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Abstract: In order to obtain the optimum range of process parameters for abrasive belt grinding of
titanium alloys to achieve a surface roughness within a given range, titanium alloy TC4 was selected
as the research object, and experiments on abrasive belt grinding surface roughness were conducted.
Firstly, an empirical formula for the surface roughness of titanium alloys after abrasive belt grinding
was constructed based on the balanced weight analysis of the process parameters for titanium alloy
surface roughness. Sensitivity analysis was carried out to identify the process parameters with the
greatest effect on surface roughness, and the stable and unstable domains of the process parameters
were determined. Combined with range analysis in orthogonal experiments, the influence curves
of the process parameters on surface roughness were obtained, and the optimal parameter ranges
were selected. The research results showed that surface roughness is the most sensitive to changes in
abrasive grain size and the least sensitive to changes in abrasive belt linear speed. The optimal ranges
of abrasive grain size, abrasive belt linear speed, and grinding pressure were determined to be 120#
to 150#, 15m/s to 20m/s, and 10N to 15N, respectively. This study provides a theoreticalmethod and
experimental basis for the control of surface roughness in abrasive belt grinding of titanium alloys.

Keywords: belt grinding; surface roughness; balancedweight; parameter sensitivity; optimumrange

1. Introduction
Surface roughness is one of the most crucial evaluation parameters for surface in‑

tegrity, and its magnitude plays a significant role in determining the wear resistance, fa‑
tigue performance, stress corrosion performance, etc., of components [1]. Titanium al‑
loys, as typical high‑strength alloy materials, possess a range of advantages such as ex‑
cellent corrosion resistance, low density, stable damping properties, and a high specific
strength. Consequently, they have found extensive applications in the aerospace indus‑
try [2]. However, in the process of abrasive belt grinding of titanium alloy surfaces, plastic
deformation, work hardening, and the formation of microcracks are prone to occur un‑
der the squeezing action of abrasive grains, which can negatively impact the surface qual‑
ity. This phenomenon is closely related to grinding process parameters [3]. Scholars from
around the world have conducted numerous studies on the surface integrity of titanium
alloy processing.

Khellouli et al. [4] researched the wear mechanism of abrasive belt grinding and the
elastic contact between the contact wheel and the workpiece and analysed the effect of pro‑
cess parameters on the surface roughness of the workpiece. Bigerelle et al. [5] established
a model for the wear mechanism of abrasive belt grinding and investigated the effect of
process parameters on the surface roughness. Jie Li et al. [6] established a predictionmodel
of surface roughness based on BP neural networks and used genetic and particle swarm
algorithms to optimise the process parameters to obtain the best combination of process
parameters. Huang Jiefeng et al. [7] proposed a feature integration‑based grinding sur‑
face roughness measurement method. It effectively solves the problem of weak feature
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information of grinding surface roughness, which is difficult to measure, and the model
has high detection accuracy under different lighting environments. Pan Yuhang et al. [8]
developed a real‑time surface roughness prediction model based on multi‑sensor signal
fusion. Lu Enhui et al. [9] proposed a grinding surface roughness measurement method
based on a combination of the full reference (FR) image quality algorithm visual saliency
induced index (VSI) and a back propagation (BP) neural network. Zhang Guojun et al. [10]
proposed a roughness measurement method based on generative adversarial and BP neu‑
ral networks. The features in the image are automatically learned by GAN, eliminating the
independent feature extraction step, and the measurement accuracy is improved by a BP
neural network. Fang Runji et al. [11] proposed that the GC index has a strong correlation
with the roughness of the grinding surface, and its regression fitting prediction model has
a high prediction accuracy; in addition, the correlation between the GC index and rough‑
ness is relatively stable under different light intensities. Liu Yin et al. [12] conducted a large
number of comparative tests on the surface roughness of the bottom surface of zirconium‑
based bulk metallic glass milled grooves using different machining materials, milling cut‑
ters with different coatings, milling cutters with different geometric parameters, and dif‑
ferent machining conditions. The results show that zirconium‑based bulk metallic glass
has a good milling performance. Liang Xiaohu et al. [13] evaluated the effect of roughness
on SAW dispersion and attenuation and reduction of bias in the assessment of machined
surface damage. In order to investigate the surface integrity of titanium alloys at different
roughness levels, Guiyun Jiang et al. [14] repeatedly ground the surfaces with the same
and different types of abrasive belt models. The results showed that at roughness Ra lev‑
els of 0.4 µm to 0.2 µm, the compressive residual stresses decreased with increasing linear
velocity and large surface morphological defects formed. At a roughness Ra of 0.2 µm or
less, grinding improved the surfacemorphology, the compressive residual stress increased
with increasing feed rate, and the surface hardness decreased with increasing linear veloc‑
ity. Yun Huang et al. [15] studied the grinding degree (the effect of feed rate, linear speed,
and initial grinding pressure on the grinding force) and the influence of the grinding force
on the law of material removal and surface integrity.

The research discussed in these studies has focused on various aspects of abrasive
belt grinding, particularly regarding the understanding ofwearmechanisms, the influence
of process parameters on surface roughness, and the development of innovative measure‑
ment and predictionmethods. This collective research contributes to a deeper understand‑
ing of abrasive belt grinding processes and their implications. However, most of the above
studies are aimed at analysing the effect of process parameters on surface roughness, and
there are fewer adjustment ranges for the parameters of the belt grinding process that can
be referred to.

