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Abstract: Laser powder bed fusion (L-PBF) is a novel process representing a possible solution for
producing resistant parts using NiCrBSi hard-facing nickel alloys with complex geometry. Process
parameters for more common alloys are explored with a standard Renishaw AM400 device (Renishaw,
Wotton-under-Edge, UK) and an SLM Solution 250 device (SLM Solutions Group AG, Lübeck,
Germany) modified with a baseplate preheated at high temperatures (300 ◦C and 500 ◦C). Laser
remelting is also investigated in hopes of further improving material health. The origin of the main
defects is studied. A lack of fusion is likely to be generated by spatters ejected from the melting
pool while cracks are induced by the alloy’s lack of toughness. Using image analyses, those defects
are quantified and correlated with processing parameters. Lack of fusion and total crack length
decrease with an increase in baseplate’s preheating temperature. However, crack width increases
with preheating temperature. Therefore, via a careful optimization of process parameters, samples
with a surface density of 99% and narrow cracks are obtained.

Keywords: NiCrBSi; nickel superalloy; additive manufacturing; L-PBF; material health; X-ray tomography

1. Introduction

Self-fluxing alloys (SFAs) are commonly used as wear- and corrosion-resistant hard-
facing coatings [1,2]. Several applications can be found, such as power generation (pumps
and turbines), motorization (cylinders, pistons, and valves), mining (digging picks), drilling
tools, or glass-forming moulds and cement works [3–7]. They are also an alternative to
cobalt-based superalloys and hard chromium deposits [8–11]. Among those alloys, NiCrBSi
alloys are the most studied [3]. They are hardened by three mechanisms: a solid solution of
chromium, iron, and silicon in a nickel-rich matrix; the fine precipitation of Ni3Si; and hard
phases such as chromium borides and carbides, nickel borides, and silicide [12–14].

Additive manufacturing (AM) is a novel category of processes that is capable of
reducing the buy-to-fly ratio and production time while enabling parts with complex
shapes [15]. Among AM processes, laser powder bed fusion (L-PBF) is the most studied for
its capability to build near-net shape parts with a complex geometry [16]. However, some
issues regarding process stability, reliability, and repeatability mainly dictated by process
parameters are still unsolved [17].

In the nickel-based superalloy field, the L-PBF process is mainly used and studied
with respect to weldable alloys such as alloy 718 or 625 [18–20]. Some studies explore non-
weldable alloys, such as CM247LC [21–32], IN738LC [33–37], or IN939 [38,39]. However,
the difficulties associated with cracking remain unresolved.

NiCrBSi alloys are mainly used as coatings. Furthermore, wear-resistant hard alloys
are difficult to machine. Therefore, complex small parts made out of NiCrBSi are difficult to
obtain using conventional methods. However, the production of NiCrBSi alloy parts using
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the L-PBF process might allow the construction of complex parts out of wear-resistant
hard alloys. Despite these arguments, the production of NiCrBSi alloys by L-PBF is almost
unstudied [40–42]. The few papers found throughout the literature mention, in one way or
another, cracking issues. Furthermore, Shishkovsky et al. [40] recommend preheating the
baseplate between 500 and 700 ◦C to reduce cracking. However, the relationships between
material health and process parameters are not studied. It should be mentioned that the
L-PBF production of NiCrBSi alloys is also studied by Shishkovsky et al. in the case of a
metal matrix composite (MMC) with the addition of TiC [43] or WC [44] particles.

According to papers concerning the challenge of producing hard alloys such as M2
tool steel, a careful choice of process parameters and preheating the baseplate are the most
used methods for reducing cracking [45,46]. Finally, despite the lack of consensus [47],
adding a second laser path might reduce cracks [48–51].

This paper explores the processability of the NiCrBSi alloy using the L-PBF pro-
cess. A commercial device is first used. Secondly, following the recommendations of
Shishkovsky et al. [40], a modified device with a baseplate preheated up to 500 ◦C is also
utilized. A broad range of process parameters is explored based on the parameters used
for other nickel-based alloys (625, 718, and CM247LC). The influence of laser remelting on
cracking behaviour is also studied. Finally, an image analysis protocol is established to sep-
arate and quantify the defects (lack of fusion, porosity, and cracks). The origin of cracks and
lack of fusion are investigated. Finally, these defects are correlated with process parameters.

