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Abstract: Achieving a combination of high strength and ductility in metal-based composites is still a
difficult task, and it is especially challenging in a wide temperature range. Here, nanoAl2O3/nanoAl
composites with high tensile and compressive strength and excellent ductility at 25 and 500 ◦C were
obtained using Al and Al2O3 nanopowders via a combination of high-energy ball milling (HEBM)
and spark plasma sintering (SPS). Being about three times lighter than conventional high-strength
steel (with a density of 2.7 g/cm3 vs. that of 7.8 g/cm3 for steel), the nanoAl2O3/nanoAl materials
demonstrated tensile strength and elongation before failure comparable with those of steel. The
nanoAl2O3/nanoAl composites were strengthened with two types of Al2O3 NPs, in situ formed,
and introduced into the powder mixture. The resulting materials had a bimodal microstructure
consisting of Al with micron and submicron grains surrounded by an Al/Al2O3 framework whose
structural components were all in the size range of 20–50 nm. Among the studied compositions
(0, 1, 2, 3, 4, 5, 10, and 20 wt.% of Al2O3), the Al-3%Al2O3 material showed the best thermomechanical
properties, such as a tensile strength of 512 MPa and 280 MPa and a compressive strength of 489 MPa
and 344 MPa at 25 and 500 ◦C, respectively, with an elongation to failure of 15–18%. These results
show the promise of nanoAl2O3/nanoAl composites for use as small items in the automotive and
aviation industries.

Keywords: metal–matrix composites; ball milling; spark plasma sintering; microstructure; tensile
and compressive strength

1. Introduction

Due to its low density (2.7 g/cm3), aluminum (Al) is increasingly replacing cast iron
and stainless steel in various industrial applications. However, Al, as a structural material,
is rarely used in its pure form, but it is the basis of many metal–matrix composite (MMC)
materials, including those based on complexly alloyed matrices (such as Al alloys of the
2xxx, 3xxx, 6xxx, and 7xxx series). Dispersion hardening via adding poorly soluble ceramic
nanoparticles (NPs), for example, Al2O3, is the traditional approach used to increase
strength [1]. Using this approach, it is possible to achieve a decent room-temperature
ultimate tensile strength (UTS) of 250–280 MPa in Al/Al2O3 [2,3] and 400–425 MPa in
Al-2124/Al2O3 [4], Al-6061/Al2O3 [5], and Al-7075/Al2O3 [6] materials. The problem of
weak Al/Al2O3 interface bonding that can lead to a decrease in strength was addressed
by a creating roughened interface [7]. It is also important to note that the high tensile
strength of Al–matrix composites (AlMCs), often achieved at room temperature, is already
significantly reduced at 200 ◦C [8,9], which gives rise to the ambitious goal of improving
thermomechanical properties of AlMCs to expand their applications.

The addition of heat-resistant NPs, for example, TiCx [10] and (AlN + γ-Al2O3) [11],
which are often distributed along the Al grain boundaries (GBs), prevents dislocation
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glide and leads to an increase in high-temperature strength. The presence of an amor-
phous alumina skeleton between Al grains enhances GBs’ efficiency as dislocation barriers,
remarkably strengthens AlMCs, and provides room-temperature elongation values of
7–26% [12]. However, the crystallization of amorphous Al2O3 skeletons leads to the forma-
tion of small (~90 nm) γ-Al2O3 NPs, which adversely affects mechanical properties. The
presence of a metal–ceramic framework around metal grains can lead to different material
behaviors under tension and compression [13].

Reducing the size of reinforcing particles to the nanoscale (<100 nm) contributes
significantly to increasing composite strength via effectively preventing the movement of
dislocations and grain growth. It has been reported that an improvement in mechanical
properties can be achieved even at a low content of NPs [14–16]. Reducing the grain size of
a metal to the nanometer scale (the Hall–Petch effect) also leads to a significant increase
in mechanical strength, but it is accompanied by a decrease in plasticity, which limits
composite applications. An increase in the ductility of an Al alloy with almost unchanged
strength was observed when relatively large metal grains were present simultaneously
with nanosized ones [17]. This observation led to the hypothesis that by combining a
nanostructured material with high strength and micron-sized grains with high ductility, it
is possible to obtain a composite with both high strength and ductility. It has been shown
that with an increase in the volume fraction of large grains in nanostructured Al alloys, the
alloys’ strength decreases slightly, but their ductility increases markedly [18]. This behavior
is explained by the formation of a bimodal microstructure, since grains of different sizes
have the same composition. The concept of a bimodal microstructure of materials with
high strength and ductility was further confirmed through the development of a trimodal
microstructure in an Al alloy. Compared to a bimodal one, the trimodal material had
twice the mechanical strength (~1060 MPa at room temperature), although its ductility was
significantly lower: it presented a strain-to-failure value of 2.5% compared to that of 14%
in the bimodal material [19]. Thus, these results indicate that a balance between strength
and ductility can be achieved through microstructure design. It is worth noting that
with increasing temperature, the strength of Al-5083 alloy with a trimodal microstructure
dropped sharply. This behavior is a typical precipitation-hardening mechanism when
precipitates are dissolved at elevated temperatures. Therefore, to create a material with
both high strength and ductility at high temperatures, it is necessary to obtain dispersion-
strengthened composites with multimodal microstructures. For example, researchers
have achieved high strength yet enhanced ductility of AlMCs through the formation of
a heterogeneous microstructure in which Al grains were separated by a nanocrystalline
ceramic-reinforced Al matrix [13].

