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Abstract: CrCuFeNiTiAlx high-entropy alloys (where x = 0, 0.5, 1.0, 2.5 and 5.0 mol percent or mol
%) were processed through powder metallurgy. Aluminum concentration was varied in the alloy to
determine its effect on the microstructure and phase formation within the CrCuFeNiTiAlx system.
X-ray diffraction (XRD) studies revealed the presence of structures mainly composed of FCC and BCC
solid-solution (SS) phases in the CrCuFeNiTi alloy. The addition of aluminum content is responsible
for an increased volume fraction of the BCC phase on the sintered alloys. XRD results also indicate
the formation of compounds of a chemical composition and crystalline structure different from those
of FCC and BCC SS phases. The presence of these compounds was also confirmed through mapping
of elements and punctual chemical analysis through energy dispersive spectroscopy (EDS). Bulk
samples exhibited microstructures with multimodal grain size. From the microhardness test results,
it was determined that addition of Al is proportional to an increase in hardness.

Keywords: HEAs; powder metallurgy; mechanical properties; phase composition; vehicle components

1. Introduction

High-entropy alloys (HEAs) are advanced materials with at least five elements present
in equimolar or near-equimolar amounts, and have attracted significant attention from
the scientific community due to their potential applications [1–3]. These alloys often
exhibit unusual physical and mechanical properties due to their different chemical designs
and processing methods. In these alloys, the metal atoms which are added in the same
proportion have the same probability of populating a specific/particular place in the lattice,
thus achieving a unique crystalline structure.

Since the discovery of HEAs two decades ago [4–6], several studies have been carried
out around the world to explore their physical characteristics and properties, as well as
their usefulness in different industrial applications. This has resulted in a newly emerging
field for their production, development, and applications. For example, in the automotive
sector, vehicle moving parts wear out over time so they must be replaced before failure.
This generates (in the best of cases) additional costs in the maintenance of the vehicle(s)
and requires time investment so the worn parts can be replaced. Some engine parts are
unknown or can go unnoticed by most car owners; however, they are vital components
for the engine’s proper functioning. Examples are internal combustion engine valves and
their seats [7], aluminum cylinder liners and cast-iron piston rings [8] or rocker arms (a
mechanical lever) which are pivoted and transmit camshaft motion to the valves [9]. These
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components are usually made of alloys that provide an adequate mechanical strength-to-
weight ratio. The weight is significant since excessive mass limits the engine’s ability to
reach high revolutions. However, most cars have traditional alloys, making them stiffer
and less resistant to wear.

Many high-entropy alloys have been developed with exceptional mechanical response
such as increased strength, good ductility, excellent fracture toughness, good creep, wear
resistance, chemical and thermal stability [10–14] in comparison to traditional alloys. HEAs
mainly have been processed through traditional melting methods that have the disad-
vantage of microstructural heterogeneity and heavy element segregation [15]. On the
other hand, using powder metallurgy (involving mechanical milling), the tendency toward
random distribution of atoms (chemical disorder) is favored and leads to extending the
solid solubility limit and improving their mechanical properties [16–18]. Therefore, there
are great expectations for high-entropy alloys that can be used in the automotive sector.

The CuCrFeNiTiAlx system has not been studied in detail; the effect of adding alu-
minum to the system has yet to be reviewed. However, it could represent interesting
prop-erties due to the additional phase changes that could be generated in addition to
the ten-dency of the alloy to form a mixture of FCC + BCC phases [16]. A system with
similar properties that has been widely studied is CoCuCrFeNi, which has been used for
magnetic applications [19,20]. The Cr and Fe promote the formation of BCC solid-solution
(SS), while Cu and Ni promote the formation of FCC phases. If Ti replaces Co, the alloy
gains in mechanical aspects. On the other hand, it has been reported that Al addition to
this type of HEA favors the formation of BCC SS.

The objective of this work is focused on the characterization of the CrCuFeNiTi system
with Alx (x = 0, 0.5, 1, 2.5, 5 mol %) produced by powder metallurgy to evaluate the effect
of Al on the phase and microstructural evolution of the alloy, and determine its potential
application in vehicle parts.

