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Abstract: This study investigated the tensile deformation of Ti-6Al-4V ELI titanium alloy and its effect
on corrosion performance. The results showed that the structural morphology of the samples’ strain
levels of 0%, 5%, and 10% had minimal changes under an optical microscope. Further investigation of
grain orientation information was conducted using electron backscatter diffraction (EBSD), revealing
that tensile deformation induced grain rotation, resulting in the diversity of originally preferred
orientation grains and a decrease in texture strength. A small amount of {10–12}<−1011> extension
twinning formed during the tensile deformation process. The electrochemical properties of Ti-6Al-4V
ELI samples with different strain levels were evaluated in 3.5% NaCl solution with pH values of 7 and
1.5. The results indicated that both plastic deformation and acidic environments were detrimental to
the passivation film on the titanium alloy surface, leading to reduced corrosion resistance.

Keywords: titanium alloys; microstructure; deformation mechanism; corrosion behavior

1. Introduction

Titanium alloys are widely used in marine engineering and medical fields because of
their excellent mechanical properties and good corrosion resistance [1–3]. Ti-6Al-4V alloy
is the most widely used titanium alloy because of its excellent comprehensive properties.
Ti-6Al-4V ELI alloy is a titanium alloy obtained by reducing the interstitial element content
on the basis of Ti-6Al-4V. Ti-6Al-4V ELI alloy is also used as shell material for deep-sea
submersibles due to its high specific strength and excellent corrosion resistance.

For titanium alloys used in marine engineering and medical applications, there are
two factors that affect the service performance of materials, stress and corrosion. Currently,
there have been many studies on the tensile deformation mechanism of Ti-6Al-4V ELI
alloy. Meng et al. [4] have investigated the anisotropic mechanical behavior of Ti-6Al-4V
alloy through tensile tests in different processing sampling directions. They found that
the stress distribution of the samples stretched along the rolling direction and transverse
direction were different, resulting in different dislocation generation within the grains
and thus leading to different plastic deformation. Numerous studies have shown that
the deformation mechanism of titanium alloys at room temperature is mainly composed
of dislocation and twinning. Zhou et al. [5] found that prismatic slip was the dominant
slip system initiated in the bimodal microstructure titanium alloy, while the dislocation
multiplication of prismatic slip dominates the equiaxed α grains. Ma et al. [6] observed a
large number of {10–12} twins in the fatigue crack tip plastic zone in Ti-6Al-4V alloy.

Moreover, Ti-6Al-4V ELI alloy, when used as a load-bearing component in physiologi-
cal environments or seawater, inevitably encounters corrosive conditions. Titanium alloy
forms a dense passive film, which is mainly composed of TiO2 [7,8]. Corrosion resistance
of titanium alloy could be influenced by many factors, such as chemical composition,
microstructure, and internal stress deformation. Existing studies have demonstrated that
alloying elements Pd and Ni can significantly enhance the corrosion resistance of Ti-6Al-4V
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in H2SO4 solution. Additionally, elements Ni and Mo also influence the electrochemical
reactions related to corrosion. Furthermore, the stability of protective passive layers clearly
depended on the crystallographic substrate orientation. The corrosion resistance of Ti-
6Al-3Nb-2Zr-1Mo alloy in 3.5 wt% NaCl and 5 M HCl solutions is improved due to the
decrease in the thickness of both β and α phases [9–11]. However, there are few reports on
the influence of stress on corrosion behavior. Guo et al. applied two types of compressive
deformation, 1% and 50%, to study the effect of plastic deformation on the corrosion resis-
tance of Ti-23Nb-0.7Ta-2Zr. They found that a low level of plastic deformation is harmful to
corrosion resistance, while larger deformations often eliminate this harmful effect. Krawiec
et al. investigated the corrosion behavior of Ti-6Al-4V and Ti-10Mo-4Zr alloys in a Ringer’s
solution after different levels of plastic strain. They found that the current density in both
the passivation region and the cathodic region increased compared to the current density
of the unstrained samples. Additionally, due to the complex composition of the passive
films on these two alloys, the current density in the passivation region was lower than that
of pure titanium [12–14].