2. Materials and Methods
2.1. Material

The NiCrBSi powder was custom-made via gas-atomization by manufacturer Aubert
& Duval (Irun, Spain). In order to generate high hardness and wear resistance, the alloy
contains a significant number of elements that are likely to generate hard phases (Table 1).
The particle’s size distribution (D10 = 17 µm, D50 = 31 µm, and D90 = 47 µm) is measured
using light diffusion and sieving following the ASTM B822 and the ISO 4497 [52]. According
to the L-PBF device’s recommendations, the grain size of the powder is suitable. Finally,
the purchased powder mainly exhibits a spherical shape (Figure 1).

Table 1. Chemical composition of the NiCrBSi powder (wt. %).

Elements Ni Cr B Si Fe C O

D60 Bal. Bal. 14 3.5 3.9 3.1 0.63 0.012
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2.2. LPB-F Production

For this study, two devices were used. The first is a Renishaw AM400 (Renishaw,
Wotton-under-Edge, UK) equipped with a pulsed ytterbium fiber laser with a wavelength
of 1070 nm and a maximum power of 400 W. The second one is an SLM Solution 250 (SLM
Solutions Group AG, Lübeck, Germany) with a continuous ytterbium fiber laser with a
similar wavelength and maximum power. In order to compare the used process parameters
with different L-PBF devices and with the literature, laser speed “v” for the pulsed laser is
calculated according to the following equation:

v = Pd/(exp + (Pd/Vp)) (1)

where “exp” denotes the exposure times in µs, “Pd” denotes the point distances, and
“Vp” denotes the (virtual) speed between each point. “El” is the Lineic Energy, which is
calculated using the following equation:

El = P/v (2)

where “P” denotes the laser power. Finally, the volume energy density “VED” is calculated
using the following equation:

VED = P/(v × Hd × t) (3)

where “Hd” denotes the hatch distance, and “t” denotes the layer thickness.
L-PBF production can be separated in 4 batches with different preheating temperatures

or laser remelting (Figure 2):

• Standard L-PBF productions (Figure 2) were carried out using a Renishaw AM400
with a standard baseplate (250 × 250 mm) heated to 170 ◦C. A laser power of 150,
175, 200, and 225 W is used. Various exposure times between 20 and 140 µs and point
distances between 20 and 140 µm are tested. According to several papers in the field of
nickel-based superalloys produced with a Renishaw AM400 device [53–59], parameter
sets leading to a linear energy lower than 0.15 J·mm−1 and greater than 0.35 J·mm−1

and a VED greater than 130 J·mm−3 are not tested. Finally, the hatch distance was kept
at 70 µm, except for the four samples obtained with an Hd between 50 and 110 µm. In
total, 75 samples (cubes of 13 × 14 × 15 mm3) out of 76 were built (Figure 2a,c).

• High-temperature L-PBF production and laser remelting exploration were conducted
with a modified SLM Solution 250 device (continuous laser) on a small round baseplate
(100 mm diameter). Two preheating temperatures were tested: 300 and 500 ◦C. For
300 ◦C (Figure 2), a laser power of 100 and 150 W was used, and the laser scanning
speed varied between 450 and 800 mm·s−1. Hatch spacing was kept at 70 µm. In total,
8 out of 16 samples (cubes of 10 × 10 × 10 mm3) were built (Figure 2b,d).

• For 500 ◦C (Figure 2), according to results obtained at 300 ◦C, a laser power of 100 W
was mainly used with a laser speed between 100 and 1200 mm·s−1. A laser power of
150 W and laser speed of 600 mm·s−1 were also tested. Hatch spacing varied from 30
to 110 µm for four samples, and it was kept at 70 µm for the rest of the production. In
total, 19 out of 20 samples (cubes of 10 × 10 × 10 mm3) were built (Figure 2b,d)).