2. Materials and Methods

Elemental powders of Al, Cr, Cu, Fe, Ni, and Ti with purity greater than 99% and sizes
of −325 mesh were mechanically processed with a planetary mill (Retch, PM100, Germany)
using ZrO2 balls (3 mm in diameter) as the milling medium with a ball to powder ratio of
12:1 (in weight). Milling was conducted at 300 rpm for 360 min. For control particle size
distribution reducing the agglomeration of the powder particles during the ball milling
action, 3 mL of isopropyl alcohol was used. The studied system was: CrCuFeNiTiAlx,
where x ranged from 0 to 5 mol % and the rest of the metals were added in equiatomic
fractions. Samples were labeled as 1, 2, 3, 4 and 5 for aluminum content of x = 0, 0.5, 1.0,
2.5, and 5.0 mol %, respectively. With the help of a uniaxial press (Montequipo, LAB-30-T,
Mexico), the resulting powder from the milling stage was conformed in cylindrical samples
of 10 by 4 mm in diameter and thickness, respectively, using 300 MPa. The cold-conformed
samples were sintered in an electrical furnace (model FB1315M from Thermo Scientific
Thermolyne, Waltham, MA, United States) at 1300 ◦C for 2 h. Before characterization
of the sintered samples, they were ground with SiC sandpaper and later polished using
alumina and diamond suspensions. Samples were etched with a metallographic reagent
for the microstructure enhancement (which was prepared using equal parts in volume of
concentrated HNO3, HF, deionized water and few drops of H2SO4). Etching time was 15 to
20 s. Crystalline phases of sintered alloys were determined using X-ray diffraction analysis
(XRD) under CuKα radiation in an X’Pert PRO PANalytical device, and diffractograms
were interpreted with the X’Pert Highscore Plus PANalytical software using patterns in
the ICDD PDF2 database. The microhardness of specimens was determined according to
the ASTM C1327 standard [21]. Meanwhile, the obtained microstructure was analyzed by
scanning electron microscopy (SEM) and an energy dispersion spectrometer detector (EDS)
on a HITACHI SU3500 microscope.
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3. Results
3.1. Phase Analysis

The XRD diffractograms shown in Figure 1 indicate that the samples contain phases
related to metallic compounds, intermetallics and oxide traces. XRD shows the presence of
solid solutions in the form of a combination of FCC and BCC crystal structures and traces of
chromium and copper oxides, their signal increasing as a function of Al content. In addition,
some compounds formed by the alloying elements were detected. They are summarized
in Table 1. Formation of these compounds is due to the type of crystal structure of the
interacting elements influencing the alloying mechanism, so elements of the same crystal
structure are readily dissolved among themselves, as was previously documented [22,23].
Previous work exposed how the alloying order is associated with the elements’ melting
point, i.e., the lower the melting point, the easier it is to be alloyed [24]. Figure 1 shows
two small peaks at 40.3 and 56.2 (2θ angles), corresponding to an HCP (hexagonal close-
packed) structure. The presence of this phase is due to the addition of Ti, Ti being the metal
with the highest melting point, only below Cr. Furthermore, it is also the metal with the
largest atomic radius with an HCP crystalline structure. Both conditions of Ti enhance
its solubility in the alloy; hence, the two peaks with the HCP phase that appear in the
pattern are related to the presence of Ti. As seen in Table 1, Cr and Cu oxides are generated
during processing. Formation of these oxides is not necessarily negative. Studies have
established that the configurational disorder can be compositionally engineered into mixed
oxides by populating a single sublattice with many distinct cations. The formulations
promote novel and entropy-stabilized forms of crystalline matter where metal cations were
incorporated in new ways [24,25]. In addition, an increase in the intensity of the peak
located at the 42.9 2θ angle corresponding to the BCC phase is evident and can be associated
with increased aluminum content. The increase in the BCC phase can be attributed to
the BCC structure generally having a lower atomic packing density (68%) than the FCC
structure (74%), and therefore, being able to more easily accommodate larger solute atoms
like Al = 1.43 Å (Cu = 1.28 Å, Cr = 1.249Å, Fe = 1.241Å, Ni = 1.246 Å, Ti = 1.45Å) [26].
Furthermore, the excessive addition of aluminum changes the FCC phase to a BCC phase
due to a considerable lattice distortion energy that destabilizes the FCC structure [27].
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Table 1. Indexed phases found in the diffraction patterns of Figure 1.