Although moderate strengthening can be achieved using large, micron-sized parti-
cles [20], the most pronounced strengthening effect is observed when using a few volume
percentage of ceramic NPs (usually <5 vol.%) with a size of less than 50 nm [15,16]. How-
ever, achieving a uniform distribution of a small number of ultrafine particles is a difficult
task. In addition, the synthesis of particles of a nanometric and uniform size or the sepa-
ration of a narrow fraction from a powder significantly increases production costs. This
suggests that the use of a nanopowder with a wide size distribution of NPs may have a
certain advantage.

The aim of this work was to obtain nanoAl2O3/nanoAl composites with high strength
and ductility due to the formation of a multimodal microstructure. To achieve this, un-
fractionated nanopowders of aluminum and aluminum oxide with a wide particle size
distribution, namely, in the range of 10–500 nm, with a maximum number of NPs having a
size of less than 200 (Al) and 100 nm (Al2O3), were used. The advantage of using Al NPs
is the presence of oxide shells on their surfaces, which prevents their coalescence during
mechanical processing [21]. To obtain high mechanical properties, a uniform distribution
of ceramic NPs in a metal matrix is required. This was achieved using the high-energy ball
milling (HEBM) of powder mixtures. The nanoAl2O3/nanoAl composites were prepared
using HEBM and subsequent spark plasma sintering (SPS). The obtained materials were
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thoroughly characterized using high-resolution transmission electron microscopy (HRTEM)
and tensile and compression tests at 25 and 500 ◦C. Our strategy is based on the hypothesis
that nanoAl2O3/nanoAl composites can be granted excellent thermomechanical properties
through a combination of three mechanisms: Al grain size stabilization, the creation of an
oxide framework along Al grain boundaries, and dispersion strengthening with Al2O3 NPs
and other ceramic byproducts.

2. Experiments

NanoAl2O3/nanoAl composites were prepared using Al and Al2O3 nanopowders.
Al nanopowder was produced from Al wire with a purity of 99.8% by exploding it with
electrical current in an oxygen-containing atmosphere (OOO Equilibrium, Saransk, Russia).
Al2O3 powder was produced via the evaporation of Al nanopowder (purity 99.5%) in an
induction air–oxygen plasma followed by vapor condensation (Plasmotherm, Moscow,
Russia). The size and morphology of the starting materials were determined via scanning
electron microscopy (SEM) using a JSM-7600F microscope (JEOL, Tokyo, Japan). The
particle size distribution was determined using ImageJ software (version 1.54t, Fiji).

The initial powder mixtures with different Al2O3 proportions (0, 1, 2, 3, 4, 5, 10, and
20 wt.%) were dry-processed in an Emax HEBM (Retsch GmbH, Haan, Germany). The ball-to-
powder weight ratio was 10:1, and the rotation speed was 400 rpm. To minimize oxidation
during mixing, the grinding jars were filled with argon. The total mixing time was 3 h. Every
30 min, the treatment was stopped, and the jar walls were cleaned of adhering powder to
improve homogenization of the mixture. The jars were opened in a box filled with argon and
kept this way for 30 min to prevent a fast reaction with air. Then, the adhered powder was
removed from the jar walls in air; after that, the jar was again refilled with argon, and HEBM
was continued.

The SPS method was used to consolidate the nanoAl2O3/nanoAl powder mixtures. Sin-
tering was carried out using a Labox 650 setup (SINTER LAND Inc., Niigata, Japan). At the
beginning of the process, a uniaxial pressure of 50 MPa was applied to the powder mixture, after
which the sample was heated in two stages under vacuum (40 Pa). First, the powder mixture
was heated to 300 ◦C with isothermal holding time of 10 min to remove absorbed impurities,
and in the second stage, the sample was sintered at a temperature of 630 ◦C with a holding time
of 10 min. Also, under the same HEBM and SPS conditions, a reference sample was obtained
from the Al nanopowder to which Al2O3 NPs were not added. Samples with 0, 1, 2, 3, 4, 5, 10,
and 20 wt.% of Al2O3 are denoted as Al-0, Al-1, Al-2, Al-3, Al-4, Al-5, Al-10, and Al-20.

