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Abstract: Particle-reinforced metal matrix composites (MMCs) produced using the laser powder
bed fusion (LPBF) technique have gained considerable attention because of their distinct attributes
and properties in comparison with conventional manufacturing methods. Nevertheless, significant
challenges persist with LPBF-fabricated MMCs: more design parameters over commercially available
alloys and several defects resulting from inappropriate process conditions. These challenges arise
from the intricate interaction of material- and process-related phenomena, requiring a fundamental
understanding of the LPBF process to elucidate the microstructural evolution and underlying mecha-
nisms of strengthening. This paper provides a comprehensive overview of these intricate phenomena
and mechanisms, aiming to mitigate the process-related defects and facilitate the design of MMCs
with enhanced mechanical properties. The material processing approach was suggested, covering
from material design and LPBF to postprocessing. Furthermore, the role of in situ heat treatment
on the microstructure evolution of MMCs was clarified, and several novel, potential strengthening
theories were discussed for the LPBF-fabricated MMCs. The suggested strategies to address the
challenges and design high-performance MMCs will offer an opportunity to develop promising
LPBF-fabricated MMCs, while overcoming the material limitations of LPBF.

Keywords: metal matrix composite; laser powder bed fusion; heat treatment; defects; microstructure;
strengthening mechanism

1. Introduction

Metal matrix composites (MMCs) are composite materials that employ alloys, as a
matrix, and reinforcements, such as ceramics, carbon-based materials (carbon nanotubes,
graphene, etc.) and other alloys (Mo, W, etc.) [1]. In the MMCs, iron (Fe), aluminum
(Al), nickel (Ni), and titanium (Ti) alloys are generally used as the metal matrices because
of their excellent properties: high strength/stiffness, wear resistance, hardness, thermal
conductivity, electrical conductivity, etc. [2–5]. These matrix alloys encompass distinct
attributes and properties, thereby leading various industries to seek diverse types of alloys
that align with their specific requirements.

For instance, Fe alloys are widely used in various industries, including automotive,
infrastructure, and construction [6,7]. This is because the steels exhibit favorable mechan-
ical properties, formability, and weldability at a relatively economical cost [8]. Al alloys,
showing a lightweight, high specific strength, thermal/electrical conductivity, and corro-
sion resistance, have gained substantial attraction in automotive, aerospace, construction,
electric device, and thermal management applications [9,10]. Meanwhile, Ni alloys possess
excellent corrosion resistance and mechanical properties under extreme environments [11].
Because of their properties, Ni alloys are mainly used in the industrial applications in which
resistance to corrosion, heat, and wear are required (e.g., gas turbines, chemical-treated
instruments, nuclear power plants, and marine and aerospace applications) [12]. Ti alloys
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exhibit excellent specific strength, biocompatibility and excellent resistance to chemical
corrosion and fatigue [13,14]. They are commonly used in automotive, aerospace, medical,
marine, and other applications in which lightweight and high mechanical properties are
essential despite their high price [15,16].

As the properties of MMCs are varied by the combination of various matrix alloys
and reinforcements, the several reinforcements suitable for the matrix alloys have been
explored to improve their mechanical properties [17–19]. For instance, multiwalled carbon
nanotube (CNT)-reinforced magnesium (Mg) alloy composite (1 wt.%) exhibited an increase
in modulus and hardness by 90% and 450%, respectively, in comparison with pure Mg alloy.
Aluminum (Al)-exfoliated graphite nanoplatelets (xGnPs) (1 wt.%), IN625/SiC (5 wt.%),
and Inconel (IN) 625/TiC (5 wt.%) demonstrated an enhancement in hardness, showing in-
creases of approximately 200%, 130%, and 30%, respectively, compared to each pure matrix
alloy [19–21]. However, agglomeration and poor compatibility of reinforcements within
the matrix alloys may degrade the mechanical properties via structural defects attributed to
the debonded reinforcements [22]. Therefore, an understanding of the composite materials
is essential when designing the types and weight fraction of the reinforcements for each
matrix alloy.

As the interest and demand for high-performance alloys are on the rise in industries,
laser powder bed fusion (LPBF) has emerged as a material processing technique capable
of producing intricate microstructures with multiple length scales [23,24]. As the LPBF
technique uses a laser to selectively melt powders (Figure 1), the material undergoes
repetitive and high heating/cooling cycles, resulting in a complex microstructure distinct
from that of conventional manufacturing methods. The cellular microstructures, attainable
through LPBF, provide exceptional properties with uncompromised tensile strength and
ductility [25]. The multiscale microstructure arises from localized, iterative heating/cooling
cycles that function similarly to an annealing heat treatment for the materials [26,27]. The
rapid solidification rates and thermal gradients, inherent in LPBF, lead to finer microstruc-
tures and potentially altered phase ratios [28,29]. Consequently, LPBF-fabricated MMCs
have been continuously studied to understand the mechanism of the microstructural evo-
lution and, therefore, to design exceptional properties through a desirable combination of
matrix and reinforcements [30–33].
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Figure 1. Schematics of the LPBF process and its related process parameters.

However, the fabrication of MMCs using LPBF requires meticulous work to optimize
not only the composition ratio of the composite materials but also the LPBF process [34]. A
lack of a comprehensive understanding of the material and process-related phenomena
may lead to significant issues because of the many material- and process-related vari-
ables [35–37]. Given the localized heat source employed in the LPBF, the exquisite and
iterative stacking process of the melt pools can give rise to defects, such as numerous pores
and cracks, distortion, and delamination, under inappropriate conditions [38–41]. The
formation of these defects is influenced by factors including the powder spreading, particle
and melt pool dynamics, and the resultant deposited melt pools [42–46]. The factors are
intricately linked to the material selection and process parameters, exerting a substantial
impact on the quality of the LPBF-fabricated MMCs [47–50].
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Initially, the quality of the spread powder layer is affected by the powder’s morphology,
size distribution, and recoating speed and layer thickness [45,51,52]. It is indispensable to
carefully select and prepare the powders of the matrix alloy and reinforcements, taking into
account the designed layer thickness in the LPBF. Subsequently, the precise control of the
volumetric energy density (VED) is essential for manufacturing defect-free MMCs, which
is achieved through the meticulous design of the laser and powder-related parameters. The
VED is defined as follows [34]:

VED =
Laser power (P)

Scan speed (v)× Line spacing (h)× Layer thickness (t)
(1)

A high energy density can lead to a substantial amount of spattering, large denudation
zone, residual stress, and keyholing during the LPBF process [53–58]. These phenomena
incur an increase in the surface roughness, the risk of pore and crack formation, distortion,
and process failure [39,40]. Conversely, a low energy density can result in a balling, lack of
fusion defects, and resultant delamination [56]. The insufficient melting of powders give
rise to the unstable melt pools and inter-bead pores during the process [38,58]. To effectively
suppress these defects, a comprehensive strategy to manufacture MMCs is required, which
involves the systematic design of the individual inputs based on an in-depth understanding
of the intricate phenomena.

During the LPBF process, the repetitive and rapid cycles of melting and solidification
produce inhomogeneous and anisotropic microstructures [59–61]. A majority of grains
elongate along the direction of heat dissipation, which is attributed to the severe tempera-
ture gradients and rapid solidification [62,63]. This occurs because these steep gradients
dictate the direction of heat transfer and resultant solidification, and the severe temperature
gradient inhibits the formation of equiaxed grains, which typically develop during both the
low-temperature gradient and high solidification rate [64,65]. Consequently, the LPBF parts
with columnar grains demonstrate that the properties are both anisotropic and inhomo-
geneous, distinct from those in traditionally manufactured alloys [60,66]. Thus, post-heat
treatment emerges as a viable strategy to alleviate not only anisotropy but also residual
stress through processes such as recrystallization and stress relief [67,68]. Notably, the
as-built microstructures highly rely on multiple factors, including material type, machine
setting, and process conditions [69–73]. To achieve the desired properties, it is necessary to
reduce defects and understand both the as-built and heat-treated microstructures based on
knowledge of the underlying strengthening mechanisms.

The control of qualities and enhanced properties, acceptable for engineering applica-
tions, are the main concerns in the LPBF-fabricated MMCs. However, a lack of material
processing knowledge and a printing database used to incur significant problems in the
LPBF process [37]. Despite existing studies on the challenges, comprehensive and in-depth
reviews capable of providing holistic insight into both the material processing and strength-
ening mechanisms remain lacking [74]. This review paper offers a profound understanding
of both the material processing and strengthening mechanisms, covering the various types
of LPBF-fabricated MMCs. Furthermore, to evade trial-and-error efforts, the systematic
strategies to design composite materials, LPBF process, and postprocessing were suggested
to attain the desirable qualities and excellent properties. The extensive insight and strategies
discussed here offer valuable guidance for manufacturing various types of LPBF-fabricated
MMCs, which exhibit defect-free and excellent properties.

2. Strategies for Material-to-Process Design
2.1. Considerations in Material Design
2.1.1. Morphology of Powders

The LPBF technique typically demands spherical powders within the size range of 15
to 53 µm. The layer thickness is customarily set within the range of 15–100 µm, depending
on both the powder’s characteristics and laser spot size [75–79].
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Nevertheless, nonspherical powders offer potential benefits in terms of the time and
cost efficiency (Figure 2). However, their utilization can lead to flow instability and powder
agglomeration, both of which can contribute to defect formation [80,81]. These issues stem
from the significant influence of the powder’s morphology and size on both the quality of
the powder spread and packing density [82,83]. Consequently, employing nonspherical
powders in LPBF requires additional spreading time to attain an appropriate spread quality,
thus decreasing productivity.
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cold mechanically derived (CMD) and gas atomized (GA) techniques, respectively. Aspect ratio of (c)
CMD and (d) GA powders [51].

The quality and uniformity of the powder layer play crucial roles in the defect for-
mation due to the inadequate laser–material interaction and improper filling of melt
pools [84,85]. These phenomena involve issues such as insufficient melting, balling, and
humping during the LPBF process [86]. Furthermore, nonspherical powders can oxidize
more easily compared to the spherical powders owing to their larger surface area and
irregular, low packing density [87].

As a result, adopting powders with complex shapes such as fibers, flakes, plates,
or whiskers may require more intensive efforts to optimize the LPBF process, thereby
increasing the risk of quality degradation in LPBF products [88]. To address this, this paper
proposes the manufacturing of MMCs, reinforced with the nano-to-micron sized particles,
as an alternative to fiber, plate, or whisker-shaped reinforcements.

2.1.2. Types of Reinforcement and Their Compatibility with Matrix

In material design, a variety of reinforcements are employed to enhance the prop-
erties of LPBF-fabricated MMCs. The commonly used reinforcements include ceramic
and metallic particles, as well as other nonspherical particles, such as metallic and ce-
ramic fibers, carbon-based reinforcements (carbon fiber, (MW)CNT, and graphene), and
whiskers [89–97]. The types of ceramic particles, widely employed in LPBF-fabricated
MMCs, include SiC, SiO2, Si3N4, Al2O3, AlN, B4C, TiO2, TiC, TiB2, and ZrO2 [89,94,98–110].
In the case of metallic particles, W, Mo, Ti, Ni, Cu, Co, Al, Fe, Mg, etc., are generally
reinforced to improve properties or address issues in LPBF [111–114]. Ceramic particles
tend to exhibit harder and more brittle properties of MMCs in comparison with their metal
counterparts [107,108,115,116]. They can provide excellent attributes, such as wear resis-
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tance, corrosion resistance, high-temperature stability, weight reduction, and lower thermal
expansion coefficient, compared to metal reinforcements [117–121]. However, employing
ceramic particles instead of metals may entail trade-off drawbacks, such as relatively low
ductility and toughness, and thermal conductivity [122,123].

