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Abstract: This study determined the buckling characteristics of sphere-segmented toroidal shells
subjected to external pressure. The proposed toroidal vessel comprises six spheres and six rings.
Two laboratory models with the same nominal dimensions were manufactured, measured, tested,
and evaluated. To investigate whether sphere-segmented toroidal shells are imperfection-sensitive
structures with closely spaced eigenvalues, the subspace algorithm was applied to evaluate the first
50 eigenmodes, and the modified Riks algorithm was used to obtain post-buckling characteristics.
The results indicated that the deviation between the results of the experimental and numerical
analyses was within a reasonable range. The proposed sphere-segmented toroidal shells were
highly imperfection-sensitive structures with closely spaced eigenvalues. Subsequently, imperfection
sensitivity analysis confirmed this conclusion. In numerical analyses, the first eigenmode could be
considered as the worst eigenmode of sphere-segmented toroidal shells. The trend of the equilibrium
path of sphere-segmented toroidal shells was consistent with spherical shells, revealing instability.
In addition, ellipticity and completeness exerted a negligible effect on the buckling load of sphere-
segmented toroidal shells.

Keywords: sphere-segmented structure; toroidal shell; spherical shell; buckling; external pressure

1. Introduction

Toroidal shells have several advantages over traditional spherical and cylindrical
shells [1], including favorable steerability, passability, and stability [2,3]. The reason for
good passability is that two paths can be chosen to reach a location in toroidal shells.
Toroidal shells are widely applied in ocean, nuclear, and civil industries. In ocean engi-
neering, toroidal shells are considered to be a promising pressure structure for deep sea
space stations [2,3]. However, toroidal shells have a low buckling load and are difficult
to fabricate.

Buckling, which has been extensively studied, is the main type of failure affecting
toroidal shells subjected to external pressure. Błachut [4] performed experiments to deter-
mine the collapse load and collapsed shape of toroidal shells. The experimental results
compared well with their numerical results. Furthermore, studies have investigated the
effect of the elliptical section of toroidal shells on their buckling by using the finite element
method [5,6]. Zingoni proposed an approximate bending solution to solve the axisymmetric
bending of elliptic toroidal shells [7]. He obtained the eigenvalues of part of the toroidal
vessel by using the Galerkin’s scheme to calculate stability equations [8]. Studies proposed
analytical algorithms for examining the strength of ribbed toroid shells and performed a
nonlinear analysis to analyze the buckling of such shells [1,9,10]. Civalek used the discrete
singular convolution method to analyze the buckling of CNT-reinforced laminated non-
rectangular plates [11]. Moradi-Dastjerdi analyzed the thermal and mechanical buckling of
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an active multidisciplinary sandwich plate by developing a mesh-free solution based on
third order shear deformation theory [12].

Zhang et al. [13] designed and manufactured segmented toroidal shells composed
of cylindrical shells. Furthermore, they investigated the effect of the number of segments
on buckling load and imperfection sensitivity. However, it was recognized that, unlike
cylindrical shells, spherical shells were more suitable for using as junction elements because
the highly symmetrical structure of a spherical shell facilitated hole opening. In addition,
surface stress was evenly distributed on spherical shells [14–16]. The surface of a spherical
shell experienced less stress compared with other structures under the same external
pressure in [17].

The combination design idea mentioned above by Zhang et al. [13] has also been used
in replacing cylindrical shells with multiple intersecting spherical shells. Liang et al. [18]
combined the interior penalty function and the Davidon–Fletcher–Powell method to opti-
mize the design of multiple intersecting spheres. Subsequently, Zhang and Gou examined
the effect of material and geometric parameters on the buckling of multiple intersecting
spherical shells [19,20]. Liu et al. proposed an approximate analytical model for buckling
analysis of common spherical–cylindrical–spherical composite structures by using the
generalized Galerkin method [21]. Sobhani et al. investigated the vibration of porous nano-
enriched polymer composite coupled spheroidal–cylindrical shells, the wave frequency
responses of the nanocomposite linked hemispherical–conical shell, the Circumferential
vibration analysis of nano-porous sandwich assembled spherical–cylindrical-conical shells,
and the Free vibration of porous graphene oxide powder nano-composite assembled
paraboloid–cylindrical shells [22–25]. Rezaiee and Masoodi analyzed the buckling of plates
and shell structures by an efficient triangular shell element which had six nodes with thirty
degrees of freedom [26]. Zingoni presented a linear–elastic theoretical formulation for de-
termination of the state of stress in large liquid-filled multi-segmented spherical shells [27].
However, toroidal shells composed of spherical shells, termed sphere-segmented toroidal
shells, have rarely been described in literature. The effects of imperfection, ellipticity, and
completeness on the buckling characteristics of such structures remain unknown.