The microstructure and morphology of the initial Al and Al2O3 nanopowders were ana-
lyzed via X-ray diffraction (XRD) using a DRON-3 (Burevestnik, Saint Petersburg, Russia) and
via scanning electron microscopy (SEM) using a JSM F7600 instrument (JEOL Ltd., Tokyo, Japan).
The microstructure of composite materials was examined via XRD and transmission electron mi-
croscopy (TEM) using a Titan Themis3 microscope (FEI, Eindhoven, The Netherlands) operated
at 300 kV and equipped with an energy-dispersive X-ray spectroscopy (EDS) Super-X Detection
System and by using a Tecnai TF20 X-Twin microscope (FEI, Eindhoven, The Netherlands). TEM
sample preparation procedure was performed by means of the FIB technique using dual-beam
Helios system with Ga+ liquid metal ion source (FEI, Brno, Czech Republic).

Tensile and compressive properties at room temperature (RT) and 500 ◦C were measured
using an AG-X 20 kN universal testing machine (Shimadzu, Tokyo, Japan) equipped with a
high-temperature furnace. The strain rates of tension and compression were 0.83 × 10−4 m/s
and 1.16× 10−5 m/s, respectively. To carry out high-temperature tests, the samples were placed
in the furnace of the testing machine and kept in the heated zone for two minutes. Throughout
the entire test cycle, the temperature in the heating zone and the sample temperature were
controlled using thermocouples. The strain values were calculated, taking into account the
calibration stiffness of the setup, which was determined on standard aluminum samples. Test
specimens were cut on a CHMER GX-320L electric spark wire cutter (CHMER EDM, Hangzhou,
China). For tensile tests, the specimens were shaped into a dumbbell 28–32 mm long and with a
5 mm long constriction and a cross-sectional area of 1.5× 4 mm2. For compression tests, the
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specimens were formed into rectangular bars with dimensions of 4 × 4 × 8 mm3. At least
four measurements were conducted for each sample. Microhardness (Vickers pyramid number
HV5) measurements were carried out using an automatic microhardness tester Durascan 70
(Emco-test, Kuchl, Austria) by applying a load of 5 N for 15 s. Indentation was carried out at
seven different random points on the composites’ surfaces, and the results were average.

3. Results
3.1. Microstructure of NanoAl2O3/NanoAl Composites

SEM images of the initial Al and Al2O3 nanopowders are presented in Figure 1a,b. The
Al NPs are spherical in shape, and their size ranges from 25 to 500 nm, with most of the NPs
being on the order of ~80 nm (Figure 1e). Their surface is covered with a thin amorphous layer
of aluminum oxide/hydroxide ~16 nm thick, regardless of the particle size (Figure 1a(inset)).
The results of the EDS analysis show that the Al NPs contain 86.5 at.% of Al and 13.3 at.% of O,
corresponding to 17.7 wt.% of Al2O3. The oxide layer in the Al NPs with a diameter of 80 nm is
about 10.5 vol.%. The alumina NPs have a spherical shape with a size in the range of 10–500 nm,
the predominant size observed among these nanoparticles is approximately 40 nm (Figure 1f).
Figure 1c,d represent the XRD patterns of the Al and Al2O3 NPs. In addition to the main metal
component, low-intensity peaks from Al2O3 are visible in the XRD pattern of the Al powder.
Alumina in the Al2O3 nanopowder is present in three structural components: 70.1% of δ-Al2O3
(ICDD card 00-056-1186), 15.2% of α-Al2O3 (ICDD card 00-050-1496), and 14.7% of γ-Al2O3
(ICDD card 01-074-46290).
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Figure 1. SEM images of the initial Al (a) and Al2O3 (b) nanopowders and particle size distributions:
Al (e) and Al2O3 (f). Oxide layer on the surface of Al particles (inset in (a)). X-ray diffraction patterns
of Al (c) and Al2O3 (d) nanopowders.
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The microstructure of the Al-3 powder mixture is shown in Figure 2. It can be seen
that, after HEBM, the nanoparticles largely retain their size and spherical morphology.
The presence of a thin alumina layer on the surface of Al NPs prevented their agglomer-
ation. Occasionally, two Al NPs fused together to form a dumbbell-shaped agglomerate
(Figure 2b). The EDS oxygen map shows that the interface between the Al NPs is enriched
with oxygen, as indicated by the dotted lines in Figure 2c. It is worth noting that due to lo-
calized heating during HEBM, the outer layer of the amorphous oxide shell can crystallize,
typically within a range of 3 to 4 atomic layers.
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Figure 2. SEM (a) and TEM (b) images of Al-3 powder mixture after HEBM. Two merged dumbbell-
shaped Al NPs with corresponding EDS elemental maps (c). The dotted lines indicate the oxygen-
enriched particle fusion region.

