of grain size in different regions of the FSPed samples, revealing a significant
reduction in grain size in the nugget zone due to dynamic recrystallization. The study
also assessed surface properties through hardness and resistance to sliding wear tests.
Although the SMMC hardness in the nugget was similar to that of the base material, it
exhibited improved wear resistance. In the context of the sliding conditions examined in
this study, the specific wear rate was notably reduced, ranging from 24 to 40% compared
to the as-received aluminum alloy. Additionally, the worn tracks demonstrated the same
wear mechanisms operating concurrently in both materials.

Malopheyev et al. [9] employed the FSP technique to produce an Al/Al203 composite
in order to investigate the evolution of the microstructure. To gain a deeper understanding
of this process, a cross-sectional analysis of the resulting composite was performed, and
advanced characterization techniques such as electron backscatter diffraction and micro-
hardness mapping were utilized. The study discovered that the reinforcing particles quickly
arranged themselves into a stable “onion ring” structure, which remained intact even after
subsequent dispersion. Specifically, remnants of relatively large particle clusters persisted
even after 12 FSP passes. This led to the conclusion that the commonly employed three or
four FSP passes in practice are insufficient for achieving uniform dispersion of reinforcing
particles. Furthermore, it was observed that the gradual distribution of nanoscale Al2O3
particles within the aluminum matrix led to a subtle reduction in both the proportion of
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high-angle boundaries and the average grain size. These observations were attributed to
the effect of particle pinning on grain boundary migration and dislocation slip.

FSP was employed to integrate multi-walled carbon nanotubes (MWCNTs) and
nanoscale cerium oxide particles into the Al5083 alloy matrix, forming reinforced sur-
face composites [10]. This study probed the influence of nanoscale reinforcements on
the microstructure, mechanical properties, and corrosion resistance of FSP-treated Al5083
surface composites. The process employed a threaded cylindrical hardened steel tool,
rotation speeds of 600 and 800 rpm, travel speeds of 35 and 45 mm/min, and a tilt angle of
5◦. The findings highlighted that the hybrid composite with a 75–25 volume ratio of CNTs
to cerium oxide exhibited the highest tensile strength and hardness values. Alternatively,
incorporating cerium oxide alone significantly enhanced the base alloy’s pitting resistance.
Corrosion behavior was systematically assessed through potentiodynamic polarization
tests, focusing on pitting potential and passivation range.

Microstructural analysis, involving optical and electron microscopy, showed well-
dispersed reinforcements in the nugget zone, accompanied by significant grain refinement.
The study’s aim was to engineer surface composites with simultaneously enriched mechan-
ical properties and corrosion resistance. The strategic inclusion of nanoscale reinforcements
via FSP contributed to composite material advancement, showcasing the potential for
multifunctional improvements in material performance. Subsequent to these pioneering
studies, diverse literature has augmented the concept, encompassing a range of materials,
including aluminum, magnesium, steel, copper, and titanium. The existing body of litera-
ture offers an array of reinforcing particles for FSP AMMC formulation, featuring boron
carbide (B4C) [11], silicon carbide (SiC) [12], titanium carbide (TiC) [3], titanium dioxide
(TiO2) [13], aluminum oxide (Al2O3) [14], titanium diboride (TiB2) [15], and zirconium
diboride (ZrB2) [16].

Furthermore, the utilization of coal as a reinforcing agent has captured attention due to
its distinctive combination of mechanical and thermal properties. The primary objective of
this study was to comprehensively characterize dissimilar joints formed between AA5083-
H111 and AA6082-T651 aluminum alloys specifically reinforced with coal particles through
FSP. The aim was to investigate and understand the intricate microstructural changes
and mechanical properties within the modified zones resulting from the combination of
dissimilar alloys and the introduction of coal particles.

By delving into the detailed characterization of these joints, this research seeks to
contribute valuable insight into the feasibility, structural integrity, and potential applications
of such composite materials. AA5083 and AA6082 aluminum alloys are renowned for their
amalgamation of strength, corrosion resistance, and formability, making them pivotal across
industries [17]. However, when these alloys are conjoined, disparities in microstructure
and mechanical properties can compromise joint integrity [18].