Phase JCPDS Card Numbers Chemical Formula 0 0.5 1.0 2.5 5.0

FCC 03-065-6291 Solid-solution x x x x x
BCC 00-019-0850 Solid-solution x x x x x
HCP 00-018-0388 Solid-solution x x x x x

Chrome oxide 00-006-050 Cr2O3 x x x x
Copper oxide 00-034-1354 Cu2O x

3.2. Lattice Constants and Microhardness

The lattice constants of the synthesized alloys were calculated using Bragg’s law
equation through the interplanar distance (dhkl), using peaks at 2θ = 43.2◦ and 43.8◦, that
correspond to the (111) and (110) planes for both FCC and BCC structures, respectively.
The lattice parameter was determined using the value of dhkl, and Equation (1) that relates
the interplanar distance to the lattice parameter in cubic systems. The results are plotted in
Figure 2, as a function of the aluminum content in the alloy.

a = dhkl
√

h2 + k2 + l2 (1)
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In Figure 2, a considerable increment in lattice constants of both structures (FCC and
BCC) is observed as the proportion of aluminum increases. However, the increase of the
lattice constant is more significant for aluminum contents between 0.5% and 2.5% in the
alloy. Its increase is associated with the atomic radius of Al and its solid solubility into the
FCC and BCC phases present in the CrCuFeNiTiAlx system. As previously discussed, the
presence of aluminum plays an essential role in the random formation of a solid solution
composed of several metals presenting a mixture of FCC and BCC structures.

Figure 2 also shows the results obtained from microhardness measurements on pre-
pared alloys as a function of aluminum content. This figure clearly shows the substantial
effect of the aluminum content on the hardness of the alloy, since as the amount of alu-
minum increases, so does the hardness. It could also be due to the formation of hard
particles of metal oxides during the powder metallurgy process, which acts as a second
hardening phase. A list of formed phases and solid solutions is presented in Table 1.
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3.3. Morphology and Porosity

The general microstructure of sintered HEAs is depicted in Figure 3. It is composed
of irregular grains of varied sizes and particle shapes. Samples exhibited a wide distribu-
tion of particle sizes, with a multimodal behavior ranging from 0.5 to 50 microns. Their
microstructure is composed of larger grains with different contrast (brighter zones) and
various morphological features. These bright grains with different aluminum concentra-
tions are associated with other metallic compounds formed during the alloy-processing, as
detected by XRD and SEM-EDS. Micrographs at low magnification (100x) were processed
using an image processor (AxioVision SE64) and porosity was calculated as an image
percentage (the values are illustrated by green circle inserts and the results are shown below
the circle of each micrograph of Figure 2). When intermediate amounts of Al are added in
the HEA, there is an evident reduction in porosity; thus, a higher densification is obtained.

Metals 2022, 12, x FOR PEER REVIEW 5 of 11 
 

 

Figure 2. Microhardness results in Vickers scale (average and standard deviation) and lattice con-
stant of the CrCuFeNiTiAlx alloy, both presented as a function of aluminum content. 

3.3. Morphology and Porosity 
The general microstructure of sintered HEAs is depicted in Figure 3. It is composed 

of irregular grains of varied sizes and particle shapes. Samples exhibited a wide distribu-
tion of particle sizes, with a multimodal behavior ranging from 0.5 to 50 microns. Their 
microstructure is composed of larger grains with different contrast (brighter zones) and 
various morphological features. These bright grains with different aluminum concentra-
tions are associated with other metallic compounds formed during the alloy-processing, 
as detected by XRD and SEM-EDS. Micrographs at low magnification (100x) were pro-
cessed using an image processor (AxioVision SE64) and porosity was calculated as an im-
age percentage (the values are illustrated by green circle inserts and the results are shown 
below the circle of each micrograph of Figure 2). When intermediate amounts of Al are 
added in the HEA, there is an evident reduction in porosity; thus, a higher densification 
is obtained. 

 
Figure 3. SEM-SE micrographs of CrCuFeNiTiAlx alloys with different porosity levels as a function 
of added Al. 

3.4. Chemical Analyses by EDS-SEM 
Through the observations and analyses with scanning electron microscopy (SEM) 

and energy dispersive X-ray spectroscopy (EDS), it was evident that sintered CrCuFeN-
iTiAlx alloys possess a multi-phase microstructure (Figure 4). Figure 4a shows the micro-
structure corresponding to the CrCuFeNiTi sample, where different morphology zones 
were observed. Spots enclosed in a white box indicate the specific area where the chemical 
analyses were carried out. Figure 4b corresponds to the CrCuFeNiTiAl0.05 sample. 

Some chemical analyses were conducted through EDS-SEM on regions with different 
tonalities. EDS results with their corresponding standard deviation values are shown in 
Table 2. The constituent phases have a significant difference in chemical composition. 

Figure 3. SEM-SE micrographs of CrCuFeNiTiAlx alloys with different porosity levels as a function
of added Al.