There are many studies on the effect of crystal orientation on the stress corrosion
performance of titanium alloys. Chi et al. [15] studied the stress corrosion behavior of
Ti-6Al-4V alloy in simulated saltwater solution and found that α grain orientation affected
the crack propagation path, thereby affecting the stress corrosion sensitivity of the titanium
alloy. Li et al. [16] studied the stress corrosion behavior of steel in artificial seawater and
found that cracks tend to initiate and propagate along the <111> orientation according to
the grain orientation map. Frank et al. [17] discovered that the number density of crack
initiation sites on nanocrystals was heavily dependent on the crystallographic grain surface
orientation. Crystals with a low-index (110) orientation on the surface experienced the
most significant inhibition in terms of crack initiation density. Conversely, crystals with
low-index {001} and {111} orientations experienced the least inhibition.

The corrosive solution is another important factor affecting the corrosion of titanium
alloys. Inflammation in the human body can lead to acidification of body fluids, and
the dissolution of titanium at the crack tip during stress corrosion can also contribute to
acidification of the solution. Therefore, using acidic solutions can simulate the corrosion
behavior at crack tips in metals. Souza et al. [18] conducted a study on the electrochemical
behavior of titanium alloys Ti-6Al-4V and Ti-13Nb-13Zr in acidic and neutral Ringer’s
physiological solution. They found that the corrosion current was highest under acidic
conditions, while acid conditions had an influence on the passive film. However, there are
limited results regarding the effect of plastic deformation on the corrosion resistance of
Ti-6Al-4V ELI alloy, especially in acidic environments.

The purpose of this study is to investigate the effect of tensile deformation and acidic
environments on the corrosion behavior of Ti-6Al-4V ELI alloy. The microstructural evolu-
tion of Ti-6Al-4V ELI alloy during tensile deformation was investigated using an optical mi-
croscope, X-ray diffraction (XRD) and EBSD. Then electrochemical measurements were used
to analyze the effect of plastic deformation and acidic solution on the corrosion behavior.

2. Materials and Methods

The initial materials were Ti-6Al-4V ELI alloy forging bars with a diameter of 200 mm.
Then, they were cut into uniaxial tensile specimens with a diameter of 15 mm using wire
cutting. Subsequently, the specimens were subjected to uniaxial tensile tests of 5% and 10%
strain using an Instron-1343 universal testing machine. After deformation, the specimens
were cross-sectioned in a direction along the loading direction for further testing.

XRD analysis was performed using a D/Max 2500 X-ray diffractometer to deter-
mine the crystal structure of the alloy. X-ray diffraction utilized Cu Kα radiation from a
source. The scanning step size was 0.02◦ with a scanning speed of 4◦/min. The operating
voltage of the X-ray diffractometer was 40 kV, and the operating current was 100 mA.
In microstructure analysis, the samples were polished and immersed in Kroll reagent
(HF: HNO3: H2O = 1:2:50), followed by immediate rinsing with water. The microstruc-
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ture was observed using an OLYMPUS GX71 metallographic microscope (Olympus Corp.,
Tokyo, Japan). The samples were further processed using electrochemical polishing. The
polishing solution used was a mixture of high-chloric acid, butanol, and methanol solution,
with a volume ratio of 10:20:70. Subsequently, the samples before tensile testing and those
subjected to uniaxial tension until fracture were analyzed for microstructure using the elec-
tron backscatter diffraction (EBSD, Hikari XP, AMETEK, San Diego, CA, USA) technique on
a scanning electron microscope (JSM-7900F, JEOL Japan Electronics Co., Ltd, Tokyo, Japan).
EBSD data acquisition was performed at an accelerating voltage of 20 kV, with a scanning
step size set within the range of 0.1 to 0.5 µm. Finally, TSL OIM Analysis 7 software was
used for analysis and processing.