To overcome this challenge, researchers have turned to FSP as an innovative means to
forge joints with enhanced mechanical attributes and refined microstructure. The inclusion
of coal particles via FSP introduces a distinctive dimension to joint formation. Coal’s
inherent strength and thermal resistance offer the potential to interact synergistically
with the aluminum matrix, conferring added strength and durability to the joint. The
outcomes of this research contribute to advancing dissimilar joint fabrication techniques
while offering prospects for utilizing alternative materials to bolster mechanical robustness
across diverse applications.

2. Materials and Methods

The study utilized AA6082-T651 and AA5083-H111 aluminum alloys, each possessing
a thickness of 6 mm. The chemical compositions of the base materials were determined
using a Belec Compact Spectrometer HLC manufactured by the Belec Spectrometry Opto-
Electronics GmbH, Georgsmarienhütte, Germany. The resulting compositions are detailed
in Table 1. Table 2 shows the mechanical properties of AA6082-T651 and AA5083-H111.
Figure 1a shows a SEM image of the coal powder, while Table 3 shows the chemical



Metals 2023, 13, 1981 4 of 21

composition of the same. Subsequently, plates of dimensions 540 × 70 mm were cut from
these alloys to fit within the FSW fixture bed. Employing the friction stir welding (FSW)
technique, these dissimilar plates were skillfully joined. The FSW process was executed
using a Lagun FU.1-LA universal milling machine manufactured by the Lagun Machine
Tools S.L.U. in Gipuzkoa in Spain, which was adapted to function as an FSW machine.
The specific FSW parameters applied are outlined in Table 4, with Figure 1b showing a
Solidworks 2D diagram of the tool used. The tool was made of high-speed steel material.

Table 1. Chemical compositions of the materials.

Mg Zn Ti Cr Si Mn Fe Ni Cu Al

AA6082-T651 1.09 0.65 0.04 0.01 1.33 0.31 0.67 0.10 0.03 Bal
AA5083-H111 4.03 0.01 0.02 0.05 0.15 0.69 0.16 0.00 0.02 Bal

Table 2. Mechanical properties.

Hardness (HV) Tensile
Strength (MPa) Grain Size (µm) Elongation (%)

AA6082-T651 89 298 189 25.43
AA5083-H111 75 315 292 23
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Table 3. Chemical composition of the coal used.

Coal Powder% Present

Chemical Element Carbon Oxygen Total

Spectrum 1 93.84 6.16 100
Spectrum 2 77.99 22.01 100
Spectrum 3 89.78 10.22 100
Spectrum 4 84.16 15.84 100
Spectrum 5 76.45 23.55 100
Spectrum 6 73.21 26.79 100

Mean 82.57 17.43 100
Standard deviation 8.05 8.05

Maximum 93.85 26.79
Minimum 73.21 6.15

Table 4. FSW parameters.

Rotational
Speed
(rpm)

Welding
Speed

(mm/min)

Vertical
Force (kN)

Traverse
Speed

(mm/min)

Dwell Time
(s) Tilt Angle

1400 30 15 40 20 2◦

During the FSW operation, the AA6082-T651 plate was positioned on the advancing
side of the tool, while the AA5083-H111 plate was situated on the retreating side of the tool.
Through this process, two friction stir welded (FSWed) plates were fabricated. One of these
plates was preserved for comparative analysis, while the other underwent further treatment
involving friction stir processing (FSP) with the inclusion of coal particle reinforcements.
The incorporation of coal particles into the FSP procedure involved a sequential process
carried out in four distinct stages. The initial step encompassed the drilling of blind
holes at the center of the dissimilar weld joint generated through FSW, spanning from the
initiation point to the termination point of the weld. These blind holes possessed a diameter
of 2.5 mm and reached a depth of 5.6 mm. The spacing between the blind holes was
consistently maintained at a distance of 5 mm. Subsequently, in the second phase, the blind
holes were meticulously filled with coal particles until reaching their uppermost limit.

Advancing to the third step, the previously drilled holes were sealed utilizing a pinless
tool configuration, as illustrated in Figure 1c. The final phase encompassed the execution of
the FSP procedure, leveraging the same tool that had been employed for the FSW operation.
The concept of utilizing a common tool design for both FSW and FSP is not uncommon
and is frequently discussed in the broader body of literature concerning friction-based
processing methodologies [19,20]. This adaptability of tools across the domains of FSW
and FSP has been a subject of exploration and analysis in various studies focusing on
friction-based material processing techniques.

