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Abstract: A novel YOLOv5 network is presented in this paper to quantify the degree of defects in
continuously cast billets. The proposed network addresses the challenges posed by noise or dirty
spots and different defect sizes in the images of these billets. The CBAM-YOLOv5 network integrates
the channel and spatial attention of the Convolutional Block Attention Module (CBAM) with the C3
layer of the YOLOv5 network structure to better fuse channel and spatial information, with focus on
the defect target, and improve the network’s detection capability, particularly for different levels of
segregation. As a result, the feature pyramid is improved. The feature map obtained after the fourth
down-sampling of the backbone network is fed into the feature pyramid through CBAM to improve
the perceptual field of the target and reduce information loss during the fusion process. Finally, a
self-built dataset of continuously cast billets collected from different sources is used, and several
experiments are conducted using this database. The experimental results show that the average
accuracy (mAP) of the network is 93.7%, which can achieve intelligent rating.

Keywords: continuous casting billet; segregation; deep learning; YOLOv5 network; convolutional
block attention module

1. Introduction

Since its inception in the 1950s, continuous casting technology has experienced signifi-
cant development in the steel industry, gradually becoming a mainstream steel production
process. Continuous casting involves the process of transforming liquid steel into solid
continuous cast products through cooling and solidification within a continuous casting
machine [1]. In the course of continuous casting production, due to various factors, different
types of defects may be present in the products, such as segregation, cracks, central porosity,
shrinkage, and bubbles. These defects can have a substantial impact on the performance of
steel products, such as tensile properties, toughness, corrosion resistance, wear resistance,
and fatigue strength [2–11]. Therefore, characterization of the defects is of great importance.

Currently, the macroscopic inspection of continuous casting products is mostly per-
formed using the acid etching method. Ratings of the slabs are usually based on manual
comparison between the cross sectional images of the etched slabs and the standard charts,
as in the case for the Chinese National Standard YB/T 4003-2016 [12] and the Mannesmann
rating method [13]. Such approaches depend strongly on the operator who made the
comparation. The SSAB steel plant [14] attempted to evaluate the same group of cast
slabs using the Mannesmann standard, the two operators gave very different results. In
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contrast, the Rapp [15] standard divides the segregation in the slabs into dispersive dots
and a continuous line. The quality of the slab was evaluated based on the number of dots
within a given length. While the Mannesmann and Rapp standards have limitations in that
they can only be used to grade the slabs where the segregation tends to form a line, the
Chinese National Standard also give the standard charts of billets where the defects are
widely scattered.

The use of automated digital identification and rating is a new development trend
which can save the effort needed for manual inspection. However, such an approach
places stringent demands on image quality as the captured images can be influenced by
factors such as lighting, noise, and other environmental variables. Sometimes, defects lack
distinct features, making them prone to confusion with background elements or stains. To
reduce the impact of uneven lighting, Xi et al. [16]. proposed a new framework for surface
inspection. Zhao et al. [17] proposed a discriminant manifold regularized local descriptor
to conduct the defect classification for steel surfaces. To detect pinholes in billets, Choi [18]
proposed a Gabor filter combination to extract defect candidates and define morphological
features. But, it is difficult to determine which feature is the most important in different
images. It strongly depends on error handling and the difference between the target and
the background.

The use of artificial intelligence methods instead of manual inspection is a recent trend.
Information is extracted for processing and analysis by computer vision technology, and
the advantages of this method are a high efficiency, high accuracy, and low human factor.
Traditional computer image processing methods, of which the recognition effect depends
on the difference between the target and the background, are only suitable for processing
simple backgrounds.

To obtain the location and types of defects directly, it is more effective to combine
production with object detection algorithms. Tao et al. [19] designed a novel cascaded
autoencoder architecture to segment and localize defects on a metallic surface. How-
ever, this method cannot distinguish defects with complex backgrounds. Lin et al. [20]
adopted the faster region-based convolutional neural network (Faster-RCNN) [21] for
defect detection on steel surfaces. However, the processing speed significantly restricts its
practical application in real-time industrial inspection. In contrast to Fast R-CNN, YOLO is
a one-stage method that has a faster processing speed while maintaining similar detection
capabilities. Yang et al. [22] proposed the application of YOLOv5 to the field of steel pipe
weld defect detection and compared it with Faster R-CNN; YOLOv5 is much faster than
Faster R-CNN and has a similar detection accuracy. But, there are difficulties in applying
YOLOv5 to the detection of defects. To improve the detection capabilities of the model,
Li [23], Yao [24], Chen [25], and Zheng [26] have made improvements to the structure of
the model, including changing the network structure, incorporating another model, and
adding self attention, and achieved better results.

