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Abstract: As a type of metallurgical solid waste with a significant output, chromium-containing
metallurgical dust and slag are gaining increasing attention. They mainly include stainless steel dust,
stainless steel slag, ferrochrome dust, and ferrochrome slag, which contain significant amounts of
valuable elements, such as chromium, iron, and zinc, as well as large amounts of toxic substances,
such as hexavalent chromium. Achieving the harmless and resourceful comprehensive utilization of
chromium-containing metallurgical dust and slag is of great significance to ensuring environmental
safety and the sustainable development of resources. This paper outlines the physicochemical prop-
erties of stainless steel dust, stainless steel slag, ferrochrome dust, and ferrochrome slag. The current
treatment technologies of chromium-containing metallurgical dust and slag by hydrometallurgy, the
pyrometallurgical process, and the stabilization/solidification process are introduced. Moreover, the
comprehensive utilization of resources of chromium-containing metallurgical dust and slag in the
preparation processes of construction materials, glass ceramics, and refractories is elaborated. The
aim of this paper is to provide guidance for exploring effective technology to solve the problem of
chromium-containing metallurgical dust and slag.

Keywords: chromium-containing metallurgical dust and slag; composition and characteristics;
treatment technology; resource utilization

1. Introduction

The iron and steel industry is a worldwide pillar industry that plays an irreplaceable
role in the development of the worldwide economy [1,2]. The steelmaking process is
accompanied by the production of a large amount of solid waste, which contains valuable
components [3,4]. Chromium-containing metallurgical solid wastes originate from the
production of stainless steel and ferrochrome alloys, which include stainless steel dust,
stainless steel slag, ferrochrome dust, and ferrochrome slag. The treatment of chromium-
containing metallurgical solid wastes has always been a topic of interest for researchers,
primarily due to the presence of chromium oxide.

In the smelting process of stainless steel, the vigorous stirring in the furnace causes a
partially elevated temperature melt to enter the flue. Then, they are collected by the bag
filter and electric precipitator. Stainless steel dust is the product in the bag filter and electric
precipitator. Stainless steel slag is the by-product produced in the furnace during the
smelting of stainless steel, such as in electric arc furnaces and argon oxygen decarburization
furnaces [5,6]. Producing 1 ton of stainless steel is usually accompanied by approximately
40 kg of stainless steel dust and 300 kg of stainless steel slag [7,8]. In 2021, the yields of
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stainless steel slag in China and the world were about 10.21 million tons and 19.43 million
tons, respectively, while the yield of stainless steel dust reached about one million tons in
China [9–11]. In the smelting process of ferrochrome alloy steel, the chromium-containing
solid waste includes the slag and dust generated at an elevated temperature. In general,
the production of each ton of high-carbon ferrochrome alloy results in the generation of
about 1.1~1.6 tons of slag and 25 kg of dust [12–14]. In 2021, the yields of high-carbon
ferrochrome slag in China and the world were approximately 7 million tons and 17 million
tons, respectively [15,16].

Chromium-containing metallurgical dust and slag contain a large number of harmful
elements, such as Cr, Pb, Ni, and Zn [17,18]. The extensive accumulation of chromium-
containing metallurgical solid waste not only pollutes the environment due to the leaching
of hazardous elements but also poses potential health risks, such as skin cancer and throat
cancer, to individuals exposed to the contaminated environment over prolonged peri-
ods. Moreover, the valuable components contained in the solid waste are wasted [19–22].
The treatments of chromium-containing metallurgical solid waste are significant for the
development of the economy and the protection of the environment. Simultaneously,
efforts should be made during the treatment process to minimize the generation of sec-
ondary pollutants, such as wastewater and slag, in order to reduce adverse environmental
impacts [23,24]. To improve the knowledge of chromium-containing metallurgical solid
wastes, this paper introduces the physicochemical properties of chromium-containing
metallurgical dusts and slags and summarizes the present technologies and methods of
treating chromium-containing metallurgical solid wastes.

2. Physicochemical Properties of Chromium-Containing Metallurgical Dust and Slag
2.1. Chromium-Containing Metallurgical Dust
2.1.1. Stainless Steel Dust

Figure 1 is the particle size distribution of stainless steel dust [25]. It is clear in Figure 1
that the size of stainless steel dust follows a typical Gaussian distribution model, which
is mainly due to the magnetic oxides (e.g., Fe3O4) contained in the stainless steel dust.
The particle size of most stainless steel dust is less than 100 µm, and more than 40% of
the stainless steel dust is between 1 and 10 µm. The stainless steel dust is relatively fine,
and the large particles originate from the agglomeration of small particles [1]. Figure 2
presents the microstructure of stainless steel dust. As shown in Figure 2, some relatively
large spherical and irregular shapes can be observed in the cluster-like particles composed
of a large number of fine particles [26–28].
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The main elements contained in stainless steel dust are Mg, Si, Cr, Fe, Zn, and Ni.
Table 1 lists the chemical composition and phases of typical stainless steel dust [7,18,29–42].
As can be seen from Table 1, it is evident that Fe is the predominant element, with a content
ranging from 14.77% to 53.50%. Its primary forms of existence include Fe2O3, Fe3O4, and
spinel phases, among others. Ni elements usually exist in the form of NiO and Fe2NiO4. Cr
elements may exist in the form of Fe2CrO4 spinel, Cr2O3, CrO, and CrCO3. Ca is primarily
found in compounds such as lime, fluorspar, and limestone. Additionally, stainless steel
dust contains a certain amount of chlorides, alkali metals, and sulfides. The valence of Cr in
stainless steel dust is mainly Cr(III) [18,32–34,36–39], and the valence of about 0.14~0.6% of
them is hexavalent chromium (Cr(VI)), which is in the form of calcium chromate (CaCrO4),
CrO3, (K,Na)2Cr2O7, or (K,Na)2CrO4 [40,41].