From the produced plates, microstructure, bending, tensile, and hardness test speci-
mens were cut according to the respective ASTM standards. The microstructural analysis
specimens were mounted in a thermosetting plastic, ground, polished, and etched. Keller’s
etching solution was employed with 95 mL distilled water, 1.5 mL hydrochloric acid, 1 mL
hydrofluoric acid, and 2.5 mL nitric acid. Figure 2a shows the specimen dimensions. After
the etching process, the specimens were analyzed using the Motic AE2000MET, manufac-
tured by The Motic Europe S.L.U. based in Barcelona in Canada. The micrographs obtained
were measured following the ASTM E112-12 standard [21], using the line intercept method
in ImageJ software to obtain the grain sizes. The same specimens were later subjected to
hardness testing.
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Figure 2. (a) Microstructure specimen, (b) hardness test set-up, (c) flexural specimen, (d) tensile
specimen, and (e) specimen positioning.

The InnovaTest Falcon 500 (manufactured by the INNOVATEST Europe BV Manu-
facturing based in Maastricht in the Netherlands) was used to perform hardness testing,
following the ASTM E384-11 standard for microindentation hardness of materials [22]. The
particular configuration comprised of a 0.3 kg load and 1 mm interval between indents,
recording 25 measurement indents per joint. The 10× and 20× objectives were employed
for specimen focusing. Figure 2b shows the setup for the hardness indentation testing.
Figure 2c shows the flexural specimen with dimensions in mm. The testing procedures
outlined in the ASTM E290-14 standard focus on assessing the ductility of materials through
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bend tests [23]. It should be noted that the bending test was applied to both sides of the
joint, i.e., the face and root of each specimen. The face of the specimen is the surface in
contact with the tool during welding, while the root is the surface in contact with the weld-
ing machine bed. Liquid penetrant testing (LPT), a form of non-destructive testing (NDT),
was performed on the bent specimens to detect any potential defects on their surfaces after
the test. Both flexural and tensile tests were executed using the Hounsfield 50 K machine.
The tensile tests adhered to the guidelines set by the ASTM E8M-04 standard [24], which
pertains to the tension testing of metallic materials. A depiction of the tensile test specimen
can be seen in Figure 2d.

The test specimens derived from the dissimilar FSWed and FSP + Coal plates were
systematically sectioned at three distinct positions along the welds: the beginning (S),
middle (M), and end (E), as illustrated in Figure 2e. This procedure was implemented with
the intention of discerning any potential patterns or trends associated with the sampling
positions. Consistently applying this method across all conducted tests allowed for a
comprehensive evaluation of the material’s characteristics and behavior.

3. Results and Discussions
3.1. Macrostructural Analysis

Figure 3 presents the macrographs of the FSWed and FSP + Coal joints, with each
revealing distinct characteristics. For clarity, the microstructural zones in the macrographs
are identified by red markings, with “1” representing the base metal (AA5083 and AA6082),
“2” indicating the heat-affected zone, “3” denoting the thermomechanically affected zone,
and “4” representing the NZ. These macrographs facilitate an understanding of the different
regions and their corresponding properties within the joints.

In the case of FSWed joints shown in Figure 3a–c, the specimen extracted from the start
of the joint displayed a small tunnel void, while the middle and end specimens exhibited
a noticeable tunnel defect, identified by yellow circles. This tunnel defect, which became
progressively more noticeable as the joint continued, can be ascribed to a fundamental
issue during the early stages of joint formation. In particular, it is linked to an insufficiency
in heat generation and consequently inadequate material flow [25,26]. These early stages
are crucial in the FSW process, as they set the foundation for the integrity of the entire
joint. When there is a deficiency in heat and material flow at this initial stage, it can lead
to the formation of these tunnel defects, which compromise the structural integrity of the
joint [27,28]. A noteworthy factor contributing to the observed disparity in behavior is the
combination of dissimilar alloys with varying melting points, as the AA6082 and AA5083
alloys had melting points of 555 ◦C and 570 ◦C, respectively. These alloys had distinct
properties, particularly in terms of their melting and softening characteristics. The AA6082
alloy exhibited a tendency to melt and soften more rapidly compared to the higher strength
AA5083 alloy. This discrepancy in the behavior of the two alloys can further exacerbate
challenges during the FSW process [17,29].