This article extends the evaluation method for billets based on image detection tech-
niques. By comparing real images and standard charts in the Chinese national standards
YB/T 4002-2013 [27], we graded the defects of corresponding billets manually first and then
trained a model using the data for an automatic grading based on the YOLOv5 method. In
addition, we added CBAM attention to evaluate the billets, improving the accuracy and
robustness of the method. This module improves the feature extraction capability of the
YOLOv5 backbone network. This helps to minimize information loss during transmission
and enhances the ability to detect defects.

2. Methodology
2.1. Evaluation Method

In this study, hot acid was used to etch the billets of rebar steels and bainitic rail steels
to obtain the defect area. The Chinese standard YB/T4002-2013 [27] was used to determine
the defect level of the billets. When rating the other sizes of billet, the ratio of the defect
area and the billet area can be used as the standard of rating since the area and the number
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of pixels have the same proportional transformation relationship. Therefore, the ratio of the
number of pixels contained in the shrink hole to the number of pixels contained in the billet
was used as a rating parameter for the defect grade. In actual production, because of the
use of a hot acid etching treatment, the segregation after corrosion is often masked by the
pot region, which appears as a porous area in the image. On the other hand, the spot itself
is caused by segregation, which is the reason we selected the porous region for grading.

In situations where the size of the billet is not provided in the images, a standard
reference image is used as a basis for comparison in order to rate defects. The aspect ratio of
the generated defect area anchor box and the billet detection anchor box are compared, as
illustrated in Figure 1. To achieve precise grading for industrial production, the Lagrange
interpolation method is used to determine half-grades. If the defect area ratio falls between
two adjacent grades, it is rated as a half-grade, with values ranging from 0, 0.5, 1, 1.5, to 4.
The numerical results are as follows in Table 1.
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Figure 1. Recognition of defective images in the corresponding standard. The red area represents the
detected defect region.

Table 1. Scales expanded after Lagrange interpolation.

Defect Level Defect Detection Box Length Ratio/%

0 0
0.5 0 < L ≤ 13.45
1 13.45 < L ≤ 19.73

1.5 19.73 < L ≤ 23.21
2 23.21 < L ≤ 26.67

2.5 26.67 < L ≤ 31.35
3 31.35 < L ≤ 36.90

3.5 36.90 < L ≤ 39.42
4 39.42 < L

2.2. Data Set of Continuous Cast Billets

The slabs were sampled from an industrial production, and then were completely
polished and smoothed. To make this distinction, we use billet to refer to the material
used in the experiment. The surface defects of the billets were obtained by hot acid
etching: they were immersed in a solution of water and hydrochloric acid AR (about
36%) with a volume ratio of 1:1 and etched at 80 ◦C for 30 min. Afterwards, they were
immediately cleaned with water and dried. A total of 267 images of different billet samples
were collected with a resolution of 4096 × 3048. The images were then labeled by the
software LabelImg (https://pypi.org/project/labelImg/ (accessed on 17 October 2023),
which includes the defect area as a whole and the location of the billets since there is no scale
to the images. In order to enrich the background information of the detected target and
improve network robustness, the collected images were expanded by data enhancement
techniques. Data enhancement methods commonly include image cropping, image scaling,
color transformation and flipping, rotation, etc [28]. Cutmix data augmentation [29] takes
a portion of the image from the training set and fills the intercepted area with pixel

https://pypi.org/project/labelImg/
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values from other areas in a random manner. Theoretically similar to Cutmix, Mosaic
data augmentation [30] selects four images from the training dataset, flips or scales them,
changes the brightness, and stitches images together into one image according to randomly
selected stitching points. This process is shown in Figure 2. The method inputs four images
into the network for training at one time, which enriches the background information and
improves the robustness of the network. This process also adds many small targets by
random scaling, which enriches the dataset of small targets.
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Figure 2. Schematic of mosaic data enhancement.

After preprocessing, the images were divided into training data and validation data,
with a ratio of 7:3. The training data were used to train the deep neural network, and the vali-
dation data were used to evaluate the performance of the model during the training process.