Table 1. Chemical composition and phase of typical stainless steel dust [7,18,29–43].

Elements Contents (%) Phase Containing This Element

Fe 14.77~53.50 Fe2O3, Fe3O4, and spinel.
Cr 0.28~35.80 Spinel, Cr2O3, CrO, and CrCO3.
Ni 0.04~5.42 Nickel oxide and spinel.
Zn 0.04~12.73 Zinc, basic zinc chloride, and zinc chloride.
Si 0.09~4.51 Silicon dioxide, iron olivine, and silicon carbide.
Al 0.16~0.81 Aluminum oxides and spinel.
Mg 0.04~10.20 Spinel and magnesium oxide.
Ca 0.83~14.78 Calcium oxide, fluorite, and limestone.

Cr(VI) 0.14~0.60 Calcium chromate, CrO3, (K,Na)2Cr2O7, or (K,Na)2CrO4

2.1.2. Ferrochrome Dust

The particle size of ferrochrome dust is mainly in the range of 0.1~105 µm, and it can
be divided into coarse dust and fine dust, which are collected from cyclone separators and
baghouse filters, respectively [44,45].

Table 2 lists the physical properties of ferrochrome dust [46,47]. It can be seen from
Table 2 that the average particle size of fine ferrochrome dust ranges from 0.7 µm to 13.2 µm.
The ferrochrome dust has a low moisture content (about 1%), and the specific surface area
varies between approximately 5.31 m2/g and 13.2 m2/g. After leaching fine ferrochrome
dust in water, the resulting aqueous solution exhibits alkaline properties, with a pH range
of 8.08 to 8.48. The fine ferrochrome dust contains significant amounts of soluble salts,
indicating that piling or landfilling may result in the alkalinization of the soil. Compared
to fine dust, coarse dust has a particle size of approximately 80 µm, with a much lower
specific surface area, typically ranging from about 2.7 m2/g to 3.32 m2/g. When leached in
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water, coarse dust results in a strongly alkaline solution with a pH of approximately 11.18,
which can lead to equipment corrosion and accelerate equipment aging.

Table 2. Physical properties of ferrochrome dust [46,47].

Ferrochrome
Dust

Grain Size d50
(µm) Moisture (%)

Specific
Surface Area

(m2/g)

Stack Density
(g/cm3)

Water-Soluble
Components (%) pH

Fine dust 0.71~13.23 0.93~1.06 5.31~13.2 0.49~0.93 3.34~11.86 8.08~8.48
Coarse dust 79.76 0.48~0.73 2.7~3.32 1.65~2.11 0.30 11.18

The chemical compositions and phases in ferrochrome dust are listed in Table 3 [41,48,49].
It can be seen from Table 3 that coarse ferrochrome dust is rich in the elements of Cr, Si, Fe,
Al, Mg, and C. Fine ferrochrome dust is abundant in the elements of Si, Zn, Na, K, Mg, S,
and Cl. Compared to coarse dust, fine dust contains lesser amounts of the elements Cr, Fe,
and C. The main phases in coarse ferrochrome dust are chromium spinel, quartz, calcium
feldspar, and amorphous carbonaceous materials, while fine ferrochrome dust mainly
consists of oxides, such as ZnO, SiO2, and MgO. Fine ferrochrome dust also contains trace
quantities of compounds containing crystalline water, such as Na4(SO4)Cl(OH)6·6H2O
and ZnSO4(OH)6·5H2O. The difference in chemical composition between the two types of
ferrochrome dust is closely related to the elevated-temperature reduction process and the
raw materials used.

Table 3. Chemical composition and phases of ferrochrome dust [41,48,49].

Element

Content(%) Phase

Coarse
Ferrochrome Dust

Fine Ferrochrome
Dust

Coarse Ferrochrome
Dust Fine Ferrochrome Dust

Cr 13.14~17.11 1.92~7.4 Chromium spinel Chromium spinel and FeCr

Si 9.15~13.86 16.45~34.2 Quartz and calcium
feldspar

Quartz, magnesia olivine,
Mg3Al2Si3O12, and Al2SiO5

Al 5.61~6.64 1.06~5.62 Chromium spinel and
calcium feldspar Chromium spinel

Ca 0.71~1.72 0.14~0.57 Dolomite and calcium
feldspar -

Zn 0.59~0.64 1.37~12.13 - ZnO, NaZn4(SO4)Cl(OH)6·6H2O, and
Zn4SO4(OH)6·5H2O

Fe 5.37~10.58 0.61~3.01 Chromium spinel and
FeCr Chromium spinel and FeCr

Mn 0.11~0.18 0.23~0.58 - -

Mg 4.14~7.16 1.01~13.92 Dolomite and chrome
spinel Magnesia olivine, MgO, and aluminum

S 0.28~0.76 0.96~3.4 - NaZn4(SO4)Cl(OH)6·6H2O and
Zn4SO4(OH)6·5H2O

Cl 0.89 0.95~3.32 - NaCl and NaZn4(SO4)Cl(OH)6·6H2O
Na 1.32~1.89 1.71~5.94 - NaCl and NaZn4(SO4)Cl(OH)6·6H2O
K 0.84~0.91 1.0~7.58 - -

C 9.97~15.5 1.1~1.58 Coal, coke, and
charcoal Coal, coke, and charcoal

Ga 0.015 0.026~0.39 - -

2.2. Chromium-Containing Metallurgical Slag
2.2.1. Stainless Steel Slag

Stainless steel slag includes the EAF slag and AOD slag formed in the process of
producing stainless steel. Most of the slag particles are about 10~200 µm in size and angular
in shape, and they have stable mechanical properties [50,51]. The specific surface area and
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density of EAF slag are 2025~2225 cm2/g and 3.10~3.19 g/cm3, respectively [52,53]. The
AOD slag is dusty due to its easy pulverization during the cooling process.