In electrochemical measurements, a platinum sheet and a saturated calomel electrode
(SCE) were chosen as the auxiliary electrode and reference electrode, respectively, and the
Ti-6Al-4V ELI alloy sample was used as the working electrode. This three-electrode system
was connected to the CHI 660E electrochemical workstation (ChenHua instruments Co.,
Ltd., Shanghai, China) in all the electrochemical measurements. The electrolyte solution
was a 3.5% NaCl solution, and the pH value was adjusted to 1.5 using lactic acid. The
electrochemical properties of Ti-6Al-4V ELI samples with tensile strains of 0%, 5%, and
10% were measured in both neutral and acidic environments. After obtaining a stable
open-circuit potential (OCP) value for 7200 s, electrochemical impedance spectroscopy
(EIS) measurements were performed in the frequency range of 10−2 Hz to 105 Hz, with
an AC amplitude of 10 mV. The EIS results were analyzed using ZView 3.1 software.
Potentiodynamic polarization tests were carried out between −0.5 V (relative to SCE) and
2.5 V. The scan rate was set at 1 mV/s. CView 3.4 software was used to fit polarization curves
and corrosion potential (Ecorr), and corrosion current densities (Icorr) were obtained. To
ensure data reproducibility, at least three parallel experiments were conducted in this study.

3. Results and Discussion
3.1. Microstructural Evolution

Figure 1 shows the metallographic image of Ti-6Al-4V ELI alloy samples with different
strain levels. At 0% strain, there were a large number of equiaxed α grains, as well as
interstitial β phases in the form of lamellar α structure embedded within them, as shown
in Figure 1a. The size of the equiaxed α phase was approximately 10–30 µm, accounting
for 50% of the volume, and the width of the lamellar α phase was about 3–4 µm, indicating
a typical bimodal microstructure. After tensile tests, no significant change in optical
microstructure could be observed, and the average grain sizes were 11.8 µm, 12.2 µm, and
11.2 µm, with minimal variations in grain size.
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The XRD patterns of Ti-6Al-4V ELI alloy samples with different strain levels are shown
in Figure 2. All the samples were primarily composed of an α phase and β phase, with a
much higher content of the α phase than the β phase. Diffraction peaks shifted to higher 2θ
angles, indicating lattice change along the tensile direction. A weak peak broadening was
also observed, suggesting the increase in lattice strain and the accumulation of dislocations.
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Figure 2. XRD patterns of Ti-6Al-4V ELI alloy under different strains.

The microstructure and grain boundary misorientation distribution are shown in
Figure 3a, where the blue line represents high-angle grain boundaries (HAGBs, θ > 15◦),
and the red line represents low-angle grain boundaries (LAGBs, 2◦ < θ < 15◦). Figure 3b
shows the phase distribution map in the analyzed area [19–21]. Figure 3c displays the grain
boundary misorientation distribution. The proportion of HAGBs was 44%. The LAGBs
were concentrated within 5◦, and the HAGBs were concentrated between 55◦ and 65◦.
Figure 3d presents the statistical analysis of grain size in the α phase of the Ti-6Al-4V ELI
alloy, which coincided with the results in the optical micrograph.
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Figure 3. Characterization of initial Ti-6Al-4V ELI: (a) SEM; (b) Phase distribution map; (c) Misorien-
tation distribution; (d) Grain size distribution.
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Figure 4 shows the microstructure of the specimen at different stages of deformation
and the corresponding inverse pole figures (IPFs). Figure 4a displays the IPF maps of the
sample without any tensile deformation, where the predominant color was red, indicating
that most of the grain orientations were close to the <0001> direction. Figure 4b presents the
IPF map of the specimen subjected to a tensile strain of 5%. In this case, the predominant
color was purple, suggesting that most of the grain orientations were close to the <10–10>
direction. Figure 4c shows the IPF map of the specimen subjected to a tensile strain of 10%.
At this stage, the grains no longer exhibited preferred orientations, and the distribution of
orientations became more scattered [22]. Scattered orientations could be attributed to the
loading directions during forging and tensile processes; compressive stress was added in
the materials during the forging process, while tensile stress were applied in the tensile
test, the opposite direction of stress made the deformation more uniform.

Metals 2023, 13, x FOR PEER REVIEW 5 of 16 
 

 

Figure 3. Characterization of initial Ti-6Al-4V ELI: (a) SEM; (b) Phase distribution map; (c) Misori-
entation distribution; (d) Grain size distribution. 