The bimodal microstructure of sample Al-3 after SPS is shown in Figure 3a. In the
image, submicron Al grains are surrounded by a finely dispersed composite structure
consisting of nanosized Al grains and high amounts of ceramic inclusions. According to the
XRD pattern, Al is the main phase in the composite. The 2θ regions of increased intensity to
the left and right of the Al peaks can be attributed to contributions from the orthorhombic
Al2O3 phase (Figure 3b). Weak signals from aluminum nitride can also be observed. The
selected area electron diffraction (SAED) patterns reveal individual characteristic reflections
from the (111) and (013) planes of the orthorhombic Al2O3 and (101) and (112) planes of
trigonal Al2O3 (mp-1143, R3c) (Figure 3c,d). Single reflections from the (100) planes of
AlN are also visible (Figure 3c). The presence of Al2O3 and AlN nanoparticles was also
confirmed through high-resolution TEM imaging and the corresponding SAED patterns
(Figure 3e,f). The spherical inclusions are the Al2O3 reinforced NPs, while the AlN NPs
have a characteristic faceting and a size of 35–125 nm. Since Al2O3 powder was produced
via the evaporation of Al nanopowder in an induction air–oxygen plasma, it is reasonable to
assume that this also led to the formation of amorphous AlNxOy nanoparticles [22], which
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cannot be identified via XRD (Figure 1d). During the SPS process, amorphous AlNxOy
nanoparticles can easily interact with Al according to the following reaction:

2Al + 3AlNO→ 3AlN + Al2O3 (1)Metals 2023, 13, x FOR PEER REVIEW 7 of 20 
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Figure 3. Bright-field TEM image (a) and XRD pattern (b) of sample Al-3 after HEBM and SPS.
Selected area electron diffractions (SAED) along [011]Al (c) and [103]Al (d) zone axes. TEM, high-
resolution TEM, and SAED patterns showing Al2O3 (e) and AlN (f) nanoparticles.

This explains the formation of AlN nanoparticles in the Al/Al2O3 composites prepared
using SPS, similar to what was observed in the in-situ reaction between Al and amorphous
SiNxOy [23].
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The nanoAl2O3/nanoAl composite structure was further studied using the STEM tech-
nique and corresponding EDS Al, O, and N mapping. It can be seen that a submicron-sized
Al grain (G1) is surrounded by oxygen-rich compounds that form a 3D oxide skeleton
(Figure 4). Two characteristic morphologies of the oxide NPs can be distinguished. The
spherical NPs are reinforcing Al2O3, which was originally part of the green Al-Al2O3
powder mixture (shown by arrows) (Figure 4). Shapeless NPs, which were closely spaced
or adjacent to each other, forming an oxide network, apparently formed from an amor-
phous/crystalline surface oxide layer covering the initial Al NPs during SPS. As indicated
by the results of the EDS and XRD analyses, a minor quantity of AlN NPs is also detected
as a reinforcing phase.
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Figure 4. Bright-field STEM images of sample Al-3 (a,b) and corresponding EDS elemental maps.
Spherical NPs included in the initial Al-Al2O3 powder mixture are indicated by arrows. Double
arrows indicate the formed AlN nanoparticles.

Figure 5a,b show bright- and dark-field (BF and DF) STEM micrographs of an indi-
vidual Al grain that was sufficiently well aligned along a <110> zone axis. The grain has
dimensions of approximately 380 × 550 nm2 and contains many microstructural defects.
The Al grain is surrounded by oxide NPs, which lie in and below the image plane and
are clearly visible on the corresponding EDS oxygen map. Figure 5c depicts an Al/Al2O3
interface tilted to the image plane. The (025)Al2O3 planes exhibit a precise alignment with



Metals 2023, 13, 1696 8 of 18

the (200)Al planes across the interface, forming a coherent grain boundary (as they have the
same interplanar spacing of 0.202 nm).
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Figure 5. BF with HAADF (inset) (a) and DF (b) STEM images of Al grain (zone axis is [110]) and
corresponding EDS Al and O maps. High-resolution BF STEM image (c) and corresponding EDS
elemental map showing a coherent Al/Al2O3 interface. The (025)Al2O3 planes (d = 0.202 nm) are
perfectly matched through the interface with the (200)Al planes (d = 0.202 nm).