Among reinforcements, compatibility between the metal alloy matrix and the reinforce-
ments is a major consideration in material selection for achieving robust interfacial bonding
within MMCs [124]. Poor compatibility between the matrices and reinforcements can lead
to separation during manufacturing or deterioration in the properties (Figure 3) [125]. To
achieve the desirable compatibility, wettability of reinforcements, property mismatch and
chemical reaction between them should be previously understood and considered when
designing MMCs.
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Figure 3. Optical micrographic images of A6061/Ti (2.5 wt.%)/B4C (0.9 wt.%) at (a) lower and (b–d) higher
magnifications, indicating microcracks, B4C particle detachment, and unmelted particles [125].

A favorable wettability of the reinforcements is a prerequisite to attaining excellent
bonding. For the interface between particles and the metal matrix, it plays an important
role in the mechanical properties of particle-reinforced MMCs. During the deformation
process of MMCs, the failure of the interface was found due to the high stress concentration
at the poles of the particles [126,127]. Furthermore, during solidification, the appearance of
a hydrostatic tensile stress field had the ability to deflect microcracks towards interfaces
with cooling of MMCs, which was attributed to the difference in the thermal expansion
coefficient between reinforced particles and the metal matrix [126,128]. Accordingly, it
can be concluded that the mechanical properties of LPBF-fabricated particulate-reinforced
MMCs will be affected by the characteristics of interfaces.

Additionally, the chemical reaction between the matrix and reinforcements is another
concern when manufacturing MMCs [129]. The reaction can incur the formation of com-
pounds during melting and solidification, thereby generating intermetallic compounds,
oxide layers, interdiffusion zones, and other compounds at the interface under high temper-
ature [130]. At elevated temperatures, atoms from the matrix and reinforcement materials
can diffuse into each other, resulting in the formation of diffusion layers or interdiffusion
zones at the interface [130]. The chemical compounds around the interface between the
matrix and reinforcements can influence the mechanical properties of MMCs, which is
discussed in more detail in Section 3.1.2 [131].

Low mismatch in the thermomechanical property is a critical aspect in avoiding
premature failure of MMCs under applied loads. A considerable mismatch in the modulus
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may facilitate the debonding between the matrix and the reinforcements, thereby potentially
inducing the crack initiation from the debonded interface [22]. Furthermore, a substantial
mismatch in the thermal expansion coefficient can deteriorate the interfacial bonding
between them, which is attributed to the increase in residual stress [105]. To address the
compatibility issues, employing coatings or investigating appropriate reinforcements for
the matrix can emerge as strategic solutions.

2.1.3. Size Distribution of the Reinforcement

When reinforcements are incorporated into a matrix alloy, the size of the reinforce-
ments can significantly affect the microstructural evolution during the LPBF process, as
well as the resulting properties [98,132]. Generally, the inclusion of nanoparticles within the
matrix alloy is more challenging than the microparticles. This is attributed to the nanoparti-
cles’ high surface energy, which can lead to several defects, such as particle agglomeration,
increased residual stress, and cracking [133]. Nonetheless, the nanoparticles can enhance
the mechanical properties more effectively than the microparticles [126]. The strengthening
mechanism between nanosized and micron-sized particles typically differ due to their
distinct interactions with the matrix alloy [114,134–139].

The nanoparticles produce refined grains and modified grain boundaries during the
LPBF processing and heat treatment [135]. The nanoparticles can serve as nucleation
sites during the solidification, increasing the number of nucleation sites and thus pro-
moting the formation of refined grains [136]. Moreover, the nanoparticles can prevent
grains from growing during the heat treatment by inhibiting their movement [137]. The
inclusion of nanoparticles also alters the atomic structure and chemical compositions at
grain boundaries, thus enhancing the strength, ductility, corrosion, and/or creep resis-
tance [114,135,137,140]. In contrast, microparticles might have a less pronounced influence
on the grain structures and grain boundary characteristics, offering less resistance to grain
growth and dislocation movement during solidification [141].

The refined microstructures of nano-MMCs, combined with a high surface area-to-
volume ratio of the nanoparticles, enable to the hinder dislocation motion more effec-
tively because of the enhanced interface interactions [142]. Therefore, the predominant
strengthening mechanisms in the nano-MMCs involve the grain boundary, dispersion
strengthening, etc. [143]. Meanwhile, the strengthening in the micro-MMCs is primarily
based on load transfer mechanisms, such as particle/matrix interlocking and dislocation
interactions [138,139]. The phenomena in the micro-MMCs enhance the mechanical, elec-
trical, and thermal properties to a lesser extent compared to the nano-MMCs. Therefore,
the nanosized and micron-sized reinforcements should be carefully selected to achieve the
desired properties and processing for the specific applications.

2.1.4. Volume Fraction of Reinforcement

Higher volume fractions generally lead to enhanced mechanical properties and im-
proved performance in areas such as strength, stiffness, and wear resistance [144,145].
However, increasing the volume fraction of reinforcements can also lead to challenges
in achieving uniform dispersion and effective bonding between the reinforcement and
matrix [146]. If the reinforcements agglomerate together forming clusters, the cracks eas-
ily nucleate and propagate due to the stress concentration and poor bonding between
them [147]. On the other hand, a lower volume fraction of reinforcements may not achieve
the desirable properties without significant improvement [148]. Therefore, the desirable
volume fraction of reinforcements should be experimentally explored to avoid the defects
and resultant property degradation. Additionally, as the requirements of properties de-
pend on the standard of application, the specific volume fraction to attain the required
properties need to be optimized, finding the optimum balance between the properties
and processability.
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2.2. LPBF Processing
2.2.1. Powder Preparation

The repeatability of the qualities and properties has been a major issue in the LPBF
technique, because minor inconsistencies can significantly affect the safety and reliability of
parts for critical applications [149]. Process-related physical metallurgical phenomena are
highly sensitive to both process parameters and powders [150]. Thus, the LPBF technique
needs meticulous machine calibration and quality control by regulating the situational
variables associated with process inputs and powder conditions [54,151–153].