Figure 4 shows the microstructure of the specimen at different stages of deformation 
and the corresponding inverse pole figures (IPFs). Figure 4a displays the IPF maps of the 
sample without any tensile deformation, where the predominant color was red, indicating 
that most of the grain orientations were close to the <0001> direction. Figure 4b presents 
the IPF map of the specimen subjected to a tensile strain of 5%. In this case, the predomi-
nant color was purple, suggesting that most of the grain orientations were close to the 
<10–10> direction. Figure 4c shows the IPF map of the specimen subjected to a tensile 
strain of 10%. At this stage, the grains no longer exhibited preferred orientations, and the 
distribution of orientations became more scattered [22]. Scattered orientations could be 
attributed to the loading directions during forging and tensile processes; compressive 
stress was added in the materials during the forging process, while tensile stress were 
applied in the tensile test, the opposite direction of stress made the deformation more 
uniform. 

 
Figure 4. IPFs of specimens at different strains: (a) 0%; (b) 5%; and (c) 10%. 

Figure 5 shows the pole figures (PFs) of the specimen at different deformation stages. 
Figure 6a is the pole figure of the α phase in Ti-6Al-4V ELI alloy without strain. Except for 
the texture with a strength of 17.879 in the {0001} pole figure, which was close to the rolling 
direction, the textures of other planes were not very pronounced. Figure 5b represents the 
pole figure of the α phase in Ti-6Al-4V ELI alloy after applying a uniaxial tensile strain of 
5%; it could be seen that the texture strength of the α phase was weakened after tensile 
deformation compared to the sample without deformation, and the maximum strength of 
the texture component decreased from 17.879 before deformation to 9.249 after defor-
mation. There were some texture components with the highest strength of approximately 
9, rotating counterclockwise by about 45° from the A2 axis to the A1 axis around the sam-
ple, while the textures of other planes were more dispersed and less pronounced. These 
grain rotations resulted in changes in the orientation of the grains, leading to variations in 
the texture components and texture strength of the specimen. Figure 5c depicts the pole 
figure of the α phase in Ti-6Al-4V ELI alloy after uniaxial tensile deformation with a strain 
of 10%. From the pole figure, it could be observed that the texture strength of the α phase 
in Ti-6Al-4V ELI alloy was further weakened compared to the texture strength before de-
formation, with a maximum reduction of 8.011. Additionally, the texture strength was 
more dispersed in all three planes, which all coincided with the IPF results. During the 
tensile deformation process, some α grains rotated to accommodate deformation, causing 
changes in grain orientation and leading to the diversity of originally preferred orientation 
grains and finally resulted in a decrease in texture strength.  

Figure 4. IPFs of specimens at different strains: (a) 0%; (b) 5%; and (c) 10%.

Figure 5 shows the pole figures (PFs) of the specimen at different deformation stages.
Figure 6a is the pole figure of the α phase in Ti-6Al-4V ELI alloy without strain. Except for
the texture with a strength of 17.879 in the {0001} pole figure, which was close to the rolling
direction, the textures of other planes were not very pronounced. Figure 5b represents the
pole figure of the α phase in Ti-6Al-4V ELI alloy after applying a uniaxial tensile strain of
5%; it could be seen that the texture strength of the α phase was weakened after tensile
deformation compared to the sample without deformation, and the maximum strength of
the texture component decreased from 17.879 before deformation to 9.249 after deformation.
There were some texture components with the highest strength of approximately 9, rotating
counterclockwise by about 45◦ from the A2 axis to the A1 axis around the sample, while the
textures of other planes were more dispersed and less pronounced. These grain rotations
resulted in changes in the orientation of the grains, leading to variations in the texture
components and texture strength of the specimen. Figure 5c depicts the pole figure of the α

phase in Ti-6Al-4V ELI alloy after uniaxial tensile deformation with a strain of 10%. From
the pole figure, it could be observed that the texture strength of the α phase in Ti-6Al-4V
ELI alloy was further weakened compared to the texture strength before deformation, with
a maximum reduction of 8.011. Additionally, the texture strength was more dispersed in
all three planes, which all coincided with the IPF results. During the tensile deformation
process, some α grains rotated to accommodate deformation, causing changes in grain
orientation and leading to the diversity of originally preferred orientation grains and finally
resulted in a decrease in texture strength.