• Finally, four samples were produced with laser remelting (same parameters as the first
laser path) on a baseplate preheated at 500 ◦C. Two samples were obtained with a laser
power of 100 W, a laser speed of 200 mm·s−1, and a hatch spacing of 30 and 110 µm.
Two other samples were constructed with a laser power of 150 W, a laser speed of
600 mm·s−1, and a hatch spacing of 30 and 110 µm. In total, 3 out of 4 samples (cubes
of 10 × 10 × 10 mm3) were built. Those parameter sets are chosen for their capacity to
produce a few cracks (Figure 2b,d)).
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AM400 equipped with a pulsed laser. (b,d) Production carried out on the SLM Solutions 250 equipped
with a continuous laser. Cross corresponds to cancelled samples during production.

Finally, the layer’s thickness was kept at 40 µm. In order to reduce the experimental
design, only the meander scanning strategy with a 67◦ rotation between each layer was
explored. A focus diameter of 70 µm was used. Finally, the coordinate system comprised
the height of the build following the build direction relative to the Z axis while the X and Y
axes were used relative to the scanning plane.

2.3. Sample Preparation

Samples were separated from the baseplate by electric wire discharge. To prevent
further crack propagation during preparation, samples were first mounted in room tem-
perature curing epoxy resin. Metallography sample preparation was performed with a
series of abrasive grinding SiC paper with decreasing coarseness to 4000 grit, followed
by polishing with 3 and then 1 µm diamond particle suspensions. For high-magnification
analyses (SEM; ZEISS, Paris, France), a final polishing step with OPS (silica suspension
of 0.25 µm) was used. Finally, the microstructure was revealed via chemical etching with
Marble’s reagent (20 mL of HCl, 4 g of CuSO4, and 20 mL of H2O) after 30 s exposure time.
Due to the chemical etching reaction with the alloy, the final polishing and chemical etching
steps were not conducted for defect quantification.

2.4. Defects Detection and Analysis

Defects are observed using an optical microscope PMG3 from Olympus (Olympus
France 117 SAS, Rungis, France). Further analyses are carried out via X-ray tomography
with an Easytom X-ray tomograph (RX solutions, Annecy, France) on 5 × 5 mm2 samples.
Then, 1440 slices were taken with a step of 0.1◦ and an acceleration voltage of 150 kV.
Finally, the voxel lateral size was calculated at 5 µm. Additional analyses were conducted
with a ZEISS EVO10 HD15 (ZEISS, Paris, France) Scanning Electron Microscope (SEM). An
acceleration voltage of 15 kV and a working distance of 10 mm were used.
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2.5. Defects Quantification

According to the representative volume’s calculation, 15 optical micrographs were
used for each sample. Those micrographs were taken at a magnification of ×50, represent-
ing a surface area of 31.7 mm2 (between 17.4 and 31.7% of the surface area of each sample)
with a similar grey histogram. Given the magnification (1.54 pixel·µm−1 resolution), defects
larger than 6 µm can be detected. Those defects (lack of fusion, porosity, and cracks) can
be connected. Therefore, they were separated and quantified using an image analysis
program created with Fiji software (Version 1.54c) [60] following the steps described and
summarized in Figure 3.
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Wide objects exhibit a circularity between 0.3 and 0.9, meaning that they were neither
elongated like a crack nor were circular like a pore. Therefore, objects wider than 30 µm
mainly comprised a lack of fusion. On the other side, objects finer than 30 µm exhibited
two populations. The first population comprised objects with a circularity between 0 and
0.2 (elongated objects), which can be attributed to cracks. The second one comprised objects
with a circularity between 0.8 and 1 (circular objects), which can be attributed to pores.
The crack’s length was measured using the skeletonized image of the cracks. Crack width
was determined by dividing the crack’s surface by the crack’s length. The crack angle
was calculated with the angle of the major axis of the object relative to the horizontal
line. Finally, the surface density was determined by subtracting the lack of fusion surface
fraction to 100%.