Shao Biao and their colleagues [16] determined the best distribution method for the
inerting system by utilising statistical theory to investigate the distribution of nitrogen‑rich
gases. They also established a comprehensive methodology for evaluating the oxygen con‑
centration’s reduction rate characteristics and uniformity based on the entropy weighted
improved TOPSIS theory. Zhong R et al. [17] used the Technique for Order of Preference
by Similarity to an Ideal Solution (TOPSIS) method and expert scoring method to evaluate
the management of energy efficiency in hydropower plants by scoring quantitative and
qualitative indicators. Xianglin Zhan et al. [18] determined the weight coefficients for each
index by combining the hierarchical analysis method and entropy weight method. They
established a virtual simulation environment to calculate the quantitative indicators and
utilised the improved TOPSIS method to evaluate the maintainability of various design
schemes for aero engines in a comprehensive manner. To develop a safety risk assess‑
ment model for the construction of assembly buildings, Guo Zhen [19] incorporated the
AHP and TOPSIS methods. The housing construction project was subjected to TOPSIS
analysis for testing purposes. In order to further study the dynamics of water resources,
and for the traditional TOPSIS evaluation of water resource carrying capacity problems,
He Li [20] found that the use of D‑S evidence theory can effectively reduce the loss of
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data variability, improve the integration of the objective results and accuracy advantages,
and improve the TOPSIS method for water resource evaluation. Liang Yaodong et al. [21]
devised an extensive evaluation model utilising the Hierarchical Analysis Method (AHP)
and the TOPSIS method. The model employed AHP‑TOPSIS and selected a total of 11 in‑
dicators from technological, economical, and safety aspects. These indicators were used to
perform a comprehensive evaluation and determine themost suitableminingmethod. Rui
Han and Xiaoxia Guo [22] used the TOPSIS model combined with the entropy weighting
method to construct a vegetable quality evaluation model for different strains of vegeta‑
bles. Zhu Jianzhen and Cui Xiwen [23] employed the entropy weight TOPSIS model to
analyse and assess the overall intensity of the oceans and its dynamic variation trend us‑
ing China’s ocean economy and related statistics. Li Yang [24] analysed the commonly
used digital imaging technology for machining surface roughness detection to provide a
reference. Yang Deyu et al. [25] used an orthogonal test method and response surface
method to study the cutting force and surface roughness of coated cemented carbide tools
after milling and machining 1J50 soft magnetic alloys; the influence laws of cutting param‑
eters on cutting force and surface roughness were obtained through orthogonal analysis.
Xiao Guijian et al. [26] conducted an experimental study on the surface finish quality of
titanium alloys before and after abrasive belt wear using surface integrity as an evaluation
index; they revealed the influence of abrasive belt wear on the surface roughness, residual
stress, and surface hardness of grinding TC17 and the underlying mechanism. By adjust‑
ing the tilt direction of the grinding belt wheel to alter the normal contact force between
the blade and wheel, Ren Hongzhang and Li Jing [27] maintained a constant load on the
grinding belt wheel via the load system throughout the machining process. This achieved
collaborative control of the grinding process that was independent of both the robotic and
load systems. Song Weiwei et al. [28] conducted a series of experimental studies explor‑
ing the effect of various process parameters on the surface roughness of TC17 titanium
alloys. Their investigation examined the effects of feed rate, abrasive belt line speed, and
downward pressure on the surface roughness. Yuan Lujie [29] analysed the characteris‑
tics of belt grinding and the margin distribution of aircraft blades to address the challenge
of quantitatively controlling the grinding pressure of aircraft blade belt grinding equip‑
ment. Tian Fengjie and Si Dasheng [30] established a surface profile model of abrasive belt
grinding workpieces through the research and analysis of the trajectory of abrasive belt
abrasive grains and verified the theoretical analysis by establishing a mathematical model
of surface roughness regression and blade grinding tests using the one‑factor test method.
In order to investigate the material removal mechanism of metal workpieces in abrasive
belt grinding processing,WangHang and LuoMinfeng [31] established a geometric model
after simplifying the abrasive belt grinding system and set up the model parameters and
motions to establish a discrete element dynamic simulation of abrasive belt grinding pro‑
cessing. Dong Haosheng et al. [32] carried out orthogonal experiments on screw rotor belt
grinding using axial feeding of the workpiece, established a model for predicting the sur‑
face roughness value of the screw rotor after belt grinding, and predicted and analysed the
surface quality of the workpiece after grinding. Duan Jihao et al. [33] revealed the influ‑
ence laws of different contact wheel suppleness levels on blade surface grinding contact
pressure distribution, contact normal force, blade processing deformation, and other states,
combinedwith the contact wheel force–deformation curves. HuChanghao [34] carried out
the analysis of the removal mechanism of material elastic contact grinding, combined with
the Hertzian contact theory of abrasive belt grinding, and further deduced a mathematical
model for the material multi‑body Coulomb friction factor. Kong Xianjun et al. [35] con‑
ducted an orthogonal test on TC11 titanium alloys to investigate the impact of each turning
parameter on cutting temperature, cutting force, and surface roughness. Liu Cen et al. [36]
applied mathematical statistics and probability theory to establish a direct method to anal‑
yse the degree of influence of processingmethods or changes in the working conditions on
the interval values of the distribution parameters of normally distributed randomvariables
at a certain two‑sided confidence level. Xia Wang [37] proposed a three‑parameter inter‑
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val grey number multi‑attribute decision‑making method based on an improved TOPSIS
model for multi‑attribute decision‑making problems.

As a result, various studies have been conducted on different aspects of belt grind‑
ing, including evaluation methods, effects on surface quality, and material removal mech‑
anisms. Researchers utilised various methods such as statistical analysis, mathematical
modelling, and experimental testing to study different aspects of the grinding process and
its impact on the workpiece surface.

However, currently, there is a relatively limited amount of literature available on the
identification of key processing parameters in the blade grinding process. Moreover, the
practical achievements in this area are not very prominent. Therefore, this study aimed to
fill this gap by focusing on the current state of blade processing and its requirements. We
aimed to identify the key processing parameters in the process of belt grinding blades. By
integrating theoretical research with practical processing, we aimed to reduce the reliance
on manual decision making, guide the selection of processing parameters, and ultimately
improve the efficiency and quality of blade belt grinding processes.