Figure 6 shows the kernel average misorientation (KAM) maps a of the Ti-6Al-4V
ELI alloy samples as a function of the plastic strain. The KAM is often used to represent
the local dislocation density. It could be seen that high strain was mainly distributed in
lamellar α grains and grain boundaries. And the average KAM values were 1.12◦, 1.23◦,
and 1.40◦. The local strains increased with the increase in plastic deformation, which could
be attributed to the residual stress caused by the tensile test.
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The analysis results of the deformed twins formed during the tensile deformation of
Ti-6Al-4V ELI alloy are shown in Figure 7. It could be observed that the crystallographic
axes of the deformed twin’s unit cell, the a-axis or c-axis, were close to 90◦ with respect
to the c-axis or a-axis of the parent phase unit cell in Figure 7a, respectively. One selected
deformed twin was chosen as the research object to study the orientation–misorientation
distribution along a straight line at the grain boundary between the parent phase and
the twin. The obtained orientation–misorientation distribution is shown in Figure 7b.
According to the twin crystallography of titanium, there were {10–12}<−1011> tensile
twins with a rotation angle of approximately 85◦ within the grains and {10–11}<10–1–2>
compression twins with a rotation angle of approximately 57◦. From the distribution of
orientation–misorientation change along the distance, it could be seen that the orientation–
misorientation between the parent phase and the formed twin was approximately 87◦.
Based on this orientation–misorientation, it could be determined that the deformation twin
formed during the tensile deformation of the Ti-6Al-4V ELI alloy was a {10–12}<−1011>
tensile twin [23–27].
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3.2. Corrosion Behavior of Deformed Ti-6Al-4V ELI

Figure 8 shows the variation of open-circuit potential (OCP) over time for Ti-6Al-
4V ELI alloy immersed in acidic and neutral 3.5% NaCl solutions under different tensile
strains. In the 3.5% NaCl solution, as time increased, the OCP values of the specimens
gradually shifted towards positive values, indicating the formation of a passive film on
the surface of all samples. After a certain period of time, the curves stabilized, indicating
the stabilization of the passive film. After immersing for 7200 s, the OCP values of the
acidic solution were positive, while the OCP values of the neutral solution were negative,
indicating that the quality of the passive films formed on the Ti-6Al-4V ELI alloy was higher
in the acidic solution, indicating better corrosion resistance. After 7200 s immersion, the
OCP values of 0%, 5%, and 10% samples in acidic solution were about 0.13 V, 0.11 V, and
0.16 V, respectively, as shown in Table 1. Similar trends could be observed in the samples
immersed in NaCl solution, and the influence of plastic deformation on the open-circuit
potential was not significant.

Figures 9 and 10 represent the Nyquist and Bode plots of the impedance spectra
obtained for open-circuit potential for Ti-6Al-4V ELI alloy at different tensile strain levels
in different solutions. The Nyquist plots in Figure 9 show relatively large semicircles under
all test conditions. Generally, a larger semicircle radius indicated a higher impedance,
which meant a more difficult electron transfer between the electrolyte and the tested
material [28–31]. Therefore, comparing the conditions, both acidification and deformation
decreased the impedance. In the Bode plots, with the increase in deformation, the plateau
value of the phase angle in the low-frequency region gradually decreased, and the platform
frequency range varies for different samples, indicating non-ideal capacitor behavior.
Overall, both deformation and acidification reduced the corrosion resistance of the passive
film on the alloy surface. By fitting the EIS results with an equivalent circuit, the capacitance
of the passive film formed on Ti-6Al-4V ELI was determined. An electrical equivalent circuit
was used to simulate the experimental EIS data, as shown in Figure 9. The parameters
of the relevant components in the electrochemical impedance spectrum of the Ti-6Al-4V
ELI alloy could be determined by fitting, as shown in Table 2. Here, Rs represented the
solution resistance. CPE1 and Rf represented the outer oxide layer capacitance and charge
transfer resistance, respectively. CPE2 and Rct represented the double layer capacitance
and charge transfer resistance, respectively. The introduction of a constant phase element
(CPE) was used to replace the capacitor and describe non-ideal capacitance behavior [32].
The CPE and n represent the constant phase angle element and the degree of deviation
of the capacitor, respectively. The EIS results indicated that n was approaching 1, which
confirmed the capacitive nature of the oxide films formed on all samples. According to
the fitting results, the CPE constants slightly increased with the increasing of strain; the
higher capacitance values and lower impedance values point to more active behavior [33].
From Table 2, it could be seen that Rf gradually decreased with increasing strain, the value
of Rf decreased from 1.73 × 106 Ω·cm2 to 1.80 × 105 Ω·cm2.The results indicated that the
corrosion resistance of the metal decreased with the increase in deformation and with the
decrease in pH, suggesting a thinner passivation film.