Figure 3d–f showcases the behavior of the FSP + Coal joints at different stages. The
specimen extracted from the start showed no defects, indicating a well-mixed region where
the AA6082 and AA5083 alloys were seamlessly integrated. This initial state reflects an
ideal scenario in which the two alloys have successfully fused without the formation of any
discernible defects [30]. However, as the joint progressed through the stages of FSP, the
condition began to change such that for the specimen extracted in the middle of the joint,
a tunnel defect became apparent in the nugget zone (NZ). This was a notable occurrence,
and it suggested that as the processing continued, some challenges arose in maintaining
the quality of the joint. The appearance of a tunnel defect at this stage was an indication of
less-than-optimal material flow and heat distribution, as explained in Figure 3a–c. Moving
to the specimen extracted at the end of the joint, a similar trend was observed, albeit to a
lesser extent. In this specimen, a small defect in the nugget zone was noted. While this
defect may have been less severe than the one in the middle specimen, it still indicated that
the challenges in maintaining a defect-free joint persisted as FSP + Coal progressed.
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3.2. Microstructural Analysis

Figure 4 shows the micrographs of the parent materials and FSWed and FSP + Coal
joints. AA5083-H111, as depicted in the micrograph in Figure 4a, exhibited uniform and
relatively coarse grain sizes along and across the rolling direction, with a mean grain size
of 292 µm. The AA6082-T651 parent material (PM), shown in Figure 4b, displayed an
average grain size of 389 µm along the rolling direction and only 117 µm across the rolling
direction, thus exhibiting columnar grains. Dark spots of intermetallic particles were found
in the micrographs of both AA6082-T651 and AA5083-H111 parent materials. For AA6082-
T651, the dark spots in the microstructure indicated small particles of Mg2Si (magnesium
silicide), which was the strengthening precipitate of the alloy [31]. These precipitates
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form within the aluminum matrix during the artificial aging process after solution heat
treatment and quenching. The presence of Mg2Si particles in the microstructure contributes
to the alloy’s strength and other mechanical properties, making it a common feature in
heat-treatable aluminum alloys like AA6082-T651. These precipitates act as barriers to
dislocation movement, thus enhancing the material’s strength [31,32]. In AA5083-H111,
it is worth noting that the alloy has 5 precipitates: Al6(FeMn), Al3Mg2, Al6(Fe, Mn)Cr,
Al6(FeMn)Si, and Mg2Si [32]. This therefore means that the dark sports represented some
or all of the mentioned precipitates.

Figure 4c–h shows the NZ micrographs of the FSW and FSP + Coal joints at different
specimen locations and positions, with Figure 4i showing the measured mean grain sizes of
the same. The FSWed joints in Figure 4c–e displayed a fully recrystallized grain structure
with distinct boundary layers, leading to a substantial reduction in grain size in comparison
to the PMs. This was due to the intense plastic deformation and recrystallization that occur
during FSW, breaking down the existing larger grains into smaller, more refined grains.
A finer grain structure can lead to improved mechanical properties, such as increased
strength and toughness, in the welded joint [33]. Few pores and impurities were noted
in the micrographs, as well as a strengthening of precipitates in the form of black spots
and stone-like particles, respectively. The presence of black spots indicated areas where
inclusions or impurities were concentrated [31].
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Figure 4f–h shows the FSP + Coal micrographs in which significantly high grain
refinement was observed. This behavior was due to the unique combination of mechanical
stirring and coal reinforcement. In this process, the mechanical action of the rotating tool
and the addition of coal particles lead to intense plastic deformation and recrystallization
in the joint region, breaking down larger grains and promoting the formation of a finer
and more homogenous microstructure, ultimately enhancing the mechanical properties
of the joint, including increased strength and toughness [33–35]. The visual comparison is
evident in the bar charts provided in Figure 4i.