The main content of this research project is as follows: Firstly, based on the analy‑
sis of the process parameters for belt grinding, we used a balanced weight approach to
identify the process parameters that have a significant impact on the surface roughness of
titanium alloys when subjected to belt grinding. In addition, we designed an orthogonal
experiment based on these process parameters and established a mathematical model to
estimate surface roughness. Secondly, we examined the effect of the process parameters
within specific ranges, determining both stable and unstable domains for these parameters.
Finally, we proposed a method for determining the optimum range of process parameters
and ascertained the optimal range for these parameters.

This study is of great theoretical and practical importance to engineers and manufac‑
turers for the following reasons.

(1) In traditional belt grinding processes, the selection of grinding process parameters
typically relies on the experience and skill level of the operators, making it difficult
to ensure the quality of the finished workpieces. Therefore, this study conducted
an in‑depth investigation of the process parameters involved in belt grinding blades
through theoretical analysis, with the aim of identifying critical process parameters
and reducing the reliance on manual decision making.

(2) By studying the effect of machining parameters on surface quality and categoris‑
ing these parameter combinations into different intervals, it becomes possible to se‑
lect machining parameters more quickly in actual production. This will help reduce
preparation time, minimise the defect rate, and increase the utilisation efficiency of
grinding machines.

(3) By establishing a surface roughness prediction model that clarifies the relationship
between surface roughness and processing parameters, it facilitates the setting of
grinding process parameters. This is important for the rapid and rational selection of
grinding process parameters.

In summary, controlling surface roughness not only helps enhance product quality
and performance, but it also contributes to cost reduction, prolonging product lifespan,
and reducing resource wastage. Therefore, it holds significant importance for industrial
and engineering applications.

2. Experiment
2.1. Methods for Solving Indicator Weights

The resolution of indicator weights is a key step in multi‑attribute integrated deci‑
sion making, and the methods used in the relevant literature can be summarised in three
categories: subjective assignment, objective assignment, and combined assignment.

(1) Subjective assignment method
The structure of the subordinating function of trapezoidal fuzzy numbers is more in‑

tricate, allowing it to convey specific and detailed information. Furthermore, it exhibits
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increased sensitivity and precision towards the subjective evaluations of decision makers.
In practical applications, trapezoidal fuzzy numbers are commonly used in decision sup‑
port systems and fuzzy reasoningdue to the involvement of subjective views and judgment
criteria from multiple decision makers, as well as a significant amount of uncertainty and
ambiguity. This approach offers a wide range of prospects for applications.

(2) Objective weighting method
The coefficient of variation method is a statistical approach used to calculate the de‑

gree of variation for each system indicator, and it falls under the category of objective as‑
signment methods. Unlike trapezoidal fuzzy numbers, it relies on objective data rather
than expert evaluations, resulting inmore accurate and rational outcomes. However, while
it effectively reduces subjectivity, the weights calculated by this method represent the
amount of useful information regarding the indicator values and may lack a certain de‑
gree of objectivity. Therefore, it is often combined with other empowerment methods to
conduct a comprehensive empowerment evaluation.

(3) Combined assignment method
In this study, we combined the trapezoidal fuzzy number and the coefficient of varia‑

tionmethod. The qualitative analysis employed the trapezoidal fuzzy number, while quan‑
titative analysis was used on the coefficient of variation method. Subsequently, the com‑
bined assignment method comprehensively leverages expert knowledge and experience
along with the objectivity of the coefficient of variation method to determine the weights
for the evaluation indexes for comprehensive lean management. These comprehensive
weights blend the characteristics of subjective and objective assignments, achieving a fu‑
sion of the two.

2.2. Comprehensive Evaluation Hierarchical Model
The scope of the research involves the evaluation of blade grinding surface roughness

process parameters, which are influenced by five major factors: the operator, machine,
material, method, and environment. After categorising these indicators, the “human” fac‑
tor primarily takes into account the operator’s skills and proficiency. The “machine” fac‑
tor mainly considers factors such as feed speed, grinding pressure, belt speed, and belt
size. The “material” factors mainly involve considerations related to the type of abrasive
used. The “method” factor encompasses the requirements of the various of processing tech‑
niques, such as dry processing, wet processing, and other methods. Lastly, the “environ‑
ment” factor focuses on the processing environment requirements, including temperature,
humidity, and cleanliness.

After simplifying to establish the evaluation hierarchical model PQW for blade grind‑
ing surface roughness process parameters, as shown in Figure 1, the model comprises
the target layer A1, the five major influencing factors in A2, and the primary influencing
factors for each factor in A3. This is formally described as follows: PQW = {D,K,Y,}.
Among them, D = {d1, d2, . . . , dn} denotes the set of all nodes in the PQWmodel: d1 ∈ A1 ,
d2, d3, d4, d5, d6 ∈ A2, d7, d8, . . . , d16 ∈ A3, and A1, A2, A3 ∈ D; K = {MS, NS} denotes
the abstract semantic set of the association relationship between two nodes in the adjacent
layer, where MS and NS denote the dominant and dominant relationship, respectively;
MS, NS ∈ D → ω(D) , where ω(D) is the predicate function on D, ∀d ∈ D, and ω(D) de‑
notes the set of all nodes ω that have a relationship with d. For the actual relationships
between the nodes, Y =

{(
di, dj, ηi

j

)∣∣di, dj ∈ D, 0 ≤ηi
j ≤ 1

}
denotes the relative weight of

the dominated by the dominant.
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2.3. Solving for Equilibrium Weights
2.3.1. Subjective Weight Analysis Based on Rough Set Theory

Rough set (RS) theory is a mathematical tool used to handle imprecise, inconsistent,
and incomplete information and knowledge through quantitative analysis. It provides a
deeper understanding of decision makers’ real perceptions and has found extensive appli‑
cation in the fields of fault diagnosis, prediction and control, pattern recognition, and data
mining.