3. Results

This section describes the results. Firstly, the processability of the alloy during these
different productions is described. Secondly, material health is examined.

3.1. Processability

Processability is limited by the excessive deformation of samples during production,
leading to a collision with respect to the recoater. Using standard process parameters (laser
power ranging from 150 to 225 W and laser speed ranging from 455 to 1000 mm·s−1) on the
standard Renishaw AM400 machine with a baseplate heated to 170 ◦C, most excessive defor-
mations during production can be avoided. Indeed, only one sample (laser power = 200 W
and laser speed = 588 mm·s−1) had to be stopped due to delamination (Figure 2). This
set of parameters is not an extremum. Therefore, this process’s cancellation is attributed
to a random error. For a baseplate preheated to 300 ◦C, a laser power of 150 W induces
excessive deformation (Figure 2). A baseplate preheated at 500 ◦C allows the production of
samples at low speeds (down to 200 mm·s−1) with a laser power of 100 W. However, with
a very low laser scanning speed of 100 mm·s−1, excessive deformation limits the process-
ability (Figure 2). Finally, variations in the hatch’s spacing did not appear to reduce the
processability window relative to laser remelting. However, short hatch spacings combined
with laser remelting could lead to excessive deformation (seen in one sample only out of
the two built with low hatch spacing and laser remelting) (Figure 2).

3.2. Material Health

This section presents the three different types of defects (lack of fusion, porosity, and
cracks). These are qualitatively and quantitively described.

3.2.1. Qualitative Defect Analysis

The most apparent defect found in the L-PBF production of NiCrBSi is the lack of
fusion (Figure 4). Large defects with an irregular shape [16] are frequently topped by
a circular object with a coarse microstructure (Figure 4a,b). However, for a baseplate
preheated to 500 ◦C, a lack of fusion does not seem to be present (Figure 4c,d).

Furthermore, tomographic analysis shows unmelted and enclosed powder particles
for a sample obtained with a preheating temperature of 170 ◦C (Figure 5a–c), confirming
the presence of lack of fusion. Indeed, the presence of a lack of fusion is difficult to confirm
using metallographic cross-section analysis due to the fall of powder particles during
sample preparation. However, for a sample obtained with a preheating temperature of
500 ◦C, no such defects were found (Figure 5d–f).
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The second most apparent defect in NiCrBSi L-PBF production is cracks (Figure 4).
They are observed for all samples despite preheating the baseplate up to 500 ◦C and
applying a second laser path. For a sample obtained with a baseplate preheated at 500 ◦C,
X-ray tomography reconstruction exposed wide cracks (Figure 5d), while micrography
exhibited wide cracks and flacks (Figure 4d). Therefore, these flacks are induced by sample
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preparation. For the sample obtained with a preheating temperature of 500 ◦C, cracks are
concentrated on the side of the sample (Figure 5d).

Finally, some porosity can be found on the NiCrBSi produced by L-PBF (Figure 4).
To understand crack origins, the cross sections of cracks and the fracture surface of

a delaminated sample are observed. The observation of the crack’s cross section shows
neither dendrites nor liquation cracking (Figure 6a,b). The fractography of a delaminated
sample shows multiple facets (Figure 6c) and higher magnification shows river patterns
typical of a brittle fracture (Figure 6d).
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(etched); (c) fractography of the delaminated sample from the standard production; (d) higher
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3.2.2. Quantitative Defect Analysis

After applying the image analysis procedure explained in Figure 3 on 120 samples,
defects are quantified, and results are presented in Figure 7. The lack of fusion’s surface
fraction decreases globally with an increase in preheating temperature (Figure 7a). The
highest lack of fusion’s surface fraction (23%) is obtained with a laser power of 150 W
and a laser speed of 652 mm·s−1 and a baseplate preheated to 170 ◦C. The lowest lack of
fusion’s surface fraction (0.7%) is obtained with a laser power of 100 W, a laser speed of
750 mm·s−1, and a preheating temperature of 500 ◦C. Given the low lack of fusion surface
fraction already obtained with this parameter set, further laser remelting does not provide
any improvement. The average surface of the lack of fusion is not well correlated with
VED or preheating temperatures (Figure 7b). Finally, the smallest dimensions of the lack of
fusion seem to decrease while increasing preheating temperatures (Figure 7c). It should be
mentioned that this trend is not pronounced.