Table 1. The open-circuit potential (OCP) of the Ti-6Al-4V ELI alloy in the different solutions.

Sample pH OCP (V)

0% strain
7 −0.20 ± 0.11

1.5 0.13 ± 0.08

5% strain
7 −0.17 ± 0.03

1.5 0.11 ± 0.9

10% strain
7 −0.18 ± 0.12

1.5 0.16 ± 0.21
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Figure 9. The Nyquist plots of Ti-6Al-4V ELI alloy in acidic and neutral 3.5% NaCl solutions under
different strains: (a) 0%; (b) 5%; and (c) 10%.
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Figure 10. The Bode plots of Ti-6Al-4V ELI alloy in acidic and neutral 3.5% NaCl solutions under
different strains. Under different strains: (a) 0%; (b) 5%; and (c) 10%.
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Table 2. The fitting EIS data for the Ti-6Al-4V ELI in the different solutions.

Sample pH Rs CPE1 × 10−5
n1

Rf CPE2 × 10−5
n2

Rct χ2

(Ω·cm2) (Ω−1·cm−2·sn) (MΩ·cm2) (Ω−1·cm−2·sn) (MΩ·cm2) ×10−3

0%
strain

7 28.03 ± 0.53 2.74 ± 1.03 0.91 ± 0.01 1.73 ± 0.07 2.24 ± 0.61 0.97 ± 0.01 4.65 ± 0.61 0.23
1.5 29.76 ± 1.02 4.26 ± 0.99 0.93 ± 0.01 0.42 ± 0.08 0.73 ± 0.39 0.83 ± 0.02 1.04 ± 0.55 0.25

5%
strain

7 26.09 ± 0.69 5.03 ± 0.24 0.90 ± 0.02 0.78 ± 0.04 0.22 ± 0.07 0.87 ± 0.02 2.14 ± 0.67 1.24
1.5 24.51 ± 0.93 2.06 ± 0.54 0.85 ± 0.02 0.10 ± 0.02 1.07 ± 0.02 0.85 ± 0.01 7.09 ± 0.73 0.65

10%
strain

7 23.89 ± 0.84 5.62 ± 0.91 0.91 ± 0.01 0.18 ± 0.02 1.41 ± 0.51 0.88 ± 0.01 0.29 ± 0.85 0.34
1.5 22.67 ± 2.07 4.83 ± 0.41 0.90 ± 0.02 0.28 ± 0.01 8.22 ± 0.22 0.85 ± 0.01 1.14 ± 0.24 0.77