The chemical composition of stainless steel slag is dependent on various factors
(such as the smelting process, chemical compositions of raw materials, and target steel).
Table 4 [51,54–61] lists the chemical composition of typical stainless steel slag. As shown in
Table 4, the oxides of Ca, Si, and Mg are the main components in stainless steel slag, and
the rest are small amounts of oxides of Al, Mn, Cr, and Fe. EAF slag has a relatively higher
CaO + MgO content, ranging between 40% and 60%, whereas in comparison, AOD slag
exhibits a higher CaO + MgO content, approximately ranging from 60% to 70%. The Cr2O3
content in AOD slag is obviously less than that in EAF slag, which is because the Cr2O3 in
the AOD slag is reduced by reductant at the end of the AOD refining process.

Table 4. Chemical composition of typical stainless steel slag (wt%) [51,54–61].

Stainless Steel Slag CaO + MgO SiO2 MnO Al2O3 FeO Cr2O3 P2O5 Ni

EAF slag 40~60 20~30 2~3 3~10 0.5~22 2~10 2~5 <0.1
AOD slag 60~70 20~30 <2 1~5 <2 <1 - <0.1

The phases in the stainless steel slag are presented in Table 5 [59,60,62,63]. It can
be seen that the main phases in EAF slag are dicalcium silicate (Ca2SiO4) and mer-
winite (Ca3MgSi2O8), while the remaining phases are chromium spinel, oakermanite
(Ca2MgSi2O7), metallic minerals (Ni-Fe-Cr alloy), RO (CaO-FeO-MnO-MgO continuous
solid solution), etc. The main phases in AOD slag are dicalcium silicate (Ca2SiO4), Calcite
(CaCO3), portlandite (Ca(OH)2), cuspidine (Ca4Si2O7F2), magnesium chromite (MgCr2O4),
merwinite (Ca3MgSi2O8), and ferrochrome spinel (FeCr2O4).

Table 5. Phases in the stainless steel slag [57–60,64].

Stainless Steel Slag Major Minerals Secondary Minerals Trace Minerals

EAF slag Ca2SiO4 and
Ca3Mg(SiO4)2

Ca2MgSi2O7 and
Ni-Fe-Cr alloy

Chromium spinel, Fe3O4,
Cr2O3, and RO

AOD slag Ca2SiO4
CaF2, CaCO3, Ca(OH)2, Ca4Si2O7F2,
and magnesium silica calcium stone

MgCr2O4, Ca3Mg(SiO4)2,
and FeCr2O4

The form of Cr element in the stainless steel slag changes with the smelting processes.
Many researchers reported that the Cr element in the EAF slag mainly exists in the form of
a Cr-containing alloy, a Cr-containing spinel, and Cr2O3, while it mainly exists in the form
of Cr-containing spinel in the AOD slag [57–60,64].

2.2.2. Ferrochrome Slag

Ferrochrome slag mainly includes high-carbon ferrochrome slag and low-carbon fer-
rochrome slag [64]. Table 6 lists the chemical compositions of typical ferrochrome slag [14,65–69].
The main components in ferrochrome slag are CaO, SiO2, Al2O3, Cr2O3, MgO, and Fe2O3.
The chemical compositions of ferrochrome slag change with the parameters in the process
of producing ferrochrome alloys, such as smelting processes and chemical compositions of
raw materials.

Most high-carbon ferrochrome slag is gray-black in color, and some present dark green
and rusty red colors. It is difficult to break, and its compressive strength is in the range of
100 MPa to 200 MPa. The low-carbon ferrochrome slag is a gray, loose, and irregular solid
powder [70]. As shown in Table 6, high-carbon ferrochrome slag exhibits relatively higher
contents of SiO2 and MgO, ranging between approximately 28.6% to 37% and 29.2% to
35%, respectively. The main phases in high-carbon ferrochrome slag are magnesia-alumina
spinel, magnesia-olivine, the glass phase, metal beads, calcium-magnesium olivine, and
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chromium spinel [71]. Among them, spinel is the main phase in high-carbon ferrochrome
slag, whose grain size generally ranges from 20 µm to 2000 µm [49].

Table 6. Chemical composition of typical high-carbon ferrochrome slag (wt%) [14,65–69].

Type
Main Chemical Composition

Main Phases
CaO SiO2 Cr2O3 Al2O3 MgO Fe2O3

High-carbon
ferrochrome slag 0.5~4.8 28.6~37 1.8~8.73 16~32 29.2~35 0.8~4.0

MgAl2O4, forsterite, glass
phase, metal beads,

monticellite,
and chromium spinel

Low-carbon
ferrochrome slag 20.02~22.2 35.54~43.76 2.4~5.16 9.7~20.13 5.86~33.32 1.97~2.46

2CaO·SiO2, a small amount
of 3CaO·MgO·2SiO2 and

2CaO·Al2O3·SiO2

In contrast, low-carbon ferrochrome slag has a different composition, with a higher
proportion of CaO (20.02% to 22.2%) and SiO2 (35.54% to 43.76%). The main phases in low-
carbon ferrochrome slag are dicalcium silicate (2CaO·SiO2), merwinite (3CaO·MgO·2SiO2),
and gehlenite (2CaO·Al2O3·SiO2) [65]. In ferrochrome slag, the valences of the chromium
element are mainly +3 and +6.

3. Valuable Recovery Technology for Chromium-Containing Metallurgical Dust and Slag
3.1. Stainless Steel Dust

Currently, the pyrometallurgical process and hydrometallurgical process are the main
methods of processing stainless steel dust.