In preparing the powders for the LPBF, powder characteristics can potentially change
based on the number of recycling cycles and the moisture content of the powders [154,155].
As powder recycling is indispensable for the LPBF because of its high cost, a strategy
to use the recycled powders should be established, grounded in metallurgical insight.
Repeated recycling can alter the powder’s size distribution and chemical composition over
time [156–158]. The powders, once exposed to a laser heat source, as well as the spatter,
might have a nonspherical morphology after the LPBF, resulting in particle agglomeration
and, subsequently, reduced spread quality [159,160]. Furthermore, contaminants on the
powders and oxidation can change the chemical composition of as-built parts, potentially
diminishing their strength or ductility [157].

Another pivotal aspect of powder preparation is the moisture content. The water
molecules in humid powders can adversely impact the chemical reaction between shielding
gas and the powder alloys during the processing (Figure 4) [161]. The moisture can
interact with the alloys during the process, potentially generating oxides, hydroxides,
or other unwanted impurities [162,163]. Moreover, the moisture can diminish powder
flowability during spreading and reduce laser absorption due to water evaporation [154].
Such phenomena can lower the relative density of as-built parts, leading to degradation
of their properties. Hence, strategies to manage recycled powder, taking into account
their moisture content, should be established based on a thorough material processing
knowledge.
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2.2.2. Process Atmosphere

The types and content of shielding gas play crucial roles in determining the reaction
of the melt pool with the environment and the subsequent oxidation of the solidified alloy
in the LPBF process [164–166]. Among the various shielding gases available for welding,
Ar and N2 gas are the most employed in the LPBF [167,168]. Ar with heavy atomic weight
effectively prevent oxidation and contamination, making it suitable for processing reactive
alloys, such as Ti and Al [168,169]. Meanwhile, N2 gas is more typically selected for the
less-reactive alloys, such as stainless steels and Ni alloys [165,170]. The N2 gas employed
in the LPBF may produce nitrogen-based compounds in as-built microstructures, which
can improve corrosion resistance and alter mechanical properties [171–173]. Therefore,
shielding gases must be carefully selected based on their application.

Furthermore, an insufficient amount of the shielding gas increases the evaporating
pressure within the interaction zone of a laser-melt pool, thus inducing increased spattering
and surface roughness [174,175]. These effects reduce the relative density and the resulting
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mechanical properties of as-built parts [175,176]. Therefore, it is imperative to maintain
a high level of shielding gas and ensure a minimal presence of oxygen throughout the
LPBF process.

2.2.3. Process Parameters

In the LPBF process, various parameters concerning the spreading and melting of
powders serve as sensitive inputs that determine the as-built qualities of MMCs. The
process parameters, denoted by Equation (1), include laser power, scan speed, line spacing,
and layer thickness. If the VED increases due to a higher energy input on a smaller melting
volume, both the temperature and evaporation rate of the melt pool will significantly
escalate, thereby enlarging its size and altering its morphology to a keyhole mode [54].
This melt pool behavior may generate keyhole-induced pores during the LPBF process
(Figure 5) [34]. Conversely, a low VED can induce insufficient melting and lead to lack-of-
fusion defects during the LPBF process [34]. These phenomena underscore the difficulty
in controlling the parameters, owing to the complex metallurgical interactions occurring
during the LPBF process [42,53,55].

Metals 2023, 13, x FOR PEER REVIEW 8 of 28 
 

 

 

Figure 4. Optical microscopic images showing the powder spread quality: (a) dry powder 

(3.4%RH); (b) humid powder (60.0%RH). Red dashed circles indicate the particle agglomeration 

[161]. 

2.2.2. Process Atmosphere 

The types and content of shielding gas play crucial roles in determining the reaction 

of the melt pool with the environment and the subsequent oxidation of the solidified alloy 

in the LPBF process [164–166]. Among the various shielding gases available for welding, 

Ar and N2 gas are the most employed in the LPBF [167,168]. Ar with heavy atomic weight 

effectively prevent oxidation and contamination, making it suitable for processing reac-

tive alloys, such as Ti and Al [168,169]. Meanwhile, N2 gas is more typically selected for 

the less-reactive alloys, such as stainless steels and Ni alloys [165,170]. The N2 gas em-

ployed in the LPBF may produce nitrogen-based compounds in as-built microstructures, 

which can improve corrosion resistance and alter mechanical properties [171–173]. There-

fore, shielding gases must be carefully selected based on their application. 

Furthermore, an insufficient amount of the shielding gas increases the evaporating 

pressure within the interaction zone of a laser-melt pool, thus inducing increased spatter-

ing and surface roughness [174,175]. These effects reduce the relative density and the re-

sulting mechanical properties of as-built parts [175,176]. Therefore, it is imperative to 

maintain a high level of shielding gas and ensure a minimal presence of oxygen through-

out the LPBF process. 

2.2.3. Process Parameters 

In the LPBF process, various parameters concerning the spreading and melting of 

powders serve as sensitive inputs that determine the as-built qualities of MMCs. The pro-

cess parameters, denoted by Equation (1), include laser power, scan speed, line spacing, 

and layer thickness. If the VED increases due to a higher energy input on a smaller melting 

volume, both the temperature and evaporation rate of the melt pool will significantly es-

calate, thereby enlarging its size and altering its morphology to a keyhole mode [54]. This 

melt pool behavior may generate keyhole-induced pores during the LPBF process (Figure 

5) [34]. Conversely, a low VED can induce insufficient melting and lead to lack-of-fusion 

defects during the LPBF process [34]. These phenomena underscore the difficulty in con-

trolling the parameters, owing to the complex metallurgical interactions occurring during 

the LPBF process [42,53,55]. 

 

Figure 5. (a) Porosity and (b) optical microscopic images of pores in LPBF parts as a function of 

the volumetric energy density [34]. 

Figure 5. (a) Porosity and (b) optical microscopic images of pores in LPBF parts as a function of the
volumetric energy density [34].

Consequently, most studies utilize VED as a tool for exploring feasible parameters,
because it enables a reduction in the number of variables while ensuring part quality more
readily [177]. However, it is worth noting that the energy absorption rate can vary, even
under identical VED conditions, resulting in different melt pool dynamics and particle
behaviors [54]. Furthermore, when incorporating reinforcements within a matrix alloy,
MMCs must be additively manufactured with parameters that differ from those used for
the matrix alloy alone [21,178]. The optimum parameters are highly contingent not only on
the machine specifications but also on the powder conditions. As such, the current design
approach has distinct limitations in achieving and consistently maintaining defect-free
quality across various types of as-built MMCs for industrial applications.