Porosity is low for all conditions (<1%). The pores’ surface fraction decreases with a
higher VED. However, it increases with preheating temperatures (Figure 7d). The lowest
pore surface fraction is 0.03%, which is in line with nickel superalloys [20]. Given the
low surface fraction of pores (less than 1%) compared to the lack of fusion, this aspect
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is not further discussed. Finally, the influence of process parameters (except preheating
temperature) on the porosity diameter is not significant (Figure 7e).

Metals 2023, 13, x FOR PEER REVIEW 11 of 18 
 

 

Porosity is low for all conditions (<1%). The poresʹ surface fraction decreases with a 
higher VED. However, it increases with preheating temperatures (Figure 7d). The lowest 
pore surface fraction is 0.03%, which is in line with nickel superalloys [20]. Given the low 
surface fraction of pores (less than 1%) compared to the lack of fusion, this aspect is not 
further discussed. Finally, the influence of process parameters (except preheating temper-
ature) on the porosity diameter is not significant (Figure 7e).  

 
Figure 7. Defect quantification against the VED for different preheating temperatures: (a) lack of 
fusion’s surface fraction; (b) lack of fusion average surface; (c) lack of fusion smallest dimension; (d) 
porosity surface fraction; (e) average pore diameter; (f) crack length per surface unit; (g) average 
crack width; (h) average crack angle. 

The crackʹs length decreases with higher preheating temperatures (Figure 7f). How-
ever, the crackʹs width increases with higher preheating temperatures (Figure 7g). The 

Figure 7. Defect quantification against the VED for different preheating temperatures: (a) lack of
fusion’s surface fraction; (b) lack of fusion average surface; (c) lack of fusion smallest dimension;
(d) porosity surface fraction; (e) average pore diameter; (f) crack length per surface unit; (g) average
crack width; (h) average crack angle.

The crack’s length decreases with higher preheating temperatures (Figure 7f). How-
ever, the crack’s width increases with higher preheating temperatures (Figure 7g). The large
cracks are interconnected and can cause flacking after sample preparation or under load
(Figures 4c and 5d). Finally, the cracks are generally aligned with the building direction (Z)
(Figure 7h).
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4. Discussion

This part discusses the origin of different defects observed during the production and
process parameters’ optimization to reduce them.

4.1. Processability

Excessive deformations during the process, leading to apparent delamination and
damaging contacts with the recoater, are the main causes of poor processability. This is
mostly avoided using standard process parameters, resulting in a VED of 55 to 120 J·mm−3

on a standard Renishaw AM400 machine with a 170 ◦C preheated baseplate (Figure 2). This
is not consistent with the observations of Wang et al. [41], who describe that deformation
occurs at a VED greater than 83 J·mm−3. The alloy studied by Wang et al. [41] contains
a higher concentration of iron (13.1% compared to 3.1% in our study). This 10% increase
in iron can lead to the apparition of new iron-rich phases. Furthermore, the lower nickel
content may reduce the amount of hard nickel borides. Therefore, these chemical variations
might impact the cracking tendency. For a baseplate heated to 300 ◦C, processing with
a laser power of 150 W results in excessive deformation (Figure 2). For this preheating
temperature, processability is limited to a laser power of 100 W. This can be attributed to the
excessive energy received by the sample. However, preheating the baseplate up to 500 ◦C
results in a larger process window (laser power of 100 and 150 W), which may be due to
sample softening (the alloy’s solidus temperature is lower than 1000 ◦C [61–63]) or reduced
thermal gradients (Figure 2). In contrast to Shishkovsky et al. [40], the production of
samples with a laser power of 100 W and a laser velocity of 100 mm·s−1 is still unsuccessful
despite preheating the baseplate to 500 ◦C. It should be mentioned that the difference in
the sample’s shape (circular in the case of Shishkovsky et al. [40]) and the differences in
the chemical composition between the studies of Wang et al. [41], Shishkovsky et al. [40],
and this present work might lead to different behaviours. Indeed, as previously described,
processability is correlated to cracking sensitivity, leading to the delamination of the sample.
Therefore, the sharp angles of cubic samples (this study) can promote more cracks than the
circular samples used by Shishkovsky et al. [40]. Furthermore, the higher boron content
(3.5 %wt.) used in this study compared to the one used by Shishkovsky et al. [40] (2%)
might generate a greater amount of brittle chromium and nickel borides, leading to a more
crack-sensitive alloy.