This study investigated the buckling characteristics of sphere-segmented toroidal
shells under external pressure. The sphere-segmented toroidal shell could overcome
the low buckling load and difficult manufacturing of the traditional toroidal shell. The
advantages of the proposed experimental methodology were as follows: a pressure pump
was used to increase the pressure of the chamber in hydrostatic testing, simulating the
pressure under different depths and the reliability of the result could be guaranteed. On
the other hand, optical scanning obtained the numerical model with initial geometrical
imperfection. The accuracy of the buckling loads of the experimental model could be
improved in numerical analysis. The remainder of this paper is organized as follows.
Section 2 introduces the geometric properties of toroidal shells, their fabrication, and
related experiments. Section 3 presents a comparison and analysis of the experimental
results and the results of a finite-element analysis. In addition, the effects of ellipticity
and completeness on buckling are discussed. Conclusions are presented in Section 4. This
study provides valuable references for the design, manufacture, and analysis of atypical
toroidal shells.

2. Materials and Methods

To experimentally evaluate the buckling of sphere-segmented toroidal shells, two
models, with identical nominal dimensions and comprising six spheres and six rings, were
established, named ST-1 and ST-2, respectively. The difference between ST-1 and ST-2
models were the different geometric imperfections and welding imperfections produced
during the manufacturing process. Ultrasonic measurement, optical scanning, and a
hydrostatic test were performed for the two models.
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2.1. Geometry and Manufacture

Consider a sphere-segmented toroidal shell comprising six spheres and six rings. The
spherical shell has a uniform wall thickness (t) of 0.75 mm, a radius (r) of 72.95 mm, an
intersected angle (θ) of 30◦, and an included angle (α) of 60◦. Any two adjacent spheres are
connected by a ring with a width (w) of 10 mm and a height (h) of 6 mm. The geometric
notations and a photograph, of the proposed model, are presented in Figure 1. The
ring dimensions were designed based on the principle of consistent deformation [19,20].
Deformation of the ring under the external pressure is consistent with the deformation of
the unilaterally excised part of a spherical shell. The unilateral excision refers to the part of
the spherical cap that is excised from the spherical shell. The research parameters were in
direct reference to the experimental and numerical results of Zhang et al. [20]. The formula
for width (w) is based on the consistent deformation principle, as reported in Equation (1):

w =
D
2

(
1 −

√
r2 sin α(1 − µ)h + (µ − 1)(r cos α + h)Drt
r2 sin α(1 − µ)h + (µ + 1)(r cos α + h)Drt

)
(1)

where Dr is the outer diameter of the ring, which is obtained as follows:

Dr =

√
4(r + t)2 − 4r2 cos α2 (2)
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The sphere-segmented toroidal shells examined herein were manufactured using
stainless steel, and the corresponding material properties [16] were as follows: Young’s
modulus (E) = 200 GPa, Poisson’s ratio (µ) = 0.291, and yield strength (σy) = 628 MPa. The
process for manufacturing spherical shells is presented in Figure 2. First, hemispherical
shells were manufactured from thin steel plates by using cold rolling technology. Second,
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two hemispherical shells were welded to form a complete spherical shell through manual
tungsten inert gas (TIG) welding. Third, spherical shells with an included angle of 60◦ were
cut by means of wire-cut electrical discharge machining (WEDM). To prevent repeated
soldering during assembly, weld lines were located in the middle of the spherical shell
during cutting. The process for manufacturing the ring shell was simple; the ring shell
was directly cut from a thick steel plate through WEDM. Eventually, the cut spheres and
rings were assembled, and a laboratory-scale model was obtained through manual TIG
welding (Figure 1). With the use of the aforementioned fabrication process, two models
were manufactured, named ST-1 and ST-2 sphere-segmented toroidal shells.
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Figure 2. Schematic of the process for manufacturing sphere-segmented toroidal shells.

2.2. Geometric Measurement and Hydrostatic Testing

For the ultrasonic measurement, as presented in Figure 3a, 252 measurement points
were drawn on the surface of each model. The points were located on 12 measurement lines
with equal circumferential intervals. Each measurement line had 21 measurement points at
equal intervals. A PX-7 ultrasonic device form DAKOTA was used to measure thickness
of spheres. During the measurement, the speed of sound was set to 5664 m/s. When the
demonstrated value of ultrasonic device remained unchanged and the stability indicator
showed 7–8 vertical bars, the measured value was recorded. The stability indicator has
8 vertical bars in total. The statistical results for wall thickness are presented in the first five
columns of Table 1.
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Figure 3. Photographs of ultrasonic measurement scene (a), optical scanning scene (b), and hydro-
static tests scene (c).