In RS theory, U is a non‑empty finite set of objects, called an argument domain; F is
any object in U; and all objects in U belong to n divisions, such as F1, F2, . . . Fn. If these
n divisions have order relations F1 ≤ F2 ≤ . . . ≤ Fn, then for any of these divisions
Fi ∈ R(1 ≤ i ≤ n), the set of upper and lower approximations can be defined as:

AS(Fi) = {V ∈ G|G ⊆ U/R(T) ∧ G ≥ Fi } (1)

AS(Fi) = {V ∈ G|G ⊆ U/R(T) ∧ G ≤ Fi } (2)

The form U/R(V) denotes the division of the indistinguishable relation of R on U.
For the fuzzy number rough boundary intervals, when the objects in the domain U

are all in fuzzy number form, any fuzzy division Fn can be represented by its FN − RBI,
i.e., RBI(Fi) =

[
L(Fi),L(Fi)

]
:

L(Fi) = ∑
[
R(T)/N(Fi)

]
, T ∈ AS(Fi) (3)

L(Fi) = ∑[R(T)/N(Fi)], T ∈ AS(Fi) (4)

The specific steps for determining the subjective weights are as follows.
Step 1: For the convenience of description, in the hierarchical model of Figure 1, the

set of nodes F = Dd1
md governed by the general objective d1 is denoted by {B1, B2, . . . , Bl}

(i.e., d1, d2, d3) and the opinions of n (n ≥ 1) decision makers are investigated to obtain the
fuzzy mutual‑reversal judgement matrix Q(u) = (q(u)

ij
)
r×r

. q(u)
ij

= (x(u)ij , y(u)ij , z(u)ij , w(u)
ij ) is

the proportion of importance of Bj equivalent to Bi, which is given by decision maker O
(O = 1, 2, …, n), which is denoted by the trapezoidal fuzzy scaled value, 1̃/9̃, 2̃/8̃, . . . , 9̃/1̃.

Step 2: Conduct individual consistency tests on Q(u) and make appropriate adjust‑
ments to Q(u) when it fails the consistency test.

Step 3: Construct the fuzzy number rough group decision matrix Q = (qij)r×r
, where

q
ij
= (q(1)ij , q(2)ij , . . . , q(n)ij ).
Step 4: Calculate the fuzzy number of rough boundary intervals for all elements in Q.

For qij, from Equations (9) and (10), we can obtain RBI(Qij) =
[

L(Qij), L(Qij)
]
, where

L(Qij) =
[

L(q1
ij) + L(q2

ij) + . . . + L(qn
ij)
]
/n (5)
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L(Qij) =
[

L(q1
ij) + L(q2

ij) + . . . + L(qn
ij)
]
/n (6)

Step 5: Construct the fuzzy number roughpairwise comparisonmatricesQγ = (qγ
ij
)
r×r

,

qγ
ij
= RBI(Qij)r×r

, and decompose Qγ into the lower bound matrix Qγ− and the upper
bound matrix Qγ+.

Step 6: Given a trapezoidal fuzzy number (a, b, c, d) with a ≤ b ≤ c ≤ d, the centre of
gravity is

G =
(d2 + d× c2 + c)− (b2 + b× a2 + a)

3(d+ c− a− b)
(7)

The centre of gravity of the trapezoidal fuzzy number can give the most comprehen‑
sive representation of its characteristics. From Equation (13), Qγ+ and Qγ− are mapped
into real forms Q

γ+

R and Q
γ−
R , the eigenvectors corresponding to the largest eigenvalues of

the twomatrices are obtained as [γ+
1 , γ+

2 , . . . , γ+
t ]

T and [γ−
1 , γ−

2 , . . . , γ−
t ]

T , respectively, and
the relative weight of B1, B2, . . . Bt on the upper node d1 is calculated as [ε+1 , ε+2 , . . . , ε+t ]

T

(i.e., [η1
2 , η1

3 , η1
4 ]

T), where

ηi =
τ

2
(η−

i /
t

∑
i=1

η−
i + η+

i /
t

∑
i=1

η+
i ) (8)

If the set of nodes Dd1
md dominated by the upper node di is not empty, then τ = A

(A+B) ;

otherwise, τ = 1. When
∣∣∣Dd1

md

∣∣∣ = 1, the relative weight of the unique element in Dd1
md is

B
(A+B) ; when

∣∣∣Dd1
md

∣∣∣ ≥ 1, repeat steps 1 to 6 to find the relative weight of the element.
Step 7: Repeat steps 1 to 6 from top to bottom, as shown in Figure 1, to obtain the

relative weight vector of all nk nodes di,di+1, . . . ,di+nk on the k‑th layer to the first node

dj on the k − 1‑th layer as η j = [η
j
i , η

j
i+1, . . . , η

j
i+nk

]
T
, where the relative weight element

corresponding to the node on the k‑th layer that is not dominated by dj is 0. Let the number
of nodes on the k− 1 layer be nk−1; then, the weight matrix of the nodes on the k layer in
relation to the nodes on the k− 1 layer can be expressed as ∆k = [η j, η j+1, . . . , η j+nk ] and
∆k is the order matrix nk × nk−1.

Therefore, the weight vector of the nodes on layer 3 with respect to the total objective
can be obtained as φ3 = ∆3 × φ2 = ∆3 × ∆2 φ1; φ3 is the subjective weight vector of the
evaluation metrics in the PQW.