2.3. The YOLOv5 Algorithm

The schematic diagram of the YOLOv5 network architecture is shown in Figure 3,
which consists of four parts: the network input, the feature extraction backbone network,
the feature fusion neck network, and the network output [31]. The backbone serves as
the foundation for understanding the input image’s content, the neck network component
further processes and refines feature maps before they are used for object detection, and
the output network is used to identify and locate objects within the image.
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2.4. Convolutional Block Attention Module

Clausen [32] et al. proposed the Convolutional Block Attention Module (CBAM): a
simple and effective attention module for feed-forward convolutional neural networks. It is
a lightweight and general-purpose module. It can be seamlessly integrated into any CNN
architecture and can be trained end-to-end with the underlying CNN with the structure,
as shown in Figure 4. The model structure is modified using CBAM, which is added after
each C3 module of the backbone network to better fuse channel and spatial information,
focus on defective targets, and improve network detection, especially for different bias
points, in addition to improving the feature pyramid. The feature map after the fourth
down-sampling of the backbone network is injected into the feature pyramid through the
CBAM module to improve the perceptual field of the target and reduce the information
loss in the fusion process, as Figure 5 shows.
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The convolutional neural network is responsible for performing down-sampling
operations that increase the number of channels while reducing the width and height of the
input objects. To further enhance the ability to capture and utilize important information,
channel attention can be applied. Channel attention allows the network to determine the
importance of different channels and combine them in a weighted manner to emphasize
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the most informative channels. Channel attention calculates the weight of each channel
Mc ∈ Rc×1×1 according to the equation:

Mc(F) = σ
(

W1

(
W2

(
Fc

avg

))
+ W1(W2(Fc

max))
)

(1)

The input feature map F has dimensions of Rc×H×W , where c is the number of channels
and H and W are the height and width of the feature map, Fc

avg and Fc
max are the feature maps

W1 and W2 after average pooling and maximum pooling, respectively, which represent the
two-layer weights of multilayer perception, and σ is the sigmoid activation function.

Then, the feature map after channel attention is passed through a spatial attention
mechanism. This involves applying average pooling and maximum pooling operations to
the channel-attended feature map, resulting in two new feature maps. These two feature
maps are then concatenated and passed through a 7 × 7 convolutional layer to obtain a
final feature map and, finally, the final feature map is output by sigmoid activation function.
The spatial attention is shown in Equation (2):

Ms(F) = σ
(

f 7×7
([

Fs
avg; Fs

avg

]))
(2)

where f 7×7 denotes the convolution operation with a filter size of seven.

2.5. Loss Function

The purpose of loss function is to evaluate the similarity between the predicted output
of a neural network and the intended output. The smaller the value of loss function, the
closer the predicted output is to the desired output. In this study, cross-entropy loss is used
as the classification loss. The overall loss function is a weighted sum of the position loss,
confidence loss, and classification loss, which is used to guide the network optimization
process and update the network parameters. The optimization process continues until the
value of the loss function reaches the minimum. At this point, the network has learned the
mapping relationship between the input and output and can accurately detect the defect in
the cast billet images. The classification loss represents the probability of belonging to a
certain category, where the location loss Lbox is defined as [33]:

Lbox = 1− IoU +
ρ2(A, B)

c2 + αv (3)

where IoU (Intersection over Union) is the intersection of the prediction box and the real
box in series, and the larger the IoU, the closer the actual prediction.

ρ is the Euclidean distance between the coordinates of the center point of the detection
box A and the prediction box B. c is the diagonal distance of the minimum box surrounding
them; α is the weight; υ is used to measure the consistency of the aspect ratio between A
and B. IoU is defined as (4) and IoU is illustrated as shown in Figure 6.
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IoU =
A ∩ B
A ∪ B

(4)

where A is the real box, B is the prediction box, A ∩ B is the intersection, and A ∪ B is the
union of A and B; α and v are defined as:

α =
v

1− IOU + v
(5)

v =
4

π2

(
arctan

wB

hB − arctan
w
h

)2

(6)

The classification loss and confidence loss in this study both use the binary cross-
entropy loss function, which is defined as follows:

Lcls = Lobj = −
1
n∑ (yn × lnxn + (1− yn)× ln(1− xn)) (7)

where n is the total number of bounding boxes or detection anchors, yn is the target value,
and xn is the predicted confidence score for the nth bounding box. This score represents
the model’s confidence in detecting an object within that box. The classification loss and
confidence loss guide the training process to improve the model’s ability to classify objects
correctly and predict confidence scores accurately for each bounding box.

To validate the performance of the CBAM-YOLOv5 detection model, the mean ac-
curacy (mAP), precision (P), and recall (R) were used. Accuracy is the ratio of accurately
identified positive classes to all predicted positive classes, and recall is the ratio of correctly
identified positive classes to all positive classes, which are defined as

P =
TP

FP + NP
(8)

R =
TP

FN + NP
(9)

where TP is the correctly identified defect, FP is the defect of the identified background,
and FN is the unidentifiable defect.