Table 1. Geometric properties, buckling load, and experiment-derived collapse pressure of ST-1 and
ST-2 sphere-segmented toroidal shells.

Model tmin/mm tmax/mm tav/mm St. dev. Plin/MPa Pnon/MPa Ptest/MPa Pnon/Ptest

ST-1 0.686 0.826 0.753 0.037 19.206 6.229 5.523 1.128
ST-2 0.688 0.818 0.746 0.031 18.452 6.292 5.525 1.139

Note: tmin = minimum thicknesses; tmax = maximum thicknesses; tav = average thicknesses; St. dev. = standard
deviation of thickness; Plin = linear buckling load; Pnon = nonlinear buckling load; Ptest = destruction load.

After the ultrasonic measurement of thickness, the measurement points were erased
using absolute alcohol (99.9% alcohol) from Shanghai Yishida (Shanghai, China). Three-
dimensional coordinates of two models were revealed using the Cronos 3D optical scanner
from Open Technologies (Brescia, Italy) and three-dimensional data for sphere-segmented
toroidal shells were reconstructed using the device’s supporting software. The technical param-
eters of the aforementioned scanner were as follows: scanning range = 150 × 115 × 150 mm3,
pixel size = 200 m, working distance = 310 mm, and accuracy = 0.02 mm. To ensure scanning
quality and efficiency, spacing between marked measurement points was set to 3–5 mm.
Additional details on optical scanning are presented in Figure 3b. The geometric deviations of
scanned models from perfect geometries are presented in Figure 4.
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Figure 4. Geometric deviation between the scanned models and perfect geometries of two laboratory
models sphere-segmented toroidal shells (named ST-1 and ST-2, respectively).

When shape and thickness measurements were complete, hydrostatic pressure tests
were performed in a hydrostatic chamber. The chamber was located at the Jiangsu Provin-
cial Key Laboratory of Advanced Manufacturing for Marine Mechanical Equipment, as
presented in Figure 3c. The chamber has an inner diameter of 500 mm and a height of
500 mm, with a working pressure of 20 MPa (equivalent to a water depth of 2000 m). To
reduce perturbance from buoyancy, a weight was attached to each model by using a soft
rope to ensure the model floated in the middle part of the pressure chamber. After chamber
air was exhausted and the measured pressure was removed, the pressure history was
recorded using a DH5902N dynamic data acquisition system from Donghua Test (Taizhou,
China). This system features built-in various bridge sensors, which can test and analyze
physical quantities, such as pressure, force, load, displacement, etc. The dynamic data
acquisition system, with an IP65 rating for protection, had impact resistance of 100 g and
a working temperature range of −20 ◦C to 60 ◦C. In the acquisition process of pressure,
a SUP-P300 sensor from Meiyi Automation Company (Hangzhou, China) was used for
pressure measurement. The sensor’s range was 0–10 MPa, and its accuracy level was 0.5%.
The acquisition frequency was set to 50 Hz. Collapse was indicated by a loud noise from
collapse of the model. Zhang et al. [28] provided detailed instructions on equipment opera-
tion of the hydrostatic chamber. The recorded pressure history is presented in Figure 5, and
the collapse of the model after the hydrostatic test is presented in Figure 6.
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3. Results and Discussion

This section presents an evaluation and comparison of experimental and numerical
results derived from the two proposed models. Closely spaced eigenvalue analyses and
nonlinear buckling analyses were performed on the perfect geometries of sphere-segmented
toroidal shells; this enabled an exploration of whether the first-order eigenmode was
consistent with the worst eigenmode. Furthermore, the effect of ellipticity and completeness
on sphere-segmented toroidal shell buckling was explored.

3.1. Experimental Analysis of the Two Sphere-Segmented Toroidal Shells

The manufactured sphere-segmented toroidal shells exhibited satisfactory and repeat-
able thickness distributions. The minimum thicknesses of the two spheres were 0.686 and
0.688 mm, respectively, and their maximum thicknesses were 0.826 and 0.818 mm, re-
spectively (Table 1). The standard deviation of thickness ranged from only 0.031 to 0.037.
The results indicated that cold rolling technology could be applied to obtain spheres of
uniform thickness.