(1) Pyrometallurgical process

To recover the valuable metal elements (such as Fe, Cr, and Ni) in chromium-containing
solid wastes, many researchers have conducted laboratory-scale experiments on the car-
bothermal reduction or self-reduction of chromium-containing solid wastes. The reduced
products include the valuable metals of Fe, Ni, and Cr, as well as other oxides [72]. The
main factors affecting the recovery ratio of valuable metals from stainless steel dust are
the reduction temperature, reduction time, carbon-to-oxygen ratio, and amount of added
chromium-containing slag. Chu et al. [18,29,38] and Wu et al. [33] conducted laboratory-
scale self-reduction experiments with stainless steel dust as a raw material. The results
showed that a Fe-Cr-Ni-C alloy was produced with an iron content of 66.82%, chromium
content of 20.02%, nickel content of 4.12%, and the recovery rates of Fe, Cr, and Ni from the
stainless steel dust were found to be 92.5%, 92.0%, and 93.1% at 1100 ◦C and holding for
15 min, respectively. When stainless steel dust and chromium-containing slag are smelted
together, the recovery ratio of the metal can also reach more than 90%. Simultaneously, it
can reduce the consumption of coke and energy [3,11,34,73].

Previous researchers have summarized the industrial applications of pyrometallurgical
technologies in treating chromium-containing metallurgical dust [4,19,27,74–79], such as
Waelz technology, Inmetco, Z-Star, and plasma technology (Table 7).

The Waelz technology [80] is the most widely used technology for treating stainless
steel dust, and its technological process is shown in Figure 3. The dust is reduced by carbon
at 1100~1200 ◦C. Non-ferrous metals (such as Zn, Pb, Cd, etc) and volatile salts evaporate
from the bed and are then oxidized. The oxidation products are collected and separated
to obtain the final products, which contain about 52~58 wt% ZnO. Waelz technology
exhibits powerful processing capabilities in dealing with metallurgical dust. However, it is
accompanied by a relatively high energy consumption.
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Table 7. Characteristics of various pyrometallurgical technologies [4,19,27,74–79].

Method Process Parameters Recycled Metals Advantages Disadvantages

Waelz

Temperature at
1100~1200 ◦C and

Carbon thermal
reduction in rotary

kilns

ZnO Large processing capacity
and mature technology

High cost, wide
distribution of product

demand sources, and high
energy consumption

Inmetco Rotary kilns and
electric arc furnaces Nickel, Chromium, etc.

Large amount of waste
treated, short reduction

time, wide range of
applications, and high
metal recovery ratio

Low energy efficiency and
increased transportation

processes

Plasma Plasma furnace Chromium, Iron, and
Zn

The equipment covers a
small area, has high
efficiency, has short

payback period, and can
achieve the separation of
different metals with low

boiling points while
reducing and recovering

chromium and iron

Large power consumption,
high quality requirements
for reducing agents, large
consumption of electrodes
and refractory materials,

and its products also need
other equipment to carry
out post-processing and

other defects

Z-Star

Shaft furnace with
coke-filled bed;

Processing temperature
above 1550 ◦C

Chromium, Iron,
Nickel, Zn, and Pb

The slag-iron separation
efficiency is high, and the

raw material does not need
to be blocked; almost all

zinc and lead are recovered,
and no secondary waste is

discharged

Process heat consumption
is large, a large amount of

sensible heat of the furnace
gas cannot be effectively

recovered or utilized, and
the top wall of the furnace
is prone to zinc adherence
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To recover valuable metals (such as nickel and chromium) in stainless steel dust,
Inmetco technology was developed by Inco in 1978 and includes a ring furnace for
pre-reduction and an electric arc furnace for smelting [81,82]. Figure 4 illustrates the
technological process of Inmetco. The Inmetco technology is divided into three stages:
(i) material preparation, mixing, and pellet making; (ii) pre-reduction; and (iii) melting,
blowing, and casting in various melting furnaces [19]. Compared to the Waelz technology,
Inmetco technology also possesses strong capabilities in handling metallurgical dust, with
recovery rates for iron, chromium, and nickel reaching approximately 95%, 86%, and 95%,
respectively. Following the final reduction, the chromium content in the metal melt is
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approximately 15.2% [18]. However, the Inmetco technology has a longer process, which
increases transportation costs.
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The application of plasma technology for treating EAF dust was first developed in
Germany in 1954 and later applied in Sweden for steelmaking [83]. Many organizations
have developed plasma technologies to treat EAF dust, such as PLASMADUST technology
developed by SKF Group in Sweden and Environplas technology developed by Mintek and
Pyromet in South Africa. Plasma technology can be used to separate different metals with
low boiling points and recover chromium and iron. On average, the chromium recovery
rate is over 90%, and the zinc recovery rate can go as high as 97% [19]. Compared to
Waelz technology, this technique boasts higher metal recovery rates. However, it requires a
substantial amount of energy to maintain the temperature of the central graphite electrode
in the plasma melting furnace, which typically results in lower production capacity for
this process.

The Z-Star technology is a melt reduction process developed by the Kawasaki Steel
Corporation in Japan for the recovery of precious metal-containing dusts using coke-
filled beds. It was industrialized in May 1994, and its technological process is shown in
Figure 5 [76,78,79]. In this process, a dual tuyere design is employed, where the fine feed-
stock is injected into the furnace through the upper tuyeres, while the lower tuyeres are
mainly used for thermal compensation. A strong reduction zone with elevated temperature
is formed between the two tuyeres, where the feedstock is immediately fused. The molten
oxides in the feedstock are reduced, and the volatile components (such as zinc) are dis-
charged from the top of the furnace. Zinc and iron are separately recovered in this process.
Compared to other processes, its advantages include the near-complete recovery of zinc
and lead, resulting in a total metal recovery rate of up to 98% and zero secondary waste
emissions [19]. However, there is also the challenge of effectively recovering or utilizing a
significant amount of sensible heat in the furnace gas and the issue of zinc adhering to the
furnace roof and walls.