Figure 4j,k display the results of the energy-dispersive X-ray spectroscopy (EDS) anal-
ysis of both the FSWed and FSP + Coal samples, showcasing the analyzed spectra within
the nugget zone. This analysis was undertaken to ascertain the presence of chemical segre-
gation information, particularly focusing on the distribution of carbon within the intricate
stirred nugget zone. The objective was to gain insight into the chemical composition and
dispersion of carbon in this region.

Furthermore, Tables 5 and 6 present the detailed chemical composition of the afore-
mentioned joints in correlation with Figure 4j,k. These tables provide a comprehensive
breakdown of the elemental composition, with a specific emphasis on carbon distribution
within the nugget zone.

Table 5. FSW joint chemical composition.

C O Mg Al Si Cl Total

Spectrum 1 59.39 26.94 0.51 10.47 1.97 0.72 100
Spectrum 2 27.5 8.98 2 61.28 0 0.23 100
Spectrum 3 0 14.6 5.51 75.96 3.93 0 100
Spectrum 4 0 3.58 5.07 91.35 0 0 100

Mean 21.72 13.52 3.27 59.77 1.48 0.24 100
Std deviation 28.26 10.01 2.41 35.08 1.88 0.34

Max 59.36 26.94 5.51 91.35 3.93 0.72
Min 0 3.58 0.51 10.47 0 0

Table 6. FSP + Coal joint chemical composition.

C O F Na Mg Al Si Ca Total

Spectrum 1 14.54 27.16 1.52 1.09 21.1 17.28 16.99 0.31 100
Spectrum 2 17.84 32.48 2.09 2.09 8.86 24.92 11.31 0.41 100
Spectrum 3 71.71 18.46 0.74 3.42 0.35 4.46 0.08 0.78 100
Spectrum 4 24.86 21.62 0.84 0.62 3.22 48.48 0.36 0 100

Mean 32.34 24.93 1.3 1.81 8.39 23.78 7.19 0.38 100
Std deviation 26.66 6.19 0.63 1.24 9.19 18.5 8.37 0.32

Max 71.71 32.48 2.09 3.42 21.1 48.48 16.99 0.78
Min 14.54 18.46 0.74 0.62 0.35 4.46 0.08 0

3.3. Flexural Properties

Figure 5a–d features the specimens after the flexural test. The flexing of the FSW
face weld specimens toward the AA6082 side, which was the alloy with weaker strength,
indicated that the FSW face weld joints possessed a higher joint strength than the base
material, AA6082. This outcome aligned with prior research findings [36–38] and suggested
that the welding process improved the overall mechanical properties of the joint, surpassing
the inherent strength of AA6082. Remarkably, post-face specimens did not reveal any cracks
except for the FSW E face weld specimen, which exhibited a minor defect crack at the edge
of the TMAZ, coinciding with the bending end of AA6082 in the weld. In contrast, the root
weld specimens uniformly exhibited cracks, predominantly occurring near or within the
central region of the root weld, signifying a difference in the mechanical behavior between
the face and root welds, and potentially highlighting the need for further investigation or
adjustments in the welding process to enhance root weld strength.
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In the case of FSP + Coal face weld specimens, the presence of cracks exclusively on
the AA5083 TMAZ side could be attributed to the influence of the coal powder within the
joint. The dominant presence of coal powder in this region seems to have played a critical
role in crack formation [37]. Conversely, in the FSP + Coal root weld specimens, cracks
were observed on the side where AA5083 was positioned as the advancing material during
the welding process. This crack occurrence could be attributed to a thin layer of material
that was intentionally not penetrated by the tool during welding to prevent the tool pin
from rubbing against the back plate, possibly leading to localized stress concentrations and
crack initiation in this specific area of the root weld.

Figure 5e–h presents the results of the flexural tests conducted on the root and face of
the FSWed and FSP + Coal joints. It is essential to emphasize that all specimens were bent
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until failure, which explains the projectile shape evident in the graphs. The root flexural
test outcomes indicated that the FSWed specimens failed at a maximum strain of 12.67%
with a flexural stress of 571 MPa, while the FSP + Coal root specimens failed at a maximum
strain of 6.2% with a flexural stress of 422 MPa. The face flexural test revealed different
results: the FSWed specimens failed at a maximum strain of 12.7% with flexural stress
of 535 MPa, whereas the FSP + Coal specimens failed at a maximum strain of 3% with a
flexural stress of 222 MPa. The six graphs clearly highlight the distinctions between the
face and root flexural tests for the FSWed and FSP + Coal specimens.