The microstructure of the nanoAl2O3/nanoAl composite after the room-temperature
(RT) tensile tests is presented in Figure 6. The TEM images reveal the types of defects that
have developed within the material during deformation. Figure 6a–c show dislocations
localized inside 600–700 nm Al grains. These dislocations were arrested by grain bound-
aries, ensuring their high density (~3.5 × 1013 m−2). The dislocations are well aligned
in certain directions, which indicates that they were formed during plastic deformation
along the planes of the easiest shear and not as a result of the accommodation of thermal
stresses between the Al grain and the surrounding Al oxide NPs. Figure 6d displays a
dark-field TEM micrograph of an individual Al grain approximately 300 nm in size aligned
along the <011> zone axis. Inside the grain, a high density of dislocations can be observed,
among which dislocation loops and stacking faults formed exclusively along close-packed
(111) planes can be distinguished (Figure 6e).
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Figure 6. NanoAl2O3/nanoAl composite after RT tensile test. Bright- (a) and weak-beam dark-field
(b,c) TEM images showing long dislocations localized inside Al grains after deformation. Dark-field
TEM image of an Al grain (d), and high-resolution TEM image of a dislocation lop intersecting with
the SF (e). Incident beam is parallel to [011]Al. High-resolution TEM images of Al grains showing
relatively wide (up to 3.5 nm (f,g)) and narrow (two atomic layers (h)) planar defects formed along
close-packed {111} planes. The densities of long dislocations and SFs are approximatelly 3.5 × 1013

and 1.5 × 1015 m−2.

Numerous dislocation loops are also visible as dark/bright diffuse circles in the BF/DF
TEM images (Figure 7). Relatively wide (~3.5 nm) and narrow (two atomic layers) planar
defects are present inside the metal matrix (Figure 6f–h). The contribution of reinforcing
particles, bearing part of the applied load, can be demonstrated on an AlN NP as an example.
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Figure 8 shows the dislocation network inside the AlN grain after tensile deformation at RT.
Dislocations are mainly localized within one grain and do not extend beyond its boundaries.
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Figure 8. BF STEM image showing dislocation network in AlN after tensile deformation and corre-
sponding EDS elemental maps.

3.2. Mechanical Properties of NanoAl2O3/nanoAl Composites at 25 and 500 ◦C

Figure 9 illustrates the relationship between the microhardness values of the compos-
ites and their respective densities. The reference sample, obtained exclusively from the
Al nanopowder, has a hardness of 73 HV5. As expected, with an increase in the alumina
content, the hardness increases and reaches 154 HV5 at 20 wt.% of Al2O3. Compared to the
additive-free Al, the density gradually increases from 2.66 (Al-0) to 2.71 g/cm3 (Al-3), does
not change much at 3–5 wt.% of Al2O3, and then increases to 2.76 (Al-10 and Al-20).
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Figure 9. Microhardness of Al (Al-O) and nanoAl/nanoAl2O3 materials (Al-1–Al-20) vs. their density.

The average UTS and UCS values (MPa), as well as the elongations to failure (El, %),
determined from the engineering tensile and compressive strength curves of the Al-
nanopowder-derived reference samples and nanoAl2O3/nanoAl composites tested at
25 and 500 ◦C are presented in Table 1. The RT tensile strength increases starting from
194 MPa (Al), reaches a maximum of 512 MPa at 3 wt.% of Al2O3, and then decreases to
160 MPa at 20 wt.% of Al2O3 (Figure 10a). Compared to pristine Al, the UTS value of
sample Al-3 increased 2.6 times. At 500 ◦C, this sample also shows a maximum UTS value
of 280 MPa (an increase by a factor of 1.8). These high values of UTS were achieved at
enhanced elongations of 17.9% (25 ◦C) and 15% (500 ◦C), which are only 28 and 18.5% less
than those in the sample without alumina additives (Table 1).

Table 1. Mechanical properties of Al and nanoAl2O3/nanoAl composites.

Sample

Hardness Compressive Properties Tensile Properties

(HV5)
RT 500 ◦C RT 500 ◦C

UCS
(MPa) El (%) UCS

(MPa) El (%) UTS (MPa) El (%) UTS (MPa) El (%)

Al-0 73 ± 8 178 ± 8 19.0 ± 1.1 100 ± 5 12.2 ± 1 194 ± 5 24 ± 0.8 153 ± 10 18.4 ± 1
Al-1 100 ± 9 434 ± 9 11.5 ± 1.1 272 ± 8 9.6 ± 1 389 ± 7 12.3 ± 0.2 253 ± 3 14.9 ± 0.2
Al-2 112 ± 5 466 ± 6 25.1 ± 1.0 366 ± 5 22.2 ± 2 396 ± 15 15.9 ± 1.6 256 ± 8 14.5 ± 0.8
Al-3 114 ± 5 489 ± 10 17.8 ± 1.8 344 ± 7 18.2 ± 0.8 512 ± 20 17.9 ± 2 280 ± 11 15.0 ± 0.7
Al-4 122 ± 8 432 ± 7 9.1 ± 0.7 324 ± 8 20.8 ± 1.1 362 ± 10 12.1 ± 1 252 ± 11 15.9 ± 0.4
Al-5 124 ± 4 442 ± 10 14.1 ± 1.2 295 ± 2 18 ± 0.5 360 ± 15 16.8 ± 1.3 245 ± 9 17.2 ± 0.6
Al-10 133 ± 7 526 ± 11 16.7 ± 1.9 315 ± 12 12.5 ± 0.8 356 ± 7 11.9 ± 1.1 206 ± 3 13.2 ± 0.1
Al-20 154 ± 10 518 ± 8 4.8 ± 1 299 ± 10 4.3 ± 0.4 160 ± 5 5.2 ± 0.9 93 ± 3 7.8 ± 0.2