In the analysis process, the subjective weights of the factors involved in the blade
grinding process were assessed across five dimensions: “human”, “machine”, “material”,
“method”, and “environment”, involving three decision makers. The evaluation matrices
were as follows:

X(1) =


5̃/5̃ 7̃/3̃ 5̃/5̃ 5̃/5̃ 3̃/7̃
6̃/4̃ 5̃/5̃ 4̃/6̃ 3̃/7̃ 4̃/6̃
5̃/5̃ 5̃/5̃ 5̃/5̃ 5̃/5̃ 5̃/5̃
5̃/5̃ 6̃/4̃ 5̃/5̃ 5̃/5̃ 6̃/4̃
7̃/3̃ 6̃/4̃ 4̃/6̃ 5̃/5̃ 5̃/5̃



X(2) =


5̃/5̃ 4̃/6̃ 6̃/4̃ 4̃/6̃ 4̃/6̃
6̃/4̃ 5̃/5̃ 7̃/3̃ 5̃/5̃ 5̃/5̃
5̃/5̃ 6̃/4̃ 5̃/5̃ 4̃/6̃ 5̃/5̃
6̃/4̃ 5̃/5̃ 6̃/4̃ 5̃/5̃ 6̃/4̃
6̃/4̃ 5̃/5̃ 5̃/5̃ 7̃/3̃ 5̃/5̃
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X(3) =


5̃/5̃ 7̃/3̃ 4̃/6̃ 4̃/6̃ 4̃/6̃
4̃/6̃ 5̃/5̃ 6̃/4̃ 5̃/5̃ 4̃/6̃
3̃/7̃ 4̃/6̃ 5̃/5̃ 4̃/6̃ 5̃/5̃
3̃/7̃ 5̃/5̃ 6̃/4̃ 5̃/5̃ 4̃/6̃
6̃/4̃ 6̃/4̃ 7̃/3̃ 5̃/5̃ 5̃/5̃


After the tests meet the consistency conditions, they can be used to calculate the

weights and construct the fuzzy rough group decision matrix X = (Xij)5×5, where

Xij =
{

xij
(1), xij

(2), · · · , xij
(s)

}
. The fuzzy number of rough boundary intervals is calcu‑

lated for all elements in X. Taking X13 as an example, according to the rough set
(
~
6/

∼
4
)

division, its upper rough set is
(∼

6/
∼
4
)
, and the lower rough set is

(∼
5/

∼
5,

∼
6/

∼
4,

∼
4/

∼
6
)
; if

divided according to the rough set
(∼

5/
∼
5
)
, the upper rough set is

(∼
5/

∼
5,

∼
6/

∼
4
)
, and the

lower rough set is
(∼

5/
~
5,

∼
4/

~
6
)
. The upper and lower approximations of the rough set can

be calculated using Formulas (15) and (16). The rough interval can be obtained through

Formula (17). The upper rough approximation for the division with set
(∼

6/
∼
4
)
for X13 is

1.5, and the lower rough approximation is 1. For the division with set
(∼

5/
∼
5
)
, the upper

rough approximation is 1.25, and the lower rough approximation is 0.83. In the end, the
upper rough approximation Lim(Ci) for X13 is 1.279, and the lower rough approximation
Lim(Ci) is 0.85. The rough interval RN(Ci) for X13 is [0.85, 1.27].

Lim(Ci) =
1

Mi
∑ R(Y1) (9)

Lim(Ci) =
1

MU
∑ R(Y2) (10)

RN(Ci) =| Lim(Ci), Lim(Ci) | (11)

Using Matlab to calculate the eigenvectors and eigenvalues, the maximum eigenval‑
ues corresponding to X+

R and X−
R are 6.1015 and 4.8118, respectively. The eigenvectors cor‑

responding to the maximum eigenvalues are [0.4124, −0.5012, 0.7384, 0.7384, 0.5788] and
[−0.4075, 0.4632, 0.1653, 0.1653, 0.1653, −0.4250]. The weights can be obtained through
Formulas (12) and (13). Here, Wi represents the weight corresponding to the i eigenvector,
λi denotes the eigenvalue corresponding to the i factor, and WR represents the final total
weight. The total weight WR is [0.217, 0.262, 0.236, 0.152, 0.133].

Wi =
λq

∑5
i=1 λq

(12)

θ =
W+

R + W−
R

2
(13)

After normalisation, the corresponding weights for each part are 11.7%, 9.9%, 5.9%,
9.27%, 10.9%, 23.6%, 6.7%, 8.5%, 6.9%, 5.9%.

2.3.2. Objective Weight Analysis Based on Coefficient of Variation Method
Commonly used methods include the entropy weight method and the coefficient of

variation method. Among these, the entropy weight method indicates the relative impor‑
tance of each index in a competitive sense within the set of evaluated objects. On the other
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hand, the coefficient of variation method posits that in the evaluation index system, the
larger the difference in the values of the index, the more challenging it is to achieve, mak‑
ing it a better reflection of disparities among the evaluated objects. Therefore, this study
employed the coefficient of variation method for calculations.

The data were sourced from the China Statistical Yearbook (2022) and government
reports, and the results are presented in Table 1.

Table 1. Manual evaluation form.

Factor

Man Machine Material Method Environment

Employee
Skills
(D1)

Employee
Profi‑
ciency
(D2)

Feed
Rate
(D3)

Grinding
Pressure
(D4)

Belt Line
Speed
(D5)

Grit Size
of

Abrasive
Belts (D6)

Dry Pro‑
cessing
(D7)

Wet Pro‑
cessing
(D8)

Processing
Environment
Temperature

(D9)

Processing
Environment
Humidity
(D10)

Norm 60% 80% 50% 90% 80% 60% 60% 50% 70% 50%

To quantify the evaluated parameters, positive (or negative) normalisation was per‑
formed using Formulas (14) and (15). Where kij represents the value of the indicator in i‑th,
j‑th, and Kij

′ represents the outcome of the positive (or negative) treatment. Here, repre‑
sents the value of the indicator in the i‑th row and j‑th column, while represents the result
after positive (or negative) normalisation.