The mAP is defined as

AP =
∫ 1

0
P(r)dr (10)

mAP =
1
k ∑k

i=1 AP(i) (11)

where AP contains the area of the P-R curve surrounded by precision and recall, and
mAP indicates the network model detection performance of the AP average for each
category measure.

3. Results and Discussion
3.1. Comparison Results of Different Attention Modules

To further explore the effect of introducing CBAM in YOLOv5, we introduced different
attention modules in the neck of YOLOv5, such as Efficient-Channel-Attention (ECA),
Coordinate-Attention (CA), and Squeeze-and-Excitation (SE). The experimental results are
shown in Table 2.

In view of the complex and gradual backgrounds of defects and the fact that defect
sizes and types can be different, for fast generation in industrial environments, some
scratches and dirty spots are also easily recognized as defect features. Therefore, a CBAM-
YOLOv5 defect detection network based on YOLOv5 is proposed by combining the optical
properties of cast images, defect imaging characteristics, and detection requirements to
achieve more efficient identification.
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Table 2. Insertion of experimental results from different attention mechanisms.

Model Attention Mechanisms mAP/%

YOLOv5

None 84.1
ECA 86.5
SE 90.1
CA 87.8

CBAM 91.0

Moreover, two improvements were made to YOLOv5, and ablation experiments
were conducted to evaluate the impact of each improvement and their combination. The
experimental results are presented in Table 3. The mAP of the original YOLOv5 model is the
lowest (84.1%), which does not meet detection requirements. However, after incorporating
the CBAM attention module, the mAP increased to 91.0%, indicating that the CBAM
attention improved the detection capability for defects. When the CBAMC3 module was
added after SPP, the mAP was 92.3% alone, while the combination of SPP channels and the
CBAM spatial attention produced a mAP of 93.7%, suggesting that the combination of the
two enhancements significantly improved the detection of defects. This improvement was
achieved through better feature representation and feature fusion. The combination of the
two enhancements improved feature extraction by the backbone network, incorporated
more semantic information into the pyramid layer during feature fusion, and reduced
information loss during transmission.

Table 3. Results of ablation experiments.

Model Attention Mechanisms mAP/%

YOLOv5 YOLOv5 84.1
YOLOv5 + Neck CBAM CBAM behind C3 layer 91.0
YOLOv5 + SPP CBAM C3CBAM after SPP 92.3

CBAM-YOLOv5 Combined with the above 93.7

Compared to the other attention modules, we found that the best performance was
achieved by introducing the CBAM module in YOLOv5. Specifically, the two CBAM-
YOLOv5’s reached 91.06% and 90.02%, respectively, which were 1.32% and 1.19% higher
than the worst model (YOLOv5-ECA). Thus, we improved the performance of the model
by introducing the CBAM attention mechanism.

The loss of the model during the training process, shown in Figure 7a–c, shows the
training loss of the original YOLOv5s model. Figure 7d–f shows the training loss using
the improved CBAM-YOLOv5 model. The loss curve represents the model’s performance
during training iterations. It should show a gradual decrease in the loss over time. When
the loss plateaus, it suggests that the model has reached a stable state. Models that exhibit a
rapid descent and achieve lower final loss values are generally preferred. In the initial stage
of training, the loss decreases rapidly due to the high learning rate of the model. When
the training rounds exceed 50 rounds, the confidence loss of the original model starts to
improve on the test set and overfitting occurs, and the rest of the losses fluctuate less. And,
the improved model gradually stabilizes the loss curve after 80 training rounds, and the
model works better.

Figure 8 shows the accuracy. As recall increases, the number of training rounds in-
creases. At the time of stabilization, the mAP of the original YOLOv5s model is 84.1%, while
the mAP of the improved CBAM-YOLOv5 model is 93.7%, with an accuracy improvement
of 9.6%.
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The performance of the deep learning model is affected by different training param-
eters, including the input image size, period, batch size, learning rate, and the optimizer
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used. In addition, different confidence thresholds are set and tested when the learning rate
is 0.01 and 0.01. In addition, different confidence thresholds were set and it was tested
that the learning rate was better when it was 0.01. A confidence threshold of 0.5 was
chosen as the parameter for the model detection experiments. In order to verify whether
the above parameters are optimal, the improved CBAM-YOLOv5 was tested several times
based on the self-built continuous casting billet defect data set, and the above parameters
were adjusted to observe the performance changes. The experimental results are shown in
Table 4.

Table 4. Adjustment of hyperparameter.