(2) Hydrometallurgical method

For stainless steel dust, the zinc element can be selectively recovered by hydrometal-
lurgical technology. Zinc can be dissolved in strong alkali solutions or strong acid solutions.
It is feasible to separate zinc from the compounds of iron, nickel, and chromium in the
dust [75,84]. The ZINCEX technology [85,86], developed in 1980~1990 and then put into
industrial production (three industrial plants have been built), is the primary hydrometal-
lurgical technology currently used in the industry. It was developed in 1970 by the Spanish
company Técnicas Reunidas, and it has been put into production in the Namibian Skorpion
zinc mine with an annual capacity of 15,000 tons of ZINCEX technology. Currently, this
technology has completed industrial trials for the treatment of 80,000 tons/year of electric
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arc furnace dust. Nakamura et al. [87] proposed a new hydrometallurgical technology
for the recovery of zinc or zinc oxide from stainless steel dust by electrodeposition using
dilute nitric acid solution as the leaching agent, as shown in Figure 6. This method can
recover zinc or zinc oxide from stainless steel dust at the cathode, while nitric acid can be
regenerated at the anode. The generated regenerated nitric acid can be used in the NHO3
leaching stage, establishing a closed-loop system. Therefore, this treatment process not
only reduces the waste of nitric acid but also minimizes secondary environmental pollution
stemming from the leaching solution.
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3.2. Ferrochrome Dust

Ferrochrome dust is frequently disposed of with recycling technology. In the recycling
technology, ferrochrome dust is used as raw material in the submerged arc furnace smelting
process to recover the valuable metals in the dust. The ferrochrome coarse dust can be
balled up and sent back to a submerged arc furnace for smelting because it contains minimal
volatile material and consists of carbon, quartz, and ferrochrome alloy particles (48~71%).
In contrast, fine ferrochrome dust contains a large number of volatile substances (such as
zinc, lead, alkali metals, etc.), which can recycle and accumulate in the dust. This leads
to an unstable production process. Therefore, direct recycling of fine ferrochrome dust
is not advisable.

(1) Hydrometallurgical process

Strobos et al. [88] employed a hydrometallurgical technology to recycle zinc from
ferrochrome fine dust. The initial step involved dissolving the fine ferrochrome dust in
water and subsequently filtering it to eliminate soluble hexavalent chromium present
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in the dust. The filtrate containing hexavalent chromium was reduced using ferrous
sulfate, followed by an increase in pH to form a Cr(OH)3 precipitate. Cr(OH)3 precipitate
can be safely disposed of after solidification/stabilization treatment in compliance with
relevant environmental regulations. The zinc-containing residue was utilized for zinc
recovery, whose technology process includes four steps: sulfuric acid leaching, organic
solvent extraction, separation, and precipitation. By employing the most favorable leaching
parameters with the sulfuric acid concentration of 336 g/L and the acid-to-dust ratio of
0.56, the recovery ratio of zinc achieved 71.2%.

(2) Pyrometallurgical process

Chen et al. [89] employed the “oxidation roasting + neutral liquid vacuum multi-stage
washing” technology to recycle chromium in chromium-containing dust. Ferrochrome
dust, chromium extraction slag, and soda ash are used as raw materials. The results
showed that the total chromium recovery ratio exceeded 70%, while the total chromium
content in isolated residue slag was below 5% under the conditions of approximately
50~60% of ferrochrome dust, 20~25% of chromium return slag, 20~25% of soda ash, and a
reaction temperature ranging from 1000 to 1200 ◦C. This method can achieve the resource
utilization of ferrochrome dust, which plays an important role in reducing stockpiled
chromium-containing dust and alleviating the scarcity of chromium resources.

3.3. Stainless Steel Slag

The methods of treating stainless steel slag include pyrometallurgical process and
hydrometallurgical process. The pyrometallurgical process typically involves the carbon
thermal reduction of stainless steel slag to recover its metal content. This process has the
drawback of using more energy and producing more by-products. The hydrometallurgical
treatment is mainly employed to recycle metal elements from stainless steel slag under
various leaching conditions. It has the advantage of producing high-purity metals with
less energy consumption, but it also has the drawback of producing waste solutions that
may pollute the environment.

(1) Pyrometallurgical process

Adamczyk et al. [90] employed a reductant to reduce the stainless steel slag at a
temperature of approximately 1700 ◦C, achieving a chromium recycling rate exceeding
97%. However, this method consumed more energy and produced more by-products of
SiO2. Kunihiko et al. [91] investigated the kinetic behavior of reactions between Cr2O3
and iron melts, including carbon, aluminum, and silicon, under various conditions. The
results showed that adding Al2O3 and SiO2 promoted the formation of liquid slag, which
significantly accelerated the reduction reaction and improved the recovery of chromium.
SiO2 is a more effective additive than Al2O3. This can provide theoretical guidance for the
recovery of chromium in stainless steel slag.