The polarization curves of Ti-6Al-4V ELI alloy with different strains in 3.5 wt% NaCl
solution at different pH values are shown in Figure 11. Under acidic conditions, the strain
had a greater influence on the polarization curves compared to the neutral solution. As the
strain of the alloy increased in the acidic solution, the corrosion potential (Ecorr) changed
from −0.25 V to −0.05 V and finally became +0.09 V when the external strain was 10%.
The change from a negative corrosion potential to a positive value was due to a significant
increase in cathodic reaction. The corrosion current density (Icorr) increased fourfold from
an initial value of 0.025 µA/cm2 to 0.116 µA/cm2. In the neutral saline solution, this change
was not as significant. Due to the large differences in polarization curves under various
conditions, some samples could passivate at potential above 0.5 V in acidic solutions, while
others failed to form a stable passive film. However, they all passivated at high potential.
When the potential was higher than 1.50 V and lower than 2.50 V, the current density
immediately entered a region that remained essentially unchanged. At this point, the
magnitude of the passive current density was in the order of 10 µA/cm2.
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Polarization curves of Ti-6Al-4V ELI under plastic deformation and acidic environ-
ments showed significant differences compared to normal conditions. Most studies indi-
cated that titanium alloys initially passivate at lower anodic potential in saline solutions,
where the current remains constant as the potential increases [34–36]. During this period,
there might be a slight increase in current followed by re-passivation. The oscillation in
behavior may be attributed to changes in thin film structure and composition [37]. It was
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found that the inability to passivate at low potential was related to plastic deformation
within the metal and the acidic environment, aligning with the findings of Krawiec et al.
and Munirathinam et al. [38].

Overall, the samples with the highest applied strain showed the worst corrosion resis-
tance. As we know, the passivation film with ceramic structure was incompatible with the
deformation of the metal. As the plastic deformation increased, the O content in the passive
film became lower, and the passive film became more defective and less protective [39]. In
electrochemical experiments, it manifested as larger capacitance and smaller resistance,
as shown in Tables 2 and 3. Furthermore, a large amount of slip and twinning occurred
after deformation, the emergence of slip bands increased the cathodic reactions [40], and re-
passivation became much slower after the passive film breakdown because it was inhibited
by the dislocations [41,42]. Further, the acidic environment accelerated the cathodic process
and promoted the dissolution/formation dynamic equilibrium of the passive film [43], and
the diffusion coefficient and donor density of the passivation film increased, resulting in
higher activity of the passivation film. Therefore, when coupled with acidic environments
and stress, the corrosion resistance of the sample was further compromised. As a result,
corrosion inhibitor coatings for Ti-based alloys may be an important research direction
in the future. Moreover, it is essential to employ corrosion-resistant coatings with high
plasticity to ensure that the coating does not crack under large plastic deformation.

Table 3. Electrochemical parameters for the Ti-6Al-4V ELI alloy in the different solutions.

Sample pH Ecorr (V) Icorr (µA/cm2)

0% strain
7 −0.27 ± 0.39 0.092 ± 0.21

1.5 −0.25 ± 0.37 0.025 ± 0.19

5% strain
7 −0.35 ± 0.46 0.040 ± 0.28

1.5 −0.05 ± 0.16 0.031 ± 0.01

10% strain
7 −0.37 ± 0.49 0.058 ± 0.31

1.5 0.09 ± 0.02 0.116 ± 0.15

4. Conclusions

In order to analyze the tensile deformation mechanism and its impact on the corrosion
behavior of Ti-6Al-4V ELI titanium alloy, specimens were subjected to 5% and 10% strains
and compared with specimens without strain. Additionally, three types of specimens were
immersed in acidic and neutral 3.5% NaCl solutions to measure their corrosion behavior.
The conclusions were obtained as follows:

• During the tensile deformation process, some α grains underwent rotation to coor-
dinate the deformation. The rotation of these grains resulted in changes in grain
orientation, which in turn caused variations in the texture components, and texture
strength decreased. Deformation twins could also form within the grains, with the
twinning generated during deformation being {10–12}<−1011> tensile twins;

• The titanium alloy without any tensile strain exhibited the best corrosion resistance,
while the titanium alloy subjected to the highest tensile strain showed the poorest
corrosion resistance in acidic solutions. Plastic deformation and acidification both led
to a decrease in the corrosion resistance of the alloy’s passive film on the surface;

• Plastic deformation had a greater effect on the reduction in the impedance of the
passive film compared to the acidification of the solution. Due to the interaction of
plastic deformations and the acidic environment, the samples failed to form a stable
passive film at low anodic potential.
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