Therefore, this paper proposes a systematic design approach for the LPBF process for
MMCs, as detailed below. (1) Layer thickness should be set based on the size of the powder
alloys employed for the LPBF. A larger layer thickness can promote productivity, increasing
the surface roughness and decreasing the relative density and properties [179,180]. Con-
versely, a smaller layer thickness may damage the recoating surface and deteriorate the
powder spread quality [79]. As the real layer thickness, called the effective layer thickness,
is larger than the designed thickness [79], it is recommended to set the layer thickness just
below the maximum size of the powder alloys. (2) The sizes and morphology of the melt
pools of the MMCs should be characterized post-LPBF process completion. Although in
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situ monitoring of melt pool behaviors is more accurate in the prediction and mitigation of
defects, it is far from a cost-effective work. Therefore, ex situ characterization of melt pools
should be performed to mitigate the defects, including lack-of-fusion and keyholing based
on the reported printability map (Figure 6) [47,152,181]. (3) Optimum line spacing for the
MMCs should be explored after determining the feasible layer thickness, laser power, and
scan speed. This task can be performed through the measurement of the relative density
in the as-built parts, manufactured with various line spacing values. (4) Nondestructive
measurement and mechanical testing of the MMC parts, fabricated with the optimum
parameters, can ensure structural integrity for industrial applications. This procedure
requires intensive efforts due to the numerous tests and measurements required for each
MMC. Therefore, a comprehensive printing database and materials processing knowledge
are essential for further progress in the LPBF-fabricated MMCs.
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(orange, LOF) [47]. The numbers 1–4 correspond to the four optical images.

2.3. Postprocessing

After the LPBF process, as-built MMCs often do not meet the desired standards of qual-
ity, exhibiting high surface roughness, residual stress, and anisotropic properties [177,182].
Therefore, postprocessing, such as heat treatments and surface finishing, becomes indis-
pensable to attain the requisite qualities for engineering applications [34,183]. The postpro-
cessing involves a series of steps to enhance the qualities and properties of LPBF-fabricated
MMCs, which are outlined as follows:

(1) After the LPBF process, the as-built products and supports should be detached from a
baseplate using a wire electrical discharge machining (EDM) or the other mechanical
cutting processes.

(2) Various heat treatments, such as hot isostatic pressing, solution, aging, and stress
relief heat treatment, can be conducted depending on the requirements in the applica-
tion [184–186]. During the LPBF process, the intended phases may not be obtained
due to the fast-cooling rate and complex temperature history. Thus, the heat treat-
ments can be applied to form the desirable phases [185]. Among the heat treatments,
hot isostatic pressing stands out as an effective method to minimize defects in the
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as-built parts by applying high pressure and temperature (Figure 7) [34,187]. Solution
heat treatment, generally conducted for the precipitation-hardening alloys, allows
for certain constituents to be dissolved into a single-phase solid solution [184]. When
applied to Al alloys, this treatment enables dissolved precipitates to foster a uniform
microstructure, enhancing the effectiveness of subsequent aging heat treatment [188].
This dissolution arises because of the high temperature and sufficient holding time,
along with a rapid cooling rate. Aging heat treatment, also known as precipitation
hardening, aims to produce precipitates in the solution-treated alloy under a low
temperature over an extended period of time (Figure 8) [186]. Consequently, numer-
ous precipitates or second-phase particles within the matrix can impede dislocation
movement, thereby improving the mechanical properties after the aging heat treat-
ment [189]. Stress relief heat treatment helps to secure the durability and structural
integrity of as-built parts. This treatment relieves the internal residual stress below
the lower transformation temperature during slow cooling period [188].

(3) Machining and surface finishing are essential to attain acceptable levels of geometrical
tolerance and surface roughness. Compared to engineering requirements, the as-built
dimensional accuracy and roughness are unsatisfied due to the distortion and the
inherent characteristics of the melt pool stacking process [182]. Therefore, surface
finishing, such as laser polishing, finish machining, and vibratory surface finish, are
frequently employed to address these issues.
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The outlined procedure for the postprocessing is commonly followed regardless of the
type of MMC. However, a few factors must be considered when performing postprocessing
for the LPBF-fabricated MMCs. As the requirements for the heating temperature and
holding time for the composite materials differ even within the same heating method, a
tailored strategy should be devised according to the specific matrix alloy in use. Moreover,
the heat-treated microstructure of the MMCs undergo different mechanisms of evolution
during the heat treatments. Understanding the microstructure recrystallization around
reinforcements is essential for optimal postprocessing outcomes. Detailed information
regarding the heat-treated microstructure of MMCs will be explored further in Section 3.2.

3. Microstructural Evolution of MMCs during LPBF and Heat Treatments
3.1. As-Built Microstructure of LPBF-Fabricated MMCs
3.1.1. Recrystallization Behavior of MMCs during LPBF Process

For certain particle-reinforced MMCs fabricated through LPBF, the grain refinement of
the composites may be facilitated by the recrystallization behavior of partial grains. During
the LPBF process, owing to the presence of a remelting process, which can be considered as
an in situ annealing treatment, the recrystallization behavior may occur in some grains near
the remelting areas, leading to an increase in the fraction of high-angle grain boundaries
(HAGBs) [190]. Accordingly, it is meaningful to discuss the recrystallization behavior of
matrix grains in this section.

Gao et al. [190] fabricated bimodal TiN nanoparticle-reinforced Al matrix composites
based on the LPBF technique. They found that the recrystallization behavior of the matrix
grains could be promoted by the existence of submicron TiN particles during the LPBF
process (Figure 9a,c), and the growth of the recrystallized grains could be inhibited by
TiN nanoparticles and HAGBs (Figure 9d). Therefore, the grains of the Al matrix can be
efficiently refined when bimodal-sized reinforced particles are employed [191].
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Figure 9. (a) Distribution of substructured (yellow) and recrystallized (blue) grains in AlSi10Mg alloys;
(b) TEM bright-field (BF) image showing the Al matrix and Al + Si eutectic phase; (c) distribution of
substructured and recrystallized grains in the TiN/AlSi10Mg nanocomposites; (d) TEM BF image
showing the distribution of TiN nanoparticles in the Al matrix [190].