The data analysis unequivocally demonstrated that the flexural strength of the FSWed
joints surpassed that of the FSP + Coal joints. This notable discrepancy in strength can
be attributed to a combination of factors, with microstructure and the presence of defects
being paramount among them. In the case of FSP + Coal joints, the uneven distribution
of coal particles within the joints was a key contributing factor to this observed difference
in mechanical properties. This non-uniform distribution of reinforcement materials can
lead to irregularities in the structure and properties of the joint, resulting in localized
weak points or areas with reduced mechanical integrity. Consequently, these variations
undermined the overall flexural strength of the FSP + Coal joints, in line with previous
research findings [39–41] highlighting the sensitivity of joint performance to the uniformity
and distribution of reinforcement materials.

3.4. Tensile Properties

Figure 6a,b displays the post-tensile specimens of the FSWed and FSP + Coal joints.
These specimens were subjected to tensile testing to evaluate their mechanical properties
and behavior under tension. The FSWed specimens failed outside the welded area, specifi-
cally in the HAZ of the AA6082 side. This fracture pattern indicated a seamless joint, with
the joint itself remaining intact during the test [20]. Additionally, the FSWed joints exhibited
stronger characteristics than the base material, AA6082. The HAZ, however, demonstrated
the weakest strength when compared to NZ and the AA6082 side of the specimen [42],
which is a common phenomenon when dissimilar materials are joined together. On the
other hand, the FSP + Coal joints exhibited a different failure pattern. The failure occurred
within the welding zone area, close to the AA5083 side of the specimen, which appeared to
be brittle in nature. The type of failure observed at the TMAZ indicated a lack of elongation
or ductility, signifying a brittle failure [43].

This brittle failure in the FSP + Coal joints implied that the coal powder material
significantly influenced the joints, leading to failure within the welded area where the coal
powder was incorporated, as shown in Figure 6d. The location of the failure varied between
specimens, occurring where the coal powder was present. One notable example is Specimen
E, which displayed incomplete fusion between the coal powder and the alloy, potentially
contributing to the brittle nature of the joint. Overall, the FSWed joints demonstrated
seamless characteristics and superior strength compared to the base material, whereas
the FSP + Coal joints exhibited brittle failure, influenced significantly by the presence and
fusion of the coal powder [42,43].

Figure 6c,d shows the tensile stress–strain curves of the FSWed and FSP + Coal joints.
The corresponding tensile properties are summarized in Table 7. Comparing the FSWed and
FSP + Coal joints, the FSWed joints exhibited the highest UTS values while the FSP + Coal
joints showed the lowest UTS values. Coal, being less mechanically robust than the base
materials, seemed not to provide the same level of strength as witnessed in the original
FSWed joints [44,45]. The integration of coal reinforcement led to voids, inclusions, and
possibly weaker bonding at the interface between the reinforcement and the base material,
resulting in a reduction in overall joint strength. Thus, the FSP + Coal joints exhibiting
lower UTS values than the FSWed joints was not a startling result.
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Figure 6. Post-tensile specimens (a) FSW, (b) FSP + Coal; Tensile stress–strain curves: (c) FSWed joints
AA6082/AA5083, (d) FSP + Coal AA6082/AA5083 joints.

Table 7. FSW tensile weld joints results.