Kij
′ = kij (14)

Kij =
1

c +max | k j | +kij
(15)

Next, Formulas (16) and (17) are utilised to calculate themean and standard deviation
of each indicator, respectively. Here, Aj represents the mean value of the j indicator, and
Sj represents the standard deviation of the j indicator.

Aj =
1
n ∑n

i=1 Kij
′ (16)

Si =

√
1
n ∑n

i=1

(
Kij − Aij

)2
(17)

The resulting data were utilised in coefficient of variation calculations using
Formula (18). We calculated the weights corresponding to each indicator using Equation
(19). Here, Vj represents the coefficient of variation for the j indicator, and Wj represents
the weight of the j indicator.

Vj =
Sj

Aj
(18)

Wj =
Vj

∑n
i=1 Vj

(19)

In summary, the weights calculated through the analysis using “human, machine,
material, method, and environment” along with the coefficient of variation method are as
follows: 13.9%, 12.3%, 6.25%, 9.1%, 11.5%, 21.5%, 6.3%, 7.9%, 6.1%, and 5.2%.

2.3.3. Weight Balance Model
The ranking result of the evaluation object depends on its weighted indicator value.

When considering the weighted indicator value, it is important to achieve a balance be‑
tween the contributions from subjective and objective weights. We define the balanced
weight vector as

e = φ1θ + φ2∂ (20)
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where φ1 and φ2 are the balancing coefficients for the principal objectiveweights φ1, φ2 ≥ 0
and φ1 + φ2 = 1, respectively.

Total Deviation of Weight Contribution: According to Equation (20), the subjective
and objective weight contribution values of evaluation object d (1 ≤ d ≤ n) for indicator
dx (7 ≤ x ≤ 16) are represented by φ1θβij and φ2∂βij, respectively. The deviation of the

weight contribution for evaluation object d is
7
∑

x=16
(φ1θβij − φ2∂βij)

2.

Because each evaluation object is equal, the total deviation of the weight contribution

is represented by
n
∑

d=1

7
∑

x=16
(φ1θβij − φ2∂βij)

2.

min
n

∑
d=1

7

∑
x=16

(φ1θβij − φ2∂βij)
2 φ1, φ2 ≥ 0, φ1 + φ2 = 1 (21)

φ2 is denoted as 1 − φ1. Setting the first‑order derivative of the objective function in
the above equation to zero, we obtain

φ1 =

n
∑

d=1

7
∑

j=p+5
β2

ij − (φ4
vj + γvj)

l
∑

i=1

7
∑

j=p+5
β2

ij − (φ4
vj + γvj)

n
∑

d=1

7
∑

x=16
β2

ij + (φ4
vj + γvj)

2
(22)

By the nature of the objective function, it can be seen that the minimum value of the
objective function in Equation (21) is obtained in Equation (22) at φ1. φ1 is calculated as
0.4732 using φ1 + φ2 = 1, and φ2 is 0.5268; then, the equilibrium weights are obtained
using Equation (20). Table 2 shows Balancing weights for each item.

Table 2. Balancing weights for each item.

Factor

Human Machine Material Method Environment

Employee
Skill (D1)

Employee
Profi‑
ciency
(D2)

Feed
Rate
(D3)

Grinding
Pressure
(D4)

Belt Line
Speed
(D5)

Grit Size
of

Abrasive
Belts (D6)

Dry Pro‑
cessing
(D7)

Wet Pro‑
cessing
(D8)

Processing
Environment
Temperature

(D9)

Processing
Environment
Humidity
(D10)

Norm 11.3% 10.1% 6.1% 9.1% 10.6% 22.6% 6.2% 8.3% 6.4% 5.4%

However, in the actual operational process, human factors are not considered. There‑
fore, excluding D1 and D2, the remaining influencing factors are ranked from the largest
to the smallest, with the top three being the size of the abrasive belt, the abrasive belt line
speed, and grinding pressure.

3. Test Conditions and Methods
3.1. Test Apparatus and Equipment

The structure of the constant pressure belt grinding test bench used for the experi‑
ments is shown in Figure 2.
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The abrasive belt grinding test bench mainly consists of a belt sander with adjustable
rotational speed, a clamping device, a pressure sensor, and a CNC guideway driven by a
stepping motor. By adjusting the rotational speed of the drive wheel, you can change the
linear speed of the abrasive belt. The pressure sensor can measure the pressure between
the test piece and the contact wheel in real‑time and provide feedback to the control soft‑
ware. This allows for the control of the CNC guideway to move forward or backward at a
certain speed while maintaining a consistent contact pressure between the test piece and
the contact wheel.

A ZeGage™ Optical Profiler(Middlefield, CT, USA, ZYGO Corporation) was used as
a non‑contact method of measuring the surface roughness of specimens.

3.2. Test Material
The test material was titanium alloy TC4, with dimensions of 15 mm× 40 mm (diam‑

eter × length). The parameters of the abrasive belt used are shown in Table 3.

Table 3. Sand belt parameters.

Abrasive Belt Model Abrasive Material Abrasive Grain Size Abrasive Belt Size
(Circumference ×Width)

TJ113 Aluminium oxide 80# 1510 mm × 25 mm
TJ113 Aluminium oxide 120# 1510 mm × 25 mm
TJ113 Aluminium oxide 150# 1510 mm × 25 mm

3.3. Test Programme
The test programme was based on the conclusion from Section 2.3.3, which identified

that the greatest influence on surface roughness (Ra inµm) is attributed to abrasive belt size
P, abrasive belt line speed Vs (m/s), and grinding pressure F (N). As a result, the focus of
this study was on these three factors. To analyse the interactions between these different
process parameters, a three‑factor, three‑level orthogonal test was conducted. The test
program and results are presented in Table 4.

Table 4. Orthogonal test plan and results.