(2) Hydrometallurgical process

Kim et al. [92] employed NaOCl as a leaching agent in a temperature-controlled extrac-
tion process under alkaline conditions, followed by leaching with water. The study revealed
that compared to molten salt or alkaline roasting processes, the hypochlorite oxidation
alkaline leaching process achieved chromium extraction at significantly lower temperatures
and required a lower alkaline dose. The optimal parameters were the temperature of 105 ◦C,
extraction time of 6 h, particle size of stainless steel slag less than 63 µm, NaOH/stainless
steel slag ratio of 0.13, and 3.3 mmol of NaOCl used per 1 g of stainless steel slag. The final
chromium leaching ratio reached 68%. To recycle the valuable chromium element from
leachate, BaCrO4 precipitation was employed as a purification method. By using sodium
hydroxide and an alkaline pressured oxidation process to extract chromium from stainless
steel slag, Zhao et al. [22] achieved a maximum chromium extraction rate of 60.04% at a
leaching temperature of 170 ◦C, a NaOH concentration of 40 wt%, an oxygen pressure of
1.6 MPa, and a reaction period of 4 h.
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3.4. Ferrochrome Slag

Given that ferrochrome is extremely magnetic and residual chromite in high-carbon
ferrochrome slag is moderately magnetic, ferrochrome particles and residual chromite
in the slag can be recovered by using a magnetic separation technology. Bai et al. [93]
reported that the maximum recovery rate of chromium could be 24.9% when the magnetic
separation current reached 2.4 A and the magnetic particle size was greater than 150 µm.
According to the study by Qiu et al. [94], the nature and particle size of the material,
the volume of water, and the dosing rate were the main parameters affecting the jigging
process. The ferrochrome slag was initially crushed at the Bamnilal ferroalloy facility
in India using a crusher, and the alloy was subsequently recovered using a jigger and a
fine-grained shaker [95].

Yao et al. [96] investigated the effect of graded jigging on the recovery of intercalated
alloy and used the technique of “jigger sorting-induction furnace remelting” to recover
the residual alloy from ferrochrome slag. The residual alloy with a size of less than
10 mm could be effectively recovered. The graded jigging could recover the ferrochrome
particles in the size of 10~20 mm. The “iron retention method”, with an iron output of
80% and a residual iron of 20% per furnace cycle, could effectively promote the melting of
ferrochrome particles.

4. Resource Utilization of Chromium-Containing Metallurgical Dust and Waste Residue

Chromium-containing metallurgical dust and slag contain significant quantities of
valuable components, especially some valuable metal elements (such as Cr, Ni, and Fe).
The piling of chromium-containing metallurgical dust and slag is a great waste of resources
under the pressure of the increasing scarcity of resources and smelting costs. Therefore,
the development of high-efficiency and low-energy consumption technologies to recycle
chromium-containing metallurgical dust and slag, accompanied by the production of
high additional value products, is urgently needed. At present, the resource utilization
of chromium-containing metallurgical dust and slag is mainly applied in the traditional
construction industry and metallurgical industry, such as in the preparation of cement,
concrete, and refractory materials. Many researchers are also constantly exploring new
materials with high additional value, such as ceramic pigments, microcrystalline glass, etc.

4.1. Ceramic Pigments

Ceramic pigments are the main decorative material for ceramics. To obtain a purer
hue, rare earth oxides are always added in the traditional process of producing ceramic
pigments. The high price of rare earth oxides restrains the market for high-grade ceramic
pigment. Therefore, the development of ceramic pigments without the use of rare earth
oxides has been paid more attention.

Stainless steel dust, as a type of industrial solid waste, is rich in transition metal
elemental resources such as Fe, Cr, Ni, and Mn, which exist mainly in the form of oxides
and spinel [32,39,42]. According to the coloring mechanism of black ceramic pigments,
adding Cr2O3, NiO, and MnO in stainless steel dust adjusts the mole ratio between Fe, Cr, Ni,
and Mn. Then, sintering by solid-phase synthesis can prepare black ceramic pigments [29,93].

Zhang et al. [25,31,97–99] utilized stainless steel dust as the raw material and adjusted
the material composition using chemical reagents such as Cr2O3, NiO, and MnO. The
adjusted mixture was then prepared as Fe-Cr-Ni-Mn system black ceramic pigments using
the microwave roasting process. When the molar ratio of the Fe, Cr, Ni, and Mn elements
in the mixture was 1:1:1:1, the roasting temperature was 900 ◦C, with a holding time of
30 min and a microwave power of 2000 W. After being air-cooled, the prepared pigments
exhibited a chromaticity value of 33.6 for L*, 0.2 for a*, and 0 for b*. L*, a*, and b* are color
models developed by the International Commission on Illumination (CIE). The closer all of
the L*, a*, and b* values are to 0, the purer the black of the pigment and the better the color
rendering performance of the pigment [100]. The pigments consisted of spinel phases such
as Fe3O4, FeCr2O4, Ni(Fe,Cr)2O4, and NiMn2O4, which possessed a typical spinel phase
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structure and displayed excellent visible light absorption with a narrow bandgap of only
1.04 eV. Furthermore, Figure 7 displays the appearance of different glazed ceramic tiles
prepared using various transparent ceramic glaze powders. As shown in Figure 7, when the
prepared pigments are mixed with common glaze, ZnO-based glaze, and CaO-based glaze
to formulate the glaze for ceramic tiles, the glaze appears black, exhibits no cracks, and
does not detach from the ceramic tile body. Therefore, the prepared pigments demonstrate
excellent adaptability to the aforementioned three types of transparent glazes.
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4.2. Construction Industry

Concrete is one of the most widely used materials in the world, and cement is the main
component of concrete. The yield of cement was about 4.1 billion tons in 2022 [101], and it
may increase to 5 billion tons by 2030 [102]. The production of cement consumes a large
amount of resources and is accompanied by a significant emission of greenhouse gases
and energy consumption. Thus, it is imperative to explore cost-effective, energy-efficient
alternatives to cement. The applications of chromium-containing metallurgical dusts and
slags in building materials are dependent on their physicochemical characteristics.