Num Learning Rate Optimizer IoU mAP/%

Exp1 0.1 SGD 0.4 93.1
Exp2 0.1 SGD 0.5 92.6
Exp3 0.1 SGD 0.6 92.4
Exp4 0.1 Adam 0.5 92.2
Exp5 0.01 SGD 0.4 93.7
Exp6 0.01 SGD 0.5 93.0
Exp7 0.01 SGD 0.6 92.7
Exp8 0.01 Adam 0.5 92.1

In our experiments, we found that the variation in the loss function tends to stabilize as
the period approaches 100. Thus, the rounds are set to 100 in this paper. Table 4 shows that
Exp5 has the highest mAP, which also validates the settings of the experimental parameters
in this paper.

In industrial production, the surface of the billets is often not entirely ideal and may
contain dirt spots or complex backgrounds. Figure 9 demonstrates the recognition perfor-
mance of the YOLOv5 model and the CBAM-YOLOv5 model on complex backgrounds and
dirty spots. The CBAM incorporates a feature called Channel Attention, which dynamically
re-weights the importance of different channels in the network, allowing the model to focus
on defect features. In addition, the CBAM integrates Spatial Attention, which emphasizes
important spatial regions within an image. This enables the model to suppress irrelevant
background information and concentrate on the defect regions. By attending to specific
spatial regions, the model becomes more robust in the presence of complex backgrounds.
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In contrast to Figure 8a,b, the original YOLOv5 model classifies dirty spots as defects
and marks them, while the CBAM-YOLOv5 model extracts defect features to distinguish
them from dirty spots. Figure 8c,d compares the performance of the models in complex
environments, and the cbam-YOLOv5 model exhibits superior detection capabilities com-
pared to the original model.

3.2. Visualizing Knowledge of CNNs via Grad-CAM

A common issue with traditional neural networks is the challenge in providing an
explanation for the decision made, often labeled as a “black box”. Recent efforts have been
made to address this issue and explain outputs, such as the CAM (Class Activation Map-
ping) [34] and GradCAM (Gradient-weighted Class Activation Mapping) techniques [35].

Finally, to evaluate the effect of the model, a Grad-CAM visualization is used to
analyze the attention mechanism and improve interpretability, as shown in Figure 10.
Figure 10a displays the heat map without the attention mechanism, indicating difficulties
in recognizing defects due to their similarity to the background. In contrast, Figure 10b
demonstrates the image after adding CBAM, revealing that the attention mechanism
prioritizes the center of the image and improves the accuracy of defect recognition while
reducing mislabeling.
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Figure 10. Grad-CAM heat map for visual validation of both models. (a) Visualization results of the
original YOLOv5 model, (b) visualization results of the CBAM-YOLOv5 model, and (c) defect area
marked manually.

The GradCAM generates a heatmap that highlights the regions in the input image
where the model’s attention is concentrated. This heatmap is superimposed on the original
image, making it visually evident where the model is making its predictions. By examining
the heatmap, one can easily identify the areas within the image that are most relevant
to the model’s defect detection decision. This localization is crucial for understanding
which parts of the image the model considers when identifying defects. This verification
method validates the model’s effectiveness and highlights the importance of attention
mechanisms in improving recognition accuracy and robustness. Typically, the area in
Figure 10c would be manually measured and the longest edge would be compared to
the cast billet’s dimensions for calculation. In contrast, our method in Figure 10b directly
frames the largest area and allows the computer to calculate the rating. This method
significantly speeds up the rating process while maintaining the same level of accuracy as
manual measurement. Moreover, this method produces numerical data, avoiding human
subjectivity in the rating process.

As shown in Figure 11 for the CBAM-YOLOv5 inspection effect, in the cast billets,
both the defect area and the billet as a whole are marked in order to achieve the rating
requirements. Since the scale information is not given in the figure, the pixel scale is used
as the basis for the size division, and the defect area is compared with the overall size
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of the billet according to the values given in Table 1, with an aim of obtaining the defect
grade automatically.
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4. Conclusions

This study proposes a detection and evaluation method for the analysis of segregation
in billets that addresses challenges such as a varying defect size and complex background.
A CBAM-YOLOv5 network was used which incorporated SPP and CBAM mechanisms
to extract important features and reduce interference from background information. The
modified network achieves a high detection accuracy for cast billet defects, with a mAP of
93.7%, which is an improvement of 9.6% over the original model. The study also improves
the interpretability of the model using GradCAM to demonstrate the role of the attention
mechanism in defect detection. In addition, the identified defect areas are compared to
the cast billet area to obtain the defect score, which reduces subjectivity and randomness
compared to manual measurement and better meets industry needs.
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