The characteristic engineering compressive strength curves of the Al and Al/Al2O3
samples tested at 25 and 500 ◦C are presented in Figure 10c,d. The dependence of compres-
sive strength on the Al2O3 content does not have a pronounced maximum (Figure 10b).
The RT UCS values increase from 178 MPa (Al) to 489 MPa (Al-3), slightly decrease at
4 and 5 wt.% of Al2O3 (samples Al-4 and Al-5), and then increase again at higher Al2O3
NP proportions (10 and 20 wt.%). At a testing temperature of 500 ◦C, the UCS exhibits
a notable increase from 100 MPa (Al-0) to 366 MPa (Al-2). Subsequently, there is a slight
decrease, with the UCS stabilizing at approximately 300 MPa for Al2O3 concentrations
ranging from 4% to 20 wt%. Thus, compared to pure Al, the maximum increase in strength
at 500 ◦C was 266%. However, in addition to a significant increase in compressive strength,
the result that perhaps is even more crucial is the increase in ductility. For sample Al-2, the
increase in elongation at RT was 44%. The nanoAl2O3/nanoAl composites with 2–5 wt.%
of Al2O3 were 42–89% more ductile compared to the Al-0 material without Al2O3 additive
(Table 1).
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Figure 10. UTS (a) and UCS (b) values of Al and nanoAl2O3/nanoAl composites. Characteristic
engineering compressive strain–stress curves of Al and Al/Al2O3 samples tested at 25 ◦C (c) and
500 ◦C (d). Al-0 (Al), Al-1 (Al-1%Al2O3), Al-2 (Al-2%Al2O3), Al-3 (Al-3%Al2O3), Al-4 (Al-4%Al2O3),
Al-5 (Al-5%Al2O3), Al-10 (Al-10%Al2O3), and Al-20 (Al-20%Al2O3). SEM fracture images of sample
Al-3 after tensile tests at 25 ◦C (e) and 500 ◦C (f). Arrows indicate oxygen-enriched areas, which
exhibit a tendency toward more brittle fractures.

The high plasticity of the nanoAl2O3/nanoAl composites was confirmed by the ap-
pearance of sample surface fractures after mechanical tests. SEM fracture micrographs of
composite Al-3 after RT and high-temperature tensile tests are presented in Figure 10e,f.
The fracture surfaces have characteristic dimpled areas, indicating a predominantly plastic
nature of deformation. It can be seen that regions with a relatively large cellular structure
alternate with regions with a much finer structure, and this result is in good agreement with
the bimodal microstructure of the nanoAl2O3/nanoAl composites (Figure 3a). The EDS
elementals maps show oxygen-enriched areas that exhibit a more brittle fracture pattern.
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4. Discussion

Based on the results obtained, the following scheme for the formation of the composite
nanoAl2O3/nanoAl structure was proposed. The initial Al NPs are covered with a layer
of amorphous oxide/hydroxide (Al(OH)3). Although during HEBM the Al nanopowder is
subjected to severe deformation, the particles retain their initial size and spherical shape due to
the protective oxide shell (Figures 2a and 11a). These amorphous shells also prevent Al grain
growth during subsequent heating and SPS. Plasma breakdown during SPS additionally heats
and destroys the amorphous layer, turning it into discrete crystalline Al2O3 NPs surrounding
metal grains (Figure 11a). A similar microstructure was observed in a composite obtained from
only Al nanopowder, in which reinforcing γ-Al2O3 NPs were formed from an amorphous
oxide/hydroxide layer covering the initial Al NPs [24]. The formation of an alumina skeleton
was also observed in the Al/Al2O3 composites [12]. The transformation of an amorphous
alumina surface layer into crystalline Al2O3 was reported to occur during heating above
450 ◦C [25], and only nanometric γ-Al2O3 particles with an average size of 28 nm residing on
the high-angle grain boundaries were observed after annealing at 600 ◦C for 24 h [26]. Therefore,
it can be assumed that, in our case, Al2O3 NPs were formed not only as a result of spark
breakdown but also during heating to 630 ◦C during SPS.Metals 2023, 13, x FOR PEER REVIEW 15 of 20 
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Figure 11. Schematics of nanoAl2O3/nanoAl composites’ fabrication (a), BF TEM image showing
bimodal microstructure (b), comparison of RT UTS and elongation values of various Al/Al2O3