Acharya et al. [47] applied ferrochrome dust as a partial substitute for regular silicate
in concrete production. The performance of concrete was enhanced when 40 wt% of
ferrochrome dust and 7 wt% of lime were substituted for 47 wt% of the regular silicate
component. The detection of leaching toxicity (TCLP) of the concrete suggested that the
produced concrete had no adverse environmental impacts. Thus, ferrochrome dust is a
viable and environmentally friendly alternative to producing concrete.

Galán-Arboledas et al. [103] investigated the environmental impact by detecting
gas emissions and leaching tests of laboratory specimens while using stainless steel slag
as partial raw material for the production of ceramic construction materials. When the
material was made with 30 wt% stainless steel slag at 950 ◦C, the addition of stainless steel
slag would save up to 17% of natural gas usage and reduce up to 24% of CO2 emissions.
However, it should be noted that excessive addition of stainless steel slag can potentially
lead to the leaching of heavy metals. Therefore, the addition of stainless steel slag should
be less than 10 wt%.

Iacobescu et al. [104] investigated the effect of stainless steel slag content on the
performance of silicate cement clinker and its environmental implications. The results
showed that the compressive strength of all samples at 2 days (22–25 MPa), 7 days
(36–38 MPa), and 28 days (44 MPa) did not exhibit obvious changes, all of which be-
longed to the 42.5R CEM I category. Moreover, adding 14 wt% stainless steel slag resulted
in a reduction of at least 12% CO2 emissions during the production of silicate cement clinker.
These findings suggest that the application of stainless steel slag has positive effects on both
the performance of cement clinker and the environmental impact, particularly in terms of
reducing CO2 emissions.

When stainless steel slag is used as an aggregate to prepare concrete, it slightly reduces
the durability and increases the linear expansion of concrete. However, stainless steel
slag, after sintering and crushing treatments, can improve the mechanical properties of the
concrete and reduce the degree of carbonation. This improvement aligns with the standards
for building materials [105], making concrete prepared with stainless steel slag as a raw
material a new type with distinct properties.
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Building materials can be produced by utilizing the active components in ferrochrome
slag. Zhang et al. [106] conducted a study on the production of lightweight aggregates using
high-carbon ferrochrome slag and clay. The research investigated the impact of different
cooling methods on the crystalline structure of material and the strength of aggregate.
Figure 8 displays the inner structure of lightweight aggregates under different cooling
methods. The slowly cooled aggregates had lower porosity and smaller average pore
size. The aggregates form a continuous structural framework, which can avoid cracks
penetrating into neighboring voids. Therefore, slow cooling is favorable to improve the
strength of aggregates.
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Heat-resistant concrete prepared by carbon-containing ferrochrome alloy slag has a
compressive strength of up to 25.8 MPa on liquid glass [107]. Ferrochrome alloy slag can
not only be used as a coarse aggregate for the preparation of geopolymer mixture concrete
but also significantly exceeds ordinary geopolymer concrete in terms of compressive
strength, flexural strength, and splitting tensile properties [65,108]. In addition, the use
of ferrochrome slag as a fine aggregate to partially replace natural aggregates for the
preparation of ordinary concrete also significantly improved the mechanical properties
of aggregate [109].

The application of industrial waste materials (such as ferrochrome dust, stainless
steel slag, and ferrochrome slag) in producing building materials has obvious advan-
tages, such as improving the mechanical properties of building materials and reducing
environmental pollution. These materials can enhance the strength and durability of con-
crete while reducing the reliance on traditional resources. However, challenges (such as
the potential leaching of heavy metals and a decrease in durability) need to be solved
through proper treatment and adherence to guidelines. Further research is necessary to
optimize the application of waste materials and ensure safe and sustainable practices in the
construction industry.

4.3. Glass–Ceramic

Glass–ceramic is a polycrystalline composite material obtained by the crystallization
treatment of basic glass, which has exceptional resistance to acids and alkalis, outstand-
ing wear resistance, high hardness, and superior strength [110]. Employing chromium-
containing waste slag to produce glass–ceramic has the advantages of a large treatment
capacity, readily available raw materials, low cost, and high added value, which has a
promising application prospect [111]. Moreover, the MgCr2O4 spinel, Cr2O3, Fe2O3, and
CaF2 in chromium-containing metallurgical dust and slag can act as nucleating agents
to promote the formation of diopside glass–ceramic [112]. It should be noted that these
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compounds can prevent Cr(III) from being oxidated into Cr(VI) at the elevated temperature
in the process of producing glass–ceramic [112].

Zhang et al. [113] utilized AOD stainless steel slag to produce chromium-containing
glass–ceramic and evaluated the leaching toxicity of the produced glass–ceramic. All
the prepared glass–ceramics met the construction industry’s requirements for building
materials when the stainless steel slag content ranged from 40 wt% to 80 wt%. The glass–
ceramic has the highest flexural strength (137.83 MPa) and exhibited favorable resistance
to acid and alkali when the added stainless steel slag content was 50 wt%. The valence of
leached chromium was main +3. These findings highlight that utilizing stainless steel slag
as the raw material for producing glass–ceramic is an effective method of immobilizing the
chromium element within the slag.

Deng et al. [114,115] prepared CaO-SiO2-Al2O3-MgO-type wollastonite- orthopyrox-
ene glass–ceramic by using stainless steel slag and investigated the influence of SiO2/MgO
mass ratio on the crystallization behavior, crystalline phases, structure and properties of
the produced glass–ceramic. The effects of different SiO2/MgO mass ratios on the mi-
crostructure and physicochemical properties of stainless steel slag microcrystalline glass
are shown in Figures 9 and 10, respectively. The glass–ceramic with a SiO2/MgO mass
ratio of 4.45 and a density of 3.08 g/cm3 exhibited the best mechanical properties with a
flexural strength of 176.21 MPa and a microhardness of 8.81 GPa.
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Several studies have been devoted to preparing glass–ceramic using the raw mate-
rials of ferrochrome slag, waste glass, quartz sand, and electrolytic manganese slag. The
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glass–ceramic has excellent performance in physical and chemical properties, its heavy
metal leaching rate especially meets the national standard, and its comprehensive perfor-
mance exceeds that of traditional building decoration materials [71,116,117]. It not only
provides an effective way to prepare high-performance glass–ceramic and expands the
application prospect of architectural decorative materials but also solves the problem of
ferrochrome slag stockpiling.