Sample Ultimate Tensile
Stress (MPa)

Tensile Strain
at UTS (%)

Tensile Strin at
Breapoint (%)

Position of
Fracture

FSW S 112.43 7.02 11.35 HAZ/AA5083
FSW M 166.62 9.28 13.90 HAZ/AA5083
FSW E 172.91 9.43 14.13 HAZ/AA5083

FSP + Coal S 104.06 4.63 5.68 TMAZ/AA6082
FSP + Coal M 142 9.28 10.09 TMAZ/AA6082
FSP + Coal E 120.63 5.21 6.65 SZ

3.5. Fractography

Figure 7 illustrates the fracture surface morphology of the FSWed and FSP + Coal
joints, providing insight into their respective failure mechanisms. Worthy of note was
the location of fractures: FSWed joints displayed fractures primarily on the AA5083-H111
side, while the FSP + Coal joints exhibited failure on the AA6082-T651 side. This indicated
a variation in failure behavior resulting from different welding methods and reinforce-
ment strategies [46]. The fractures exhibited a distinctive ductile nature, evident from the
abundant presence of circular dimples (denoted by dotted yellow circles) with varying
sizes [35,46,47]. These dimples are typically due to plastic deformation and material flow
during fracture. Furthermore, trans-granular cleavage facets (red arrows) were observed,
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signifying a type of brittle fracture within the material’s grains. This suggested that al-
though the fractures were predominantly ductile, some localized areas experienced brittle
failure, possibly due to variations in microstructural properties [48,49].
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The fracture surface also displayed grain boundaries noted by a green arrow, which
could have played a role in causing the fracture behavior. These boundaries may act as
preferential paths for crack propagation, impacting the overall fracture resistance of the
joints [20,49]. Inclusion particles, indicated by the white arrows, were observable on the
fracture surface, potentially contributing to stress concentrations and influencing crack
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initiation and propagation. [50]. Lastly, microvoids, marked by the blue arrows, were
observed as small voids or cavities within the fracture surface, further underlining the
ductile characteristics of the fractures [47–50].

3.6. Microhardness

Figure 8 illustrates the Vickers hardness profiles of the welded joints produced through
FSW and FSP + Coal with Table 6 showing the NZ average hardness of the same. One of
the key findings was that AA5083-H111 consistently exhibited higher hardness values than
AA6082-T651 in all of the tests conducted. This was due to AA5083-H111 and AA6082-T651
being two different aluminum alloys with distinct compositions, as previously mentioned
in the materials and methods section. Differences in alloy composition can lead to variations
in their respective mechanical properties, including hardness [17,35]. Also, the “-H111”
and “-T651” designations represent different heat treatment conditions. AA5083-H111
was strain-hardened, also known as cold-worked and annealed, to achieve its specific
hardness and mechanical properties [51]. In contrast, AA6082-T651 was heat-treated and
artificially aged (solution heat-treated and then aged), which resulted in its hardness
characteristics [19,52].

The FSWed and FSP + Coal joints displayed notably greater hardness than AA6082-
T651 at the nugget zone, with an average value of 55–75 HV observed throughout the weld
positions in FSW, as depicted in Figure 8a–c. However, moving away from the nugget
zone towards AA6082-T651, the hardness values decreased across all of the welded joints.
Interestingly, the tool shoulder and tool pin positions on the AA5083-H111 edges showed
minimal differences in hardness values compared to the nugget zones, particularly at the
start and middle weld positions. Moreover, at the end of the weld, greater hardness values
were observed on the tool shoulder edges than in the nugget zone. On the AA6082-T651
side, the regions near the tool pin and tool shoulder positions registered relatively lower
hardness values than other regions. In contrast, the nugget zone exhibited a significant
increase in hardness values along the entire length of the welded joint, surpassing the
hardness of the AA6082-T651 HAZ side. This increase in hardness was attributed to the
fine grain size generated by the FSW process and the work-hardening effect induced during
welding, as previously noted [47]. It is important to remember that the AA6082-T651 alloy
was precipitate-hardened, and its properties can be greatly affected by temperatures above
200 ◦C [17,20,35].
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Figure 8d–f shows the hardness profiles for the FSP + Coal welded joints. Interestingly,
for all three positions (S, M, and E), the hardness values of AA5083-H111 at the tool shoulder
edges exhibited minimal difference from those at the nugget zones. The maximum hardness
value in the nugget zone was 84 HV. Additionally, all three welded depth lines were closely
grouped together as they progressed from AA5083-H111 through the nugget zone to
the AA6082-T651 side, in contrast to the FSW depth lines. To give a clear presentation
of the NZ of the joints discussed, Table 8 provides all of the NZ hardness values. The
higher hardness observed in FSP + Coal joints compared to FSW joints can be attributed
to the influence of coal particles as reinforcing agents within the joint. During FSP, coal
powder is incorporated into the joint, serving as a strengthening component. The presence
of these coal particles within the joint can create a composite-like structure, resulting in
increased hardness due to the reinforcement effect [45]. In contrast, in traditional FSW,
where there is no deliberate introduction of reinforcing agents like coal, the microstructure
and properties of the joint rely solely on the base materials, potentially resulting in lower
hardness values. The addition of coal powder in FSP + Coal joints enhanced the hardness
by providing additional strength and resistance to deformation, effectively improving the
overall mechanical properties of the joint [53,54].