3.4. Chemical Analyses by EDS-SEM

Through the observations and analyses with scanning electron microscopy (SEM) and
energy dispersive X-ray spectroscopy (EDS), it was evident that sintered CrCuFeNiTiAlx
alloys possess a multi-phase microstructure (Figure 4). Figure 4a shows the microstructure
corresponding to the CrCuFeNiTi sample, where different morphology zones were ob-
served. Spots enclosed in a white box indicate the specific area where the chemical analyses
were carried out. Figure 4b corresponds to the CrCuFeNiTiAl0.05 sample.

Some chemical analyses were conducted through EDS-SEM on regions with different
tonalities. EDS results with their corresponding standard deviation values are shown in
Table 2. The constituent phases have a significant difference in chemical composition.

Table 2 shows punctual chemical analysis indicating the presence of phases with dif-
ferent chemical compositions, where some oxidation occurred during the alloy processing
(as detected by XRD). The composition of each grain certainly varies, which is indicative of
the formation of a high degree of entropy alloy. In specific grains, more atoms of certain
elements compete between them to occupy specific spaces in the crystalline structure.
However, there was always an original balance in the alloys’ chemical compositions, which
was verified by a general mapping of the distribution of the elements in the alloy with 1%
at. of aluminum. The result of this mapping analysis is shown in Figure 5. The obtained
spectrum, which presents the components of the alloy, and a chart with the result of the
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chemical analysis, indicate that the resulting chemical composition is close to the hypothe-
sized composition. Chemical analysis also showed the presence of oxygen, which partially
oxidized elements (such as Fe and Cu) during processing. Finally, the spatial distribution
of the elements within the alloy is homogeneous.

Table 2. Summary chart with chemical analyses (in at. % & deviation) of spectrum shown in Figure 4
(ND = non-detected).

Element Spec. 40 Spec. 41 Spec. 44 Spec. 71 Spec. 73 Spec. 74 Spec. 76

Al ND ND ND 1.1 ± 0.1 ND 19.6 ± 0.1 20.1 ± 0.2

Cr 15.2 ± 0.1 9.5 ± 0.4 17.7 ± 0.3 7.7 ± 0.3 90.3 ± 0.2 5.3 ± 0.2 6.4 ± 0.1

Cu 12.8 ± 0.4 9.7 ± 0.3 4.6 ± 0.2 10.7 ± 0.3 ND 2.9 ± 0.1 3.9 ± 0.2

Fe 38.8 ± 0.4 3.5 ± 0.2 2.0 ± 0.1 57.7 ± 0.2 1.9 ± 0.1 0.9 ± 0.1 2.5 ± 0.1

Ni 30.5 ± 0.3 5.2 ± 0.3 2.2 ± 0.1 19.5 ± 0.3 1.4 ± 0.3 1.2 ± 0.2 3.4 ± 0.2

Ti 0.5 ± 0.1 47.6 ± 0.3 25.9 ± 0.3 0.4 ± 0.1 ND 26.3 ± 0.4 16.3 ± 0.2

O 2.2 ± 0.1 24.5 ± 0.1 47.6 ± 0.4 3.0 ± 0.2 6.4 ± 0.4 43.8 ± 0.4 47.5 ± 0.3
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According to the above results, it may be said that oxidation occurs during the solid-
state processing (as detected by XRD), and the microstructure of the CrCuFeNiTi alloy
synthesized by powder metallurgy is composed of two main phases. In comparison, the
CrCuFeNiTiAl0.05 alloy is composed of three main phases. Elemental mappings were ob-
tained to analyze each sample’s elemental distribution. Figure 6 shows an SEM micrograph
and the CrCuFeNiTi alloy’s elemental mapping separated by element distribution. From
these results, it can be inferred that the microstructure of this alloy is composed of a high
Cu, Fe and Ni solid solution (light region), a dark region composed of Ti and Cr, and a
dispersed chromium oxide phase.
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as an effective experimental route to produce high-entropy alloys since milling induces
finer particle size and high lattice distortion, facilitating the metal atoms’ diffusion
during sintering. Furthermore, sintering promotes metal diffusion during sintering.

# Based on microstructural results, the CrCuFeNiTi alloy synthesized by solid-state
route is composed of a Cu-Fe-Ni SS, Ti-enrich phase and chromium oxide-type phase.
The Al content increases the volume fraction of the chromium oxide-type phase. In
addition, the preference distribution of Al in the Ti-enrich phase was observed.

# The HEA alloy that achieved the highest hardness is the one with the highest Al
content. These alloys harden significantly with the addition of Al due to the increase
of the chromium oxide-type phase, and the strong atomic bonding between Al and
other elements, due to the larger atomic radius of Al. This phenomenon is also related
to the reduction in porosity as a function of aluminum content.
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