The overall accuracy and repeatability of the sphere-segmented toroidal shells were
reasonable. The geometric and extreme deviations of the two models (not including welds)
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ranged from 0 to 3 mm and from 0.14 to 3.16 mm, respectively (Figure 4). However, the
manufactured toroidal shells inevitably had some imperfections. Local pits might arise at
the junctions of the spheres and rings because of welding deformation. Additionally, as
depicted in the vertical view of Figure 4, a large deviation was present in the horizontal
direction of the shells and a small deviation in the vertical direction, presenting an overall
appearance of ellipticity. Such ellipticity exerted a negligible effect on the buckling load on
sphere-segmented toroidal shells (see Section 3.3 for further discussion).

A slow increase in pressure corresponded to the quasi-static loading of the sphere-
segmented toroidal shells (Figure 5). The slowly increasing pressure was used to simulate
the shell under different water depths. In Figure 5, the factor k was the ratio of pressure to
time. The factor k of ST-1 and ST-2 ranged from 0.061–0.072 MPa/s. A manual pressure
pump was used to slowly increase the pressure in the chamber and the process was uniform
and slow without sudden changes. In this study, the time of the twice conducted process of
slow increase of pressure was 83 s and 132 s, respectively. The pressure peak corresponded
to the collapse pressure of the two manufactured samples. The corresponding results are
presented in the penultimate column of Table 1. The pressure data from hydrostatic tests
on ST-1 and ST-2 sphere-segmented toroidal shells are presented in Figure 5. For ST-1,
when the pressure reached 5.523 MPa, it dropped markedly until it reached a stable level.
Similarly, for ST-2, when the pressure reached 5.525 MPa, it rapidly dropped to zero. The
sudden drop of pressure of ST-1 and ST-2 represented deformation in the fabricated models.
The trend of dropping to zero and the trend of reaching a stable level indicated that elastic–
plastic deformation occurred. The buckling loads of ST-1 and ST-2 sphere-segmented
toroidal shells were almost the same, with a deviation of less than 1%.

The significant difference of collapse between ST-1 and ST-2 sphere-segmented toroidal
shells was ascribed to different geometric imperfections and different thicknesses after
manufacturing. The collapse shapes of ST-1 and ST-2 sphere-segmented toroidal shells
from different viewpoints are presented in Figure 6. ST-1 collapsed near the ring, which
was typical for a hemisphere subjected to external pressure [29–31]. This phenomenon
might have arisen due to abrupt stiffness and geometric imperfections. The collapsed shape
of ST-2 was more common than that of ST-1. The collapse of ST-2 occurred on the equator of
the sphere. The tearing mode at the collapse site was associated with the equator thinning.
When the amplitude of this imperfection was small, it did not affect the buckling load [32].

3.2. Numerical Analysis of the Two Manufactured Sphere-Segmented Toroidal Shells

According to the Design of Steel Structures (European Union code) and Rules for the
Classification and Construction of Diving Systems and Submersibles [33,34], the buckling
of the sphere-segmented toroidal shells was further analyzed using the finite-element
method. Linear and nonlinear buckling characteristics were determined using the subspace
iteration algorithm and modified Riks algorithm [35] in ABAQUS, respectively. During the
calculation, a reference load of 1 MPa was applied to the surface of each model.

The finite-element models and information on the sphere-segmented toroidal shells
are presented in Figure 7. The white and green parts correspond to rings and spheres,
respectively. The geometrical shape of ST-1 and ST-2 sphere-segmented toroidal shells
obtained using optical scanning was segmented and adjusted in Unigraphics NX. The
height of the ring was set exactly to 6 mm, which was the same height as that of the ring
discussed in Section 2.1. The spheres and rings at joint shared common nodes. A three-
point boundary was used to prevent the additional displacement of the sphere-segmented
toroidal shells. On the extrados of the toroidal shells, two points of boundary were selected
to limit the displacement of the X and Z axes (UX = UZ = 0). On the symmetrical plane of
the ring, which was not collinear with the previous two points, one point was selected to
limit the displacement of the X and Y axes (UX = UY = 0). The aforementioned method was
applied to examine the buckling of egg-shaped shells [36,37], longan-shaped shells [38],
spherical shells [39,40], and toroidal shells [41,42]. Due to the complexity of the surfaces of
sphere-segmented toroidal shells, most of the elements were set to be quadrangular shell



Metals 2023, 13, 64 9 of 21

elements (S4). These elements were fully integrated, general purpose, finite membrane
strain shells. A proportion of elements were set to be triangular shell elements (S3). Trian-
gular shell elements (S3) use reduced integration. The size of mesh was defined in ANSA,
and the length parameter was 4.5. The representative examples of convergence study of
ST-1 sphere-segmented toroidal shells are displayed in Figure 7. The red dot represents the
determined element quantity intended for the numerical analysis