Similarly, the existence of large SiC nanoparticles was proven to induce the formation
of fine recrystallized grains by providing effective nucleation sites for the matrix during
the LPBF of nano-SiC/AlSi7Mg composites [192]. Yao et al. [193] studied the effect of
micron-sized tungsten carbide (WC) particles on the microstructure and properties of LPBF-
fabricated 18Ni300 steels. Some recrystallized grains were found to be produced by adding
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15 wt.% WC particles, and they indicated that the residual stress and dislocation density of
LPBF-fabricated composites could be reduced with the introduction of WC particles.

It can be concluded that the recrystallization phenomenon of matrix grains plays an
important role in the microstructure and properties of LPBF-fabricated particle-reinforced
MMCs, and the matrix containing larger particles (>1 µm) can possess a higher dislocation
density and stored energy for recrystallization behavior. Therefore, it should be noted that
sufficient submicron- or micron-sized particles can be designed to be formed in the matrix,
because they can contribute to recrystallization behavior based on particle stimulated
nucleation (PSN) [194]. In general, for the in situ heat treatment induced by the LPBF
process, the existence of submicron and nanoparticles has the ability to block the movement
of sub-grain boundaries as well as the rearrangement of dislocations, which can retard
the recrystallization of matrix grains [177]. However, it was indicated that fine reinforced
particles could also accelerate the recrystallization of matrix grains. Therefore, it is believed
that the ratio (fv/r) of volume fraction of particles (fv) and particle radius (r) can be
employed to evaluate the recrystallization behavior of grains for LPBF-fabricated particle-
reinforced MMCs. If the ratio is below 0.2/µm, the recrystallization phenomenon is prone
to occur [195].

3.1.2. Diffusion and Interaction Behavior of Elements in High Temperature

Given that ultra-high temperatures can be induced in the molten pools during LPBF,
the reinforced particles are more likely to undergo partial melting. Subsequently, some
additional elements decomposed from particles can diffuse into the matrix, and some new
precipitates may be formed. For example, NiTi-based composites were fabricated using the
LPBF of powder mixture (Ti + Ni + TiC), and some Ni4Ti3 and Ni3Ti precipitates were found
to be formed in addition to the NiTi matrix and Ti6C3.75 particles, which was proved to can
affect the pseudoelasticity recovery behavior of the matrix during nanoindentation [196].
Zhao et al. [197] employed SiC particles as reinforcements to strengthen AlSi10Mg alloys
based on the LPBF technique, and Al4SiC4 precipitates were found to be generated in situ
around some SiC particles. TiB2 particles were introduced into LPBF-fabricated Inconel
718 alloys, and results showed that the phase precipitation behavior of alloys was changed
from Laves phase to M3B2 boride particles, which effectively increased the hardness of
alloys [198]. In addition, based on an in situ reaction, He et al. [199] obtained TiB + La2O3/Ti-
6Al-4V composites by the LPBF of a powder mixture of micro-sized LaB6 particles and
Ti-6Al-4V powder, and the formation of these precipitates was shown to enhance the tensile
strength of alloys by impeding the movement of dislocations.

According to the aforementioned investigations, certain additional elements decom-
posed from particles are capable of reacting with the matrix elements to form precipitates,
such as intermetallic compounds, oxides and carbides. In addition, some interfacial layers
maybe be formed at the interface to affect the properties of materials, as discussed in a
previous work [177].

Particularly, in terms of the elements decomposed from reinforced particles, it should
be noted that the strength of MMCs can be affected by alterations in the chemical com-
position through solid solution strengthening. For example, researchers discovered that
numerous TiCxNy nanoparticles were found to be produced within micron-sized TiC-
reinforced duplex SS matrix composites fabricated through LPBF. Additionally, a reduction
in the content of N elements within the matrix was observed. Hence, the strength improve-
ment of composites can be weakened due to the loss of N elements in the matrix [185].

3.1.3. Elimination of Hot Cracks via the Addition of Reinforced Particles

During the LPBF of some alloys, coarse columnar grains often formed as a result of
epitaxial grain growth, and the liquid film generated between these grains was prone to be
torn apart by the thermal stress during the cooling of molten pools. In addition, the liquid
film exhibited weak backfilling ability and fluidity. Therefore, the formation of hot cracks
was reported in certain LPBF-fabricated alloys [200].
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However, the addition of particles can achieve the elimination of hot cracks for some
LPBF-fabricated alloys [201–203]. For instance, Liu et al. [204] employed TiC nanoparticles
and TiH2 powder as reinforcements to achieve grain refinement and crack inhibition of
LPBF-fabricated Al alloys, and the formation of L12-Al3Ti particles could provide het-
erogeneous nucleation sites for matrix grains. Subsequently, fine equiaxed α-Al grains
were generated in composites compared to the LPBF-fabricated Al alloys with coarse
columnar grains and cracks. This was believed to effectively mitigate the residual stress
to inhibit the formation of hot cracks. Similarly, Han et al. [205] also indicated that the
addition of TiC nanoparticles could achieve the intergranular microcrack elimination of
LPBF-fabricated Hastelloy X nickel-based superalloys via grain refinement. Hot cracks
formed in LPBF-fabricated Co32Cr36Ni32 medium entropy alloys. However, it was proved
that the introduction of micron-sized TiC particles could contribute to the formation of
TiC nanoparticles and Cr23C6 precipitates at grain boundaries (GBs), which could inhibit
the formation of hot cracks by reducing the GB energy and hot crack sensitivity of mate-
rials [206]. Particularly, the Zr element segregation at GBs was identified to induce the
formation of hot cracks for LPBF-fabricated IN738LC nickel-based superalloys, while the
employment of Y2O3 nanoparticles eliminated hot cracks. Some Y4Al2O9 particles were
produced for Y2O3-containing alloys, and Zr elements could substitute Y elements in these
particles, reducing the Zr segregation at GBs to eliminate hot cracks [207].