Table 8. Average SZ Vickers Hardness.

Joint SZ Average Hardness (HV0.3)

FSW S 80
FSW M 77.66
FSW E 80.33
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Table 8. Cont.

Joint SZ Average Hardness (HV0.3)

FSP + Coal S 82
FSP + Coal M 83.66
FSP + Coal E 82.33

4. Conclusions

The primary objective of this study was to assess the mechanical characteristics of
friction stir processed dissimilar joints between AA5083 and AA6082 alloys reinforced with
coal particles. The conclusions of the study based on the results obtained can be drawn
as follows:

• The average mean grain size in the FSWed joints was 19.70 µm. Interestingly, the
FSP + Coal method, which involved partial reinforcement with coal powder, resulted
in an even more substantial mean grain refinement of 8.75 µm. This refinement
was attributed to the introduction of coal particles acting as nucleation sites dur-
ing processing, facilitating a more uniform distribution of fine grains throughout
the microstructure.

• The results from the flexural tests showed that the root specimens produced by FSW
failed at a maximum strain of 12.67% and flexural stress of 571 MPa. In contrast,
the root specimens manufactured through FSP + Coal failed at a lower maximum
strain of 6.20% and reduced flexural stress of 422 MPa. The face specimens obtained
through FSW failed at a maximum strain of 12.70% and flexural stress of 535 MPa.
Lastly, the FSP + Coal specimens failed at a significantly lower maximum strain of
3% and much lower flexural stress of 222 MPa. The significant reduction in both
maximum strain and flexural stress in FSP + Coal specimens was linked to factors
such as inhomogeneous particle distribution, weak particle–matrix interfaces, and
suboptimal processing parameters.

• In the FSWed joints, the maximum UTS reached 145.9 MPa at a tensile strain rate
of 9.43%, whereas the minimum UTS of the same joints was 93.43 MPa at a tensile
rate of 7.02%. On the other hand, the FSP + Coal joints exhibited a maximum UTS of
142 MPa at a tensile strain rate of 9.28%, while the minimum UTS was 104.06 MPa at a
tensile rate of 4.63%. Notably, the introduction of coal particle reinforcement led to a
reduction in the UTS compared to FSWed joints, indicating a trade-off between the
presence of coal particles and tensile properties. It is worth noting that the FSP + Coal
method had a positive impact on the properties of the AA6082-T651 material, despite
the reduction in UTS.

• In the hardness test results, the FSP + Coal joints achieved the highest hardness
value of 83.66 HV at the nugget zone, while FSW had a high hardness of 80.33 HV.
The differences in the hardness of the joints can be attributed to the absence of the
additional strengthening and grain refining effects observed in the FSP + Coal joints.

• The fracture surface morphology analysis revealed a prominent ductile failure mech-
anism in the FSWed and FSP + Coal joints. The distinct features observed on the
fracture surfaces provided valuable information about the localized deformation and
fracture behavior within the joints.

In summary, the introduction of coal particles during FSP resulted in a refined mi-
crostructure, superior mechanical properties, and increased hardness at the nugget zone in
comparison to FSW and standard FSP joints. However, the choice of reinforcement strategy
should take into account the specific requirements of the application, as the presence of
coal particles may lead to trade-offs in certain mechanical properties. Overall, the findings
provided valuable insight into how to optimize the FSP process for dissimilar joints while
highlighting the potential benefits of using coal as a reinforcement for FSP joints in materi-
als processing, welding, and engineering applications. Leveraging the knowledge gained
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herein can result in the enhanced performance and reliability of welded joints, leading to
improved products and technologies.
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