No. P Vs F Ra

1 80# 10 5 0.863
2 80# 15 10 0.662
3 80# 20 15 0.573
4 120# 10 10 0.491
5 120# 15 15 0.469
6 120# 20 5 0.658
7 150# 10 15 0.452
8 150# 15 5 0.579
9 150# 20 10 0.434
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4. Test Results and Analysis
Firstly, to establish an empirical formula for surface roughness, we analysed the im‑

pact of process parameters on abrasive belt grinding surface roughness. This analysis al‑
lows us to determine the relationship between grinding surface roughness and process
parameters, enabling us to calculate the effects of key process parameters. Subsequently,
we determine the interval of process parameters for achieving a smooth change in surface
roughness.

4.1. The Establishment of Empirical Formula for Surface Roughness
The exponential model between surface roughness and process parameters is repre‑

sented as follows:
Ra = f (P, Vs, F) = KPαVs

βFγ (23)

In Formula (23), Ra represents surface roughness, P stands for abrasive grit size, Vs
represents belt speed, F is the grinding pressure, K is the proportionality coefficient, and
α, β, γ represent the exponents corresponding to the respective parameter.

By combining Equation (23) with the orthogonal test results in Table 3 and applying
the multiple linear regression analysis method, the empirical formula for surface rough‑
ness of titanium alloy after abrasive belt grinding is determined as

Ra = 20.2631P−0.5701Vs
−0.0742F−0.3134 (24)

The significance of Formula (24) was tested using both the F‑test and the correlation
coefficient test. F = 35.137, which is greater than F0.05(3, 9) = 3.86. Additionally, the cor‑
relation coefficient R^2 was 0.9547. Generally, when the absolute value of the correlation
coefficient falls within the range of 0.8 to 1, it can be concluded that there is a strong lin‑
ear relationship between the regression independent variables and the dependent variable.
The results of both tests indicate that the established empiricalmodel for surface roughness
is significant.

4.2. Analysis of Surface Roughness Process Parameters
4.2.1. Sensitivity Model Calculation

We analysed the degree of sensitivity of surface roughness to variations in individual
process parameters.

According to the mathematical definition of sensitivity, the sensitivity model of sur‑
face roughness to process parameters (abrasive grit size, belt speed, and grinding pressure)
is represented as 

SRa
P = ∂ f (P,Vs ,F)

∂P

SRa
Vs = ∂ f (P,Vs ,F)

∂Vs

SRa
F = ∂ f (P,Vs ,F)

∂F

(25)

Since Equation (24) is derived from orthogonal experiments, the initially set combina‑
tions of process parameters are discrete points. Therefore, when calculating SRa

PSRa
VsSRa

F,
the value of PVsF is the average value of the parameters selected in the experiment, which
is represented as PVsF.

SRa
P = −11.5520P−1.5701Vs

−0.0742F−0.3134

SRa
Vs = −1.5035P−0.5701Vs

−1.0742F−0.3134

SRa
F = −6.3505P−0.5701Vs

−0.0742F−1.3134

(26)
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Within the range of parameters selected in the orthogonal experiments, P = 116.67,
Vs = 15, and F = 10; substituting these values into Equation (26), the sensitivity models
are as follows: 

SRa
p = −4.5919P−1.5701

SRa
Vs = −0.0484Vs

−1.0742

SRa
F = −0.3445F−1.3134

(27)

4.2.2. Sensitivity Curve Analysis
The sensitivity curves of surface roughness to abrasive grit, abrasive belt line speed,

and grinding pressure obtained from Equation (27) are shown in Figure 3.
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Figure 3. Sensitivity curves of surface roughness to process parameters. (a) Abrasive grit size; (b) Belt
line speed; (c) Grinding pressure.

From Figure 3a, it can be observed that the sensitivity value in the abrasive grain
size interval [80#, 120#] is greater than that in the interval [120#, 150#]. In other words,
when the abrasive grain size changes from 120# to 150#, the change in surface roughness
is relatively smooth. Similarly, in Figure 3b, it is evident that the sensitivity value in the
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abrasive belt line speed interval [10 m/s, 15 m/s] is greater than that in the [15 m/s, 20 m/s]
interval. This implies that when the sanding belt linear velocity changes from 15 m/s to
20 m/s, the change in surface roughness is smooth. Likewise, in Figure 3c, it is noticeable
that the sensitivity value in the grinding pressure interval [5 N, 10 N] is greater than that in
the interval [10 N, 15 N]. This suggests that when the grinding pressure varies from 10 N
to 15 N, the change in surface roughness is smooth.

4.2.3. Stable and Unstable Domains of Process Parameters
The stable domain of a surface roughness process parameter refers to the range in

which the surface roughness is insensitive to changes, and the unstable domain refers
to the range in which changes in surface roughness are sensitive to changes in process
parameters.

For the orthogonal test with n factors (N1, N2, …, Nn) and m levels (M1, M2, …,
Mm), a method for determining the stable and unstable domains of the process parame‑
ters was proposed as follows: (1) calculate the sensitivity value for factor Np (p = 1, 2, …, n)
within each of the m − 1 level intervals, such as [M1, M2], [M2, M3], denoted as A1, A2, …,
Am−1; (2) compute the average of the sensitivity values A1, A2, …, Am−1 as A; (3) define
Aj (j = 1, 2, …, m− 1) > A as the unstable domain, and the region where Aj < A as the stable
domain [7].

Using the sensitivity curves of surface roughness to abrasive grain size, abrasive belt
line speed, and grinding pressure, the stable and unstable domains for these parameters
were obtained and are shown in Table 5.

Table 5. Stable and unstable domains of process parameters.

Process Parameters Stable Domain Unstable Domain

Abrasive particle size P(#) [120, 150] [80, 120]
Abrasive belt line speed Vs (m/s) [15, 20] [10, 15]

Grinding pressure F(N) [10, 15] [5, 10]

5. Process Parameter Interval Selection
Based on the sensitivity analysis of surface roughness to process parameters and com‑

bined with the polar analysis of the original orthogonal test data, the process parameter
interval optimisation steps for titanium alloy surface roughness after belt grinding are as
follows.