4.2. Lack of Fusion

A surface density of 98% can be obtained using a standard Renishaw AM400 by
preheating the baseplate to 170 ◦C (Figure 7a). This is in good agreement with the work
of Wang et al. [41]. In addition, higher surface densities (up to 99%) can be archived
by preheating the baseplate to 500 ◦C. Despite the low melting temperature of NiCrBSi
alloys, the surface density is mainly affected by a large lack of fusion. It should be noted
that hard chromium carbides and borides might melt at higher temperatures than the
matrix [12,64–66]. This significant lack of fusion is topped by an area comprising a coarse
microstructure (Figure 4a,b). These areas can be related to spatters ejected during pro-
duction [17,67–74]. These spatters can be ejected either from the powder bed or from the
melting pool [69,70]. The diameter of these spatters (around 200 µm) is greater than the
layer thickness (40 µm) or the powder diameter (D90 = 47 µm). Therefore, based on several
works [69,70], the spatters are ejected from the melting pool. Furthermore, the size of
those spatters is in line with those found by Taheri Andani et al. [75] (from 200 to 700 µm).
Therefore, based on the work of Haeckel et al. [76] and Taheri Andani et al. [75], the spatters
can screen several layers of the powder bed, leading to a large lack of fusion (from several
hundreds of microns to a millimetre) underneath. However, preheating the baseplate up
to 500 ◦C and using a high VED is sufficient for melting these particles or significantly
reducing their apparition (Figure 4c,d). According to Devojno et al. [77], the origin of the
spatters might also be correlated to the formation of borosilicate glass due to the addition
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of boron and silicon as fluxing agents. Therefore, these spatters are strongly detrimental to
the obtention of a defect-free part.

4.3. Cracks

According to the literature, cracks can be induced by four phenomena (solidification,
liquation, ductility dip, and age cracking [18,23–26,34,35,78,79]). Due to the NiCrBSi alloys’
complexity, all these phenomena must be considered. Indeed, the high boron content of
NiCrBSi alloys might generate a liquid film between dendrites, leading to solidification
cracking [80]. Many eutectic components can lead to liquation cracking [24,35]. The
formation of carbides at grain boundaries could lead to ductility-dip cracking [81]. The
precipitation of strengthening phases during cooling might lead to age cracking [24,81].
According to the acoustic study of Wang et al. [82] on NiCrBSi alloys, these cracks can occur
at any time during cooling (hot cracking and cold cracking). Therefore, NiCrBSi might be
sensitive to all four types of cracking. According to Cloots et al. [36], hot cracking produces
dendritic features on the cracks’ surfaces. Nevertheless, according to Platl et al. [83], a brittle
cracking surface can be attributed to cold cracking. However, in this study, fracture surfaces
do not contain dendrites (Figure 6a,b). Furthermore, the fractography of a delaminated
sample shows a brittle fracture (Figure 6c,d). Therefore, the cracking of the NiCrBSi alloy
produced by L-PBF occurs in the solid state (cold cracking). The high heating and cooling
rate induced by the process could cause strong local expansions and contractions, leading to
high stress levels in a material unable to accommodate significant plasticity [84]. However,
preheating the baseplate to 500 ◦C generates more widely spaced, shorter, and wider cracks,
leading to flacking (Figure 4c). Two hypotheses can be proposed to explain this behaviour.
Firstly, preheating the baseplate up to 500 ◦C reduces thermal gradients, leading to a
reduced stress gradient. Secondly, preheating the baseplate up to 500 ◦C might soften the
sample, increasing its toughness at this temperature [85]. It should be mentioned that the
crack’s dimensions might be altered by sample preparation.