4.4. Refractory Materials

According to the phase diagram, as shown in Figure 11 [118], and the chemical
composition of ferrochrome slag, ferrochrome slag can be used to produce refractory
materials and metallurgical auxiliaries. Marjaana et al. [66] prepared refractory casting
materials by utilizing ferrochrome slag as an aggregate and industrial calcium alumi-
nate cement as a binder. The prepared refractory casting materials achieved a remark-
ably low thermal conductivity of 1.3 W/m·K and a coefficient of thermal expansion as
low as αRT-1100 ◦C = 8.6 × 10−6 1/K. Their thermal properties are better than those of
commercial refractories.
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Feng et al. [119] developed magnesia-olivine spinel complex phase materials using
high-carbon ferrochrome slag. At a sintering temperature of 1200 ◦C, the specimens
exhibited a room temperature compressive strength of 108.8 MPa, a thermal shock resistance
eight times greater, and a leaching concentration of total Cr at 0.14 mg/L. Sahu et al. [118]
applied magnesia, olivine, magnesite and spinel, and ferrochrome slag to produce high-
temperature refractories whose refractory temperature exceeded 1665 ◦C.

Li et al. [120] used ferrochrome slag and sintered magnesium sand as the main raw
materials to prepare alkaline refractories. The results revealed that when the addition of
ferrochrome alloy slag was 70 wt% and magnesium sand was 30 wt%, the load softening
temperature of the test refractory bricks could reach the standard of MZ-91 ordinary
magnesium refractory bricks (1560 ◦C), and the thermal stability and compressive strength
of the test refractory bricks were better than that of MZ-91 grade magnesium refractory
bricks. Therefore, it is reasonable and feasible to use ferrochrome alloy slag as raw material
for producing refractory materials.

4.5. Carbonation Process

Considering global warming and the policy of peak carbon dioxide emissions and
carbon neutrality, the gradual development and utilization of carbon storage materials
are promising. Wang et al. [54] analyzed the chemical compositions, phases, and leaching
toxicity of stainless steel slag that has been stored for ten years. The results showed that the
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surface of stored slag had the highest degree of carbonation and the weakest chromium
leaching toxicity. The chemical composition of intermediate stored slag was similar to that
of the original slag. Besides Mg, various deposits of other elements were found in the
bottom stored stainless steel slag.

In order to determine the optimal parameters for the carbonization of stainless steel
slag, Santos et al. [60] evaluated the impact of experimental methods of non-pressured
film carbonization and pressurized slurry carbonization on the carbonization conversion
of stainless steel slag. The leaching of the heavy metal Cr and the ability of stainless steel
slag to capture CO2 to a level of 0.26 g/g were both found to be below permissible limits
for safe waste reuse. The carbonation process is a simpler treatment with lower energy
consumption, whereas slurry carbonation offers better mineral carbonation conversion and
ideal treatment consistency for commercial applications. Tao et al. [56] also investigated
the influence of stirring speed and reaction temperature on the carbonation of AOD slag
using pressured slurry carbonation. The results showed that the carbonation rate of AOD
slag reached up to 66.7% at a liquid–solid ratio of 8:1, a partial pressure of CO2 of 0.2 MPa,
a stirring speed of 450 r/min, and a reaction temperature of 80 ◦C.

5. Conclusions

Chromium-containing metallurgical dust and slag are characterized by the presence
of heavy metal elements, such as Cr, Zn, and Pb, which can lead to environmental pollution
and pose risks to human health when stored in large quantities over extended periods.
Furthermore, such storage practices result in resource wastage.

Currently, global treatment technologies for chromium-containing metallurgical dust
and slag primarily focus on two approaches: harmless treatment technology and compre-
hensive resource utilization technology. Harmless treatment technology employs pyromet-
allurgical treatment, hydrometallurgical treatment, magnetic separation techniques, and
stabilization/solidification techniques to recycle valuable components in the dust and slag,
aiming to minimize their environmental impact. In addition, the comprehensive resource
utilization technology utilizes the physicochemical properties of chromium-containing
metallurgical dust and slag to produce high additional value products, such as ceramic
pigments, construction materials, glass–ceramic, refractory materials, and raw materi-
als in the ferrous industry. This approach not only maximizes the utilization of various
elements in solid waste but also alleviates the shortage of natural resources typically re-
quired for the production of raw materials, such as cement, concrete, glass–ceramic, and
refractory materials.

However, comprehensive resource utilization technology faces some challenges, in-
cluding the low utilization rate of chromium-containing metallurgical dust and slag, im-
mature technology, and limited capacity for production. Therefore, in order to enhance
the efficient utilization of resources and solve the issue of chromium-containing solid
waste accumulation, it is necessary to conduct research aimed at improving the processing
techniques for chromium smelting dust and slag. This effort should strive to maximize
the purity of metal recovery while minimizing the generation of secondary pollutants, ulti-
mately reducing the adverse environmental impact. Simultaneously, higher-value added
products can be produced, such as the preparation of geopolymers, the compression of
bricks, and the development of porous particulate sound-absorbing materials, which will
contribute to effectively reducing the accumulation of chromium-containing metallurgi-
cal solid waste, enhancing resource utilization efficiency, and concurrently creating new
products with potential market value.
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