composites (c) (+ [11], 3 [25], N [27], © [28], � [29], • [30], × [31], � [32], ∗ [33], � [34], M present
study), comparison of strength and elongation of Al-3 composite with those of cronventional high-
strength steels [35] (d), and comparison of UTS values of Al-3 composites at elevated temperatures
with those of other materials (e) (data from Refs. [8,30,36–45]).
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SEM images of samples Al-0, Al-3, and Al-10 with the corresponding distributions of
Al grains by size are presented in Figure 12. It can be seen that, in addition to nano and
submicron Al grains, the materials contain grains larger than 1 µm. Structural anisotropy
can be observed, in which the Al grains are elongated perpendicular to the applied load. The
formation of a bimodal microstructure with micron and submicron Al grains surrounding
the (Al+Al2O3+AlN) nanocomposite is apparently due to the use of unfractionated Al
nanopowder with a wide particle size distribution (Figures 11b and 12a–c). Thus, the
nanoAl2O3/nanoAl composite was strengthened not only by the added Al2O3 NPs but
also by the formed Al–ceramic skeleton with Al2O3 and AlN nano-inclusions surrounding
micron and submicron Al grains.

Metals 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 12. SEM images of Al/Al2O3 composites with corresponding EDS elemental maps and grain 

size distributions: Al-0 (a,d), Al-3 (b,e), and Al-10 (c,f). Samples Al-0 and Al-3 were cut perpendicu-

lar to the pressing direction, while sample Al-10 was cut along the pressing direction, as indicated 

by the arrow. 

The nanoAl2O3/nanoAl material simultaneously shows high tensile/compressive 

strength and high ductility. This can be explained by the formation of a bimodal structure 

in which micron and submicron Al grains, responsible for plasticity, are encapsulated 

within a framework composed of Al nanograins and ceramic NPs, contributing to the ma-

terial’s strength. Figure 11c compares the UTS values of various Al/Al2O3 composites 

[11,25,27–34]. In terms of the combination of tensile strength and ductility, sample Al-3 

outperforms many other Al/Al2O3 composites obtained so far. Its record strength of 512 

MPa is significantly higher than the maximum strengths reported for Al-10%SiC (317 

MPa) [46], Al-2%BN (405 MPa) [13], and Al-3%SiNOx materials (395 MPa) [23]. The RT 

tensile strength and elongation of sample Al-3 are comparable with those of Al-7075 alloy 

subjected to T6 heat treatment [47], which is widely used in marine, automotive, and air-

craft applications. Being about three times lighter than conventional high-strength steel 

(with a density of 2.7 g/cm3 vs. that of 7.8 g/cm3 for steel), the nanoAl2O3/nanoAl materials 

demonstrated tensile strength and elongation before failure comparable with those of 

steel (Figure 11d) [35,48]. Our study clearly shows that the addition of an optimal quantity 

of Al2O3 NPs in the raw nanoAl powder is necessary to obtain record strength. Indeed, the 

Al-MCs reinforced only with in situ formed γ-Al2O3 nanoparticles displayed a compres-

sive yield stress of 302 MPa and a ductility of 4% [21]. 

It is especially important to note the excellent mechanical properties of composite Al-

3 at a temperature of as high as 500 °C: 344 MPa (in compression) and 280 MPa (in tension). 

For example, the UTS of Al-7075 alloy decreased to 40 MPa at 370 °C. Sample Al-3’s tensile 

strength at 500 degrees is superior to that of many other metal–matrix composite materials 

 

Figure 12. SEM images of Al/Al2O3 composites with corresponding EDS elemental maps and grain
size distributions: Al-0 (a,d), Al-3 (b,e), and Al-10 (c,f). Samples Al-0 and Al-3 were cut perpendicular
to the pressing direction, while sample Al-10 was cut along the pressing direction, as indicated by
the arrow.