4.4. Process Optimization

A compromise has to be made between the surface fraction of the lack of fusion and the
width or the length of cracks. Therefore, Table 2 presents sets of parameters that produce a
surface density of 98% or greater with the associated crack width and length.

Table 2. Sets of parameters with associated surface density, crack width, and crack length per unit of
area for an analyzed surface per image (2.11 mm2) out of 15 images.

P (W) v (mm·s−1) Hs (µm) Preheat
(◦C)

Surface
Density (%)

Crack
Width (µm)

Crack Length
(mm·mm−2)

150 833 70 170 98 ± 1 12 ± 2 3.7 ± 0.7
150 732 70 170 98 ± 1 11 ± 1 4.0 ± 0.4
200 1000 50 170 98 ± 1 12 ± 1 3.1 ± 0.4
100 550 70 300 98 ± 2 15 ± 3 2.3 ± 0.4
100 200 70 500 98 ± 2 24 ± 11 0.6 ± 0.3
100 300 70 500 99 ± 1 19 ± 5 1.1 ± 0.3
100 750 70 500 99 ± 1 19 ± 6 1.1 ± 0.5
100 200 30 500 99 ± 1 28 ± 9 0.9 ± 0.4

100 * 200 30 500 98 ± 2 18 ± 6 0.8 ± 0.3
100 * 200 110 500 99 ± 1 19 ± 9 0.8 ± 0.6

* Laser remelting with the same parameter settings.

As previously mentioned, preheating the baseplate to 500 ◦C reduces crack length.
However, it increases crack width. Wide cracks can lead to catastrophic flacking or delam-
ination. Furthermore, in the case of heat treatment, such as hot isostatic pressing (HIP),
narrow cracks have a better chance of being closed than wide cracks (in the case of non-
emerging cracks). Hence, the parameters set as P = 150 W, v = 732 mm·s−1, Pd = 120 µm,
exp = 140 µs, Hs = 70 µm, and preheating temperature = 170 ◦C may provide the best
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compromise between low surface area and a lack of fusion (2 ± 1%) and dense but narrow
cracks (11 ± 1 µm).

5. Conclusions

This paper contributes to a better understanding of the very little-studied NiCrBSi
parts produced by L-PBF. Parameter sets encompassing those commonly used for other
nickel-based alloys are explored. A significant lack of fusion and, as expected, cracks
limit the production of NiCrBSi parts. However, our careful analysis of the relationship
between material health and process parameters highlights some process parameters that
are capable of producing near defect-free samples:

• Given that circular objects with a coarse microstructure are frequently observed with a
lack of fusion, powder bed screening due to spatters emerging from the melting pool
is the reason for the large lack of fusion;

• Preheating the baseplate up to 500 ◦C reduces the surface fraction of areas with a lack
of fusion to less than 1%;

• Given the brittle fracture surface, cracking is most likely to occur in a solid state;
• Preheating the baseplate up to 500 ◦C generates widely spaced, shorter, and wider

cracks due to the sample’s softening and/or thermal gradient reduction.
• The wide cracks concentrated at the sample’s corners might engender catastrophic

flacking after sample preparation or under load;
• Process parameters set at a laser power of 150 W, a laser scanning speed of 732 mm·s−1,

a hatch spacing of 70 µm, and a preheating temperature of 170 ◦C show a good
compromise for obtaining a surface density of 98%, with narrow cracks that are 11 µm
wide, while limiting the crack’s length per unit of area to 4 ± 0.4 mm.mm−2.

HIP could improve material health by closing small defects like cracks and porosity. Re-
ducing the alloy’s elements could reduce its cracking tendency, making it easier to produce.
The determination of ductility and toughness at high temperatures via thermomechanical
tests might provide valuable information for understanding cracking behaviour.
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