(1) From the surface roughness sensitivity model in Equation (23), we determined
that the surface roughness is most sensitive to changes in abrasive grain size, followed by
changes in grinding pressure and abrasive belt linear speed.

(2)Wedetermined the stable andunstable domains of abrasive grain size and grinding
pressure, as shown in Table 5.

(3) Using the orthogonal test with the extreme difference analysis method, we iden‑
tified the stable and unstable domains of the process parameters (abrasive grain size and
grinding pressure; shown in Figure 4) for surface roughness sensitivity. Additionally, we
determined the process parameters (abrasive belt line speed) that surface roughness is not
sensitive to within the tested range.

Finally, in order to obtain a stable grinding surface roughness, the preferred interval
for the process parameters for belt grinding of titanium alloy TC4 was selected as shown
in Table 6 below. The range of surface roughness fluctuation for abrasive grit sizes in the
unstable domain is smaller than that in the stable domain, so the preferred interval for
abrasive grit size was the unstable domain. If the parameter values are adjusted, their
stable and unstable domains need to be further calculated. The two sets of data chosen
within the stable domain, specifically P = 150#, V = 20 m/s, and F = 10 N, produced an Ra
value of 0.484. Furthermore, the data set consisting of P = 120#, F = 15 N, and V = 10 m/s
produced an Ra value of 0.469. The difference between these two sets is small, within
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0.015. However, a larger difference of Ra value, 0.71, was observed in the data set taken in
unstable domain with P = 80#, F = 10 N, and V = 5 m/s.

Metals 2023, 13, x FOR PEER REVIEW 16 of 21 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) Effect of abrasive grain size on surface roughness. (b) Effect of abrasive belt line speed 
on surface roughness. (c) Effect of grinding pressure on surface roughness. 

Finally, in order to obtain a stable grinding surface roughness, the preferred interval 
for the process parameters for belt grinding of titanium alloy TC4 was selected as shown 
in Table 6 below. The range of surface roughness fluctuation for abrasive grit sizes in the 
unstable domain is smaller than that in the stable domain, so the preferred interval for 
abrasive grit size was the unstable domain. If the parameter values are adjusted, their sta-
ble and unstable domains need to be further calculated. The two sets of data chosen within 
the stable domain, specifically P = 150#, V = 20 m/s, and F = 10 N, produced an Ra value of 
0.484. Furthermore, the data set consisting of P = 120#, F = 15 N, and V = 10 m/s produced 
an Ra value of 0.469. The difference between these two sets is small, within 0.015. How-
ever, a larger difference of Ra value, 0.71, was observed in the data set taken in unstable 
domain with P = 80#, F = 10 N, and V = 5 m/s. 

Table 6. Preferred intervals for process parameters. 

Process Parameter 
Preferred Interval for 

Process Parameters 
Stable or Unstable 

Domains 
Surface Roughness 

Variation Range 
Abrasive particle size, P(#) [120, 150] Stable domain 0.488~0.539 
Abrasive belt line speed, 

Vs (m/s) [15, 20] Stable domain 0.555~0.570 

Grinding pressure, F(N) [10, 15] Stable domain 0.498~0.529 

0.4

0.5

0.6

0.7

80 100 120 140 160

Ra
（

μm
）

P（#）

0.55
0.56
0.57
0.58
0.59
0.6

0.61

10 12 14 16 18 20
Vs（m/s）

0.4
0.45
0.5

0.55
0.6

0.65
0.7

5 10 15

Ra
（

μm
）

F（N）
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Table 6. Preferred intervals for process parameters.

Process Parameter Preferred Interval for
Process Parameters

Stable or Unstable
Domains

Surface Roughness
Variation Range

Abrasive particle size,
P(#) [120, 150] Stable domain 0.488~0.539

Abrasive belt line speed,
Vs (m/s) [15, 20] Stable domain 0.555~0.570

Grinding pressure, F(N) [10, 15] Stable domain 0.498~0.529

Our research team conducted experiments within the optimal parameter values of
P = 150#, V = 20m/s, and F = 10N and achieved the ideal surfacemachining quality for TC4
titanium alloy blade (Ra = 0.484). An image of the blade surface is displayed in Figure 5,
Three‑dimensional topography of a TC4 titanium alloy blade after the grinding process in
Figure 6.
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Changing the experimental parameters to P = 120#, F = 15 N, and V = 10 m/s, we
obtained an Ra value of 0.469. An image of the blade surface is shown in Figure 7. Three‑
dimensional topography of a TC4 titaniumalloy blade after the grindingprocess in Figure 8.
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By comparing the images, we can clearly see that the Ra values of the products pro‑
cessed by selecting parameter values in the stable interval meet the requirements and the
processing quality is good. However, when the parameter values are outside the interval
for the processing experiment, the Ra value of the processed product is too large and the
quality is poor.

6. Conclusions
1. From the test of significance, it can be seen that the confidence level of the established

model for the surface roughness index of titanium alloy after belt grindingwas above
95%, and the correlation coefficient was 0.9547; therefore, the constructed model is
accurate and reliable.



Metals 2023, 13, 1825 19 of 20

2. The surface roughness of titanium alloy TC4 after abrasive belt grinding is most sen‑
sitive to changes in abrasive grain size, followed by grinding pressure and abrasive
belt line speed.

3. The preferred intervals for the grinding parameters were obtained: for abrasive belt
grain size, the interval is from 120# to 150#; for abrasive belt line speed, it is from
15 m/s to 20 m/s; and for grinding pressure, it is from 10 N to 15 N. These intervals
can control the surface roughness to be within 0.57 µm.
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