According to the preceding discussion, it can be observed that the addition of rein-
forced particles plays a crucial role in the elimination of hot cracks for LPBF-fabricated
alloys. Most importantly, eliminating cracks can effectively expand the process window for
LPBF-fabricated metallic parts, serving as a promoter for the practical production of parts.

3.2. Heat-Treated Microstructure of LPBF-Fabricated MMCs

In heat treatment processes, achieving the anticipated phases can be challenging
because of the rapid cooling rate and complex thermal history. To obtain the desired phases,
specific post-heat treatment techniques must be implemented. For example, a significant
proportion of ferrite phase (>99 vol%) is found in LPBF-fabricated duplex stainless-steel
composites, necessitating a post quenching treatment [185].

A recrystallization behavior of MMCs is commonly observed in MMCs reinforced
with micron-sized particles, particularly in areas where these particles are prevalent (Fig-
ure 10) [185]. This phenomenon is largely attributed to the initiation of particle-stimulated
nucleation (PSN). In the LPBF-fabricated MMCs, the formation of fine equiaxed matrix
grains has been often observed [208]. The growth of these grains typically occurs through
the migration and coalescence of grain boundaries during the heat treatment. It is imper-
ative to carefully regulate the heat treatment parameters to prevent a substantial decline
in the mechanical properties of the MMCs. In addition, in instances where fine equiaxed
grains are absent, there is potential for the grain orientation of MMCs to change, aligning
with the grain growth.
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Specifically, for metals with an FCC crystal structure fabricated through LPBF, the
<100> orientation is commonly favored as the primary direction for growth [209]. The
majority of grains exhibiting this orientation tend to originate from the bottom of the
molten pools [210]. Simultaneously, some grains may adopt a <110> orientation, spurred
by alterations in the bottom curvature of the molten pools. It is worth noting that the
post-heat treatment process can entirely alter the preferred growth direction of matrix
grains to <110>, transitioning from <110> to <100>, since grains with a <100> texture
are prioritized for growth. Consequently, this modification in grain orientation can have
significant implications on the mechanical properties of heat-treated MMCs.

During the post-heat treatment, the diffusion and reaction of diverse elements can
foster the development of particular precipitates. When carbide ceramic particles are
utilized as reinforcements, carbon elements tend to dissolve into the MMC matrix, a
consequence of the high temperatures and ultrafast cooling rates present during the LPBF
process. This sets the stage for the generation of certain carbide precipitates, such as M23C6,
fostered by the interactions and diffusion of carbon atoms with other atoms, like chromium,
iron, and cobalt, during heat treatment.

4. Strengthening Mechanisms of LPBF-Fabricated MMCs

In terms of enhancing the strength of composites, it is vital to clarify some relevant
strengthening mechanisms. Building upon several developed strengthening theories,
the composites with high mechanical properties can be more effectively designed and
fabricated utilizing the LPBF technique. Some classic strengthening mechanisms (fine
grain, load transfer, dislocation, Orowan, and solid solution strengthening) will not be
introduced in this section, and a relevant discussion can be found in our previous work [177].
With the advancement of particle-reinforced MMCs fabricated using LPBF, several novel
strengthening theories have been proposed for the improvement of strength and ductility,
such as special cellular substructure and heterogeneous structure.

First, it was found that the strength and ductility of TiC particle-reinforced 316L
stainless steels (SSs) fabricated using LPBF could be simultaneously enhanced due to the
formation of cellular sub-grains. This enhancement could be attributed to the fact that these
unique substructures could increase the materials’ plastic deformation ability and inhibit
the propagation of microcracks [211,212]. Similarly, some intergranular ring-like structures
surrounded by TiB2 nanoparticles were proved to be able to simultaneously increase the
strength and ductility of LPBF-fabricated TiB2/316L composites [213].

Second, during the LPBF of metals, the grain boundary (GB) segregation of elements
is prone to be observed due to the ultra-high solidification process. Particularly, the
contribution of elemental microsegregation to the material strength was proposed for
the LPBF-fabricated TiB2/316L nanocomposites, which is called segregation engineering
(σse) [208].

σse =
δvp√
dcell

(2)

where δ represents a constant related to the segregated elements, dcell is the boundary
length of the cellular structure surrounded by the segregated elements, and vp denotes the
volume fraction of reinforced particles.

Third, the strength-ductility synergy can be achieved for LPBF-fabricated particle-
reinforced MMCs by designing and fabricating a heterogeneous microstructure [214].
Li et al. [215] fabricated microlaminated CoCrFeNiMn high-entropy alloy (HEA) matrix
composites with a bimodal grain size utilizing TiN nanoparticles and the LPBF technique
(Figure 11a), and the strength–ductility trade-off of materials was successfully overcome.
Three layers of pure HEA powder and powder mixture (5 wt.% TiN + 95 wt.% HEA) were
printed alternately using multi-material selective-laser melting equipment (Figure 11a).
Fine matrix grains were found to be formed between coarse matrix grains due to the
numerous heterogeneous nucleation sites provided by TiN nanoparticles, as shown in
Figure 10b. The results of the compressive split Hopkinson pressure bar (SHPB) tests
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demonstrated that the microlaminated microstructure with bimodal grain size effectively
improved the strength and ductility of HEAs at the same strain rate (Figure 11c).
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Figure 11. (a) Schematic of the fabrication procedure for microlaminated HEA-TiN/HEA via mult-
material (MM) LPBF; (b) orientation map of the IPF of matrix grains for microlaminated HEA-
TiN/HEA; (c) corresponding GB misorientation map; (d) corresponding phase map; (e) stress–strain
curves of the SHPB impact test on LPBF-built HEA and MM-LPBF-built HEA-TiN/HEA with different
nominal strain rates [215].

Therefore, it is meaningful and promising to introduce a heterogeneous microstructure,
such as a heterogeneous lamella structure, gradient structure, and bimodal structure, into
the LPBF-fabricated particle-reinforced MMCs. Because of the existence of back stress in
the soft zone and forward stress in the hard zone, the hetero-deformation-induced (HDI)
strengthening and HDI hardening can be formed by their interaction during deforma-
tion [214], as shown in Figure 12. The yield strength of materials can be enhanced by
the HDI strengthening, and the HDI strain hardening is able to maintain or increase the
material’s ductility [216,217].
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Finally, the yield strength of the materials can be affected by the variation in the texture,
as shown by Equation (3) [219]:

σ = MαbG
√

ρ (3)

where M is the Taylor factor related to the material texture, α denotes a constant, b repre-
sents the Burgers vector, G is the shear modulus of matrix, and ρ denotes the dislocation
density in the matrix. The texture of some LPBF-fabricated metals can be eliminated by the
formation of equiaxed grains induced by reinforced particles, which is believed to be able
to increase the strength of materials. For instance, a strong <100> texture always formed in
some LPBF-fabricated metals with an FCC crystal structure [209]. Marattukalam et al. [220]
indicated that there was a relatively low Taylor factor (2.3–2.6) for the LPBF-fabricated 316L
SSs with a <100> texture, while a higher Taylor factor (~3.4) could be formed for the sample
with a <110> texture. Therefore, in comparison with some LPBF-fabricated metals with a
strong <100> texture, the yield strength of the LPBF-fabricated particle-reinforced MMCs
without texture could be enhanced by an increase in the Taylor factor (Equation (3)).

5. A Summary of Strategies and Outlooks
5.1. Comprehensive Strategies Covering Material Selection to Processing

The fabrication of the particle-reinforced MMCs using LPBF requires the meticulous
design of both the material and process to mitigate defects and enhance properties. There-
fore, a strategy to prepare, design, and manufacture MMCs was discussed in this paper,
as follows:

(1) Material selection and preparation

� The use of powder-type alloys and their moisture control are encouraged to
ensure a good quality of the powder spreading and to prevent oxidation;

� A material database of suitable combinations for matrices and reinforcements
should be explored to meet the specific requirements of an application;

� The compatibility of reinforcements within a matrix alloy needs to be investi-
gated to prevent structural defects that result in premature failure caused by a
poor bonding capability.

(2) Process optimization

� To obtain the designed phase in MMCs, the type of process atmosphere, such
as N2 and Ar atmospheres, is the major consideration in the LPBF process;

� A fundamental understanding of the physical metallurgical phenomena asso-
ciated with both the material and process is essential for mitigating defects,
including pores, cracks, distortion, and delamination, during the LPBF process;

� Various process parameters of LPBF should be systematically designed; recoat-
ing speed and layer thickness need to be set in the consideration of powder
morphology and sizes; laser-related parameters must be designed on the basis
of the characterization of melt pools and relative density.

(3) Microstructure characterization

� The mechanisms driving the microstructural evolution in LPBF-fabricated MMCs
need to be understood, given their anisotropic and inhomogeneous properties;

� The inclusion of nanoparticles, along with the existence of submicron- or
micron-sized particles, can facilitate the recrystallization behavior of matrix
grains, which refines the grains and reduces defects such as hot cracks;

� Submicron- or micron-sized particles, formed in the matrix through PSN,
can create new precipitates that improve hardness and strength by inhibiting
dislocation movements;

� Decomposed elements from the reinforced particles can alter the chemical com-
position of the matrix during the LPBF process, which significantly influences
the material properties of MMCs.
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(4) Postprocessing

� Postprocessing of the LPBF-fabricated MMCs generally follows the following
sequence: a wire EDM, heat treatments, machining, and surface finishing;

� An unwanted as-built phase, induced by repetitive, high cooling rates, one
might need to use heat treatments to obtain the desired phase of LPBF-fabricated
MMCs through the recrystallization of the microstructure;

� Depending on the materials selected for applications, heat treatments should
be carefully chosen to alleviate anisotropy, inhomogeneity, and residual stress,
as well as to enhance properties;

� With the inclusion of particle reinforcements, phenomena such as grain refine-
ment, elemental segregation, and texture management can occur during the
heat treatment, thereby affecting the material properties.

5.2. Outlooks of LPBF-Fabricated MMCs

Some researchers have indicated that the use of nanoparticles could enhance the
strength of alloys without compromising their ductility [221]. However, it is challenging to
achieve the homogeneous distribution of the high content of nanoparticles in the matrix
because of the van der Waals’ forces between particles, which results in a limited increase in
the strength of nano-MMCs. Therefore, considering the fabrication of hybrid reinforcements
emerges as a promising and viable strategy to develop advanced MMCs. Specifically,
multiscale (micron + submicron + nano) hybrid reinforcements should be pursued to
realize synergistic effects based on the in situ synthesis phenomenon in the LPBF process.

The LPBF technique introduced in this paper emerges as an opportunity to realize high-
performance composite materials for various industrial applications, including aerospace,
automotive, nuclear power plants, and healthcare. However, significant challenges in
LPBF still require extensive research regarding innovative materials and a comprehensive
printing database to facilitate their manufacture. These challenges are attributed to several
defects and the unwanted microstructure of MMCs produced by the repetitive, high cooling
rates during the LPBF process.

Therefore, it is necessary to understand the physical metallurgical phenomena during
the LPBF process and to systematically design the composite materials, LPBF processes,
and postprocessing strategies. In situ monitoring or simulation techniques will promote a
fundamental understanding of process-related phenomena. Incorporating artificial intel-
ligence with the printing database may facilitate a deeper understanding of the complex
interactions between various inputs and outputs associated with both the materials and the
process. Based on these studies, a predictive model or standardized methodology for mate-
rial processing is imperative for the wider industrial application of LPBF-fabricated MMCs.

Future research directions should emphasize collaborative work between academia
and industry. Verifying the potential of LPBF-fabricated MMCs will bridge the gap between
laboratory research and industrial applications, thereby fostering synergies between them.
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