The nanoAl2O3/nanoAl material simultaneously shows high tensile/compressive
strength and high ductility. This can be explained by the formation of a bimodal structure
in which micron and submicron Al grains, responsible for plasticity, are encapsulated
within a framework composed of Al nanograins and ceramic NPs, contributing to the
material’s strength. Figure 11c compares the UTS values of various Al/Al2O3 compos-
ites [11,25,27–34]. In terms of the combination of tensile strength and ductility, sample
Al-3 outperforms many other Al/Al2O3 composites obtained so far. Its record strength
of 512 MPa is significantly higher than the maximum strengths reported for Al-10%SiC
(317 MPa) [46], Al-2%BN (405 MPa) [13], and Al-3%SiNOx materials (395 MPa) [23]. The
RT tensile strength and elongation of sample Al-3 are comparable with those of Al-7075
alloy subjected to T6 heat treatment [47], which is widely used in marine, automotive,
and aircraft applications. Being about three times lighter than conventional high-strength
steel (with a density of 2.7 g/cm3 vs. that of 7.8 g/cm3 for steel), the nanoAl2O3/nanoAl
materials demonstrated tensile strength and elongation before failure comparable with
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those of steel (Figure 11d) [35,48]. Our study clearly shows that the addition of an optimal
quantity of Al2O3 NPs in the raw nanoAl powder is necessary to obtain record strength.
Indeed, the Al-MCs reinforced only with in situ formed γ-Al2O3 nanoparticles displayed a
compressive yield stress of 302 MPa and a ductility of 4% [21].

It is especially important to note the excellent mechanical properties of composite Al-3
at a temperature of as high as 500 ◦C: 344 MPa (in compression) and 280 MPa (in tension).
For example, the UTS of Al-7075 alloy decreased to 40 MPa at 370 ◦C. Sample Al-3’s tensile
strength at 500 degrees is superior to that of many other metal–matrix composite materials
(Figure 11e [8,30,36–45]). A nanoscale mixture of Al and in situ formed alumina NPs
(Figure 4) surrounding Al grains ensures high compressive ductility, which was 1.32 (25 ◦C)
and 1.82 (500 ◦C) times higher for sample Al-2 than for the pure Al-0 material (Table 1).

The study of the defect microstructure after deformation made it possible to shed light
on the main strengthening mechanisms. Within the composite materials’ microstructures,
many Al grains are only a few hundred nanometers in size. Dislocations were observed
within one grain without going beyond its boundaries (Figure 6a–c), leading to a high
density and an increase in the number of microstresses and, consequently, strength. The
increased plasticity observed can be explained by the fact that the dislocations do not cross
the grain boundary and, apparently, angulate inside the grain. The Al2O3 and AlN NPs
located along the Al grain boundaries limit the movement of dislocations and make an
additional contribution to strengthening due to the creation of high-strain fields. In addition,
ceramic NPs surrounding metal grains can prevent grain rotation or sliding (especially
important for compression tests) and retard crack propagation. An important observation
is that the AlN grains contain dislocations (Figure 8), indicating that the particles take on
part of the mechanical load.

The numerous line defects and (111) microtwins/stacking (MTs/SFs) faults observed
inside the Al grains also indicate metal plastic deformation (Figure 6e–h). This is in good
agreement with the characteristic cellular microstructure of the composite fracture zone
after tensile deformation (Figure 11c,d). Figure 6e shows that MTs/SFs act as barriers and
traps for dislocations. This behavior can lead to an increase in strength and plasticity [49]
as well as improved crack resistance due to stress relaxation [50].

The strength of the metal/ceramic interface bond is an important factor for the strength
of the entire material. Long-term HEBM and subsequent SPS facilitate high bonding
strength between Al and both in situ formed and doped Al2O3 NPs. A strong interface can
be formed during the crystallization of thin amorphous Al oxide/oxyhydrate interlayers.
The precipitation of extremely fine γ-Al2O3 NPs at the Al grain boundary leads to an order-
of-magnitude enhancement in interface strength [51]. DFT calculations showed that the
delamination of composites at the Al/Al2O3 interface is unlikely to occur. After subjecting
our composites to mechanical tests, we did not observe delamination or the appearance of
cracks at the Al/Al2O3 interfaces.

5. Conclusions

NanoAl2O3/nanoAl composites with high strength and ductility at 25 ◦C and 500 ◦C
were obtained from as-synthesized and non-fractioned Al and Al2O3 nanopowders through a
combination of high-energy ball milling and spark plasma sintering. The nanoAl2O3/nanoAl
material with the addition of 3 wt.% of the Al2O3 nanoparticles showed excellent thermome-
chanical properties both in terms of tension and compression. Compared with conventional
cast Al (~80 MPa), the room-temperature tensile and compressive strength were increased by
more than 500% to 512 MPa and 489 MPa, respectively. The nanoAl2O3/nanoAl material with
3 wt.% of Al2O3 retained a very high strength at 500 ◦C, i.e., approximately 280 MPa (tensile)
and 340 MPa (compression), and showed an elongation to failure in the range of 15–18%
under compression and tension both at 25 and 500 ◦C. The problem of a catastrophic decrease
in plasticity with increasing strength was successfully solved by creating a bimodal composite
microstructure containing micron and submicron Al grains, responsible for plasticity, sur-
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rounded by a metal–ceramic skeleton (consisting of Al nanograins and ceramic nanoparticles),
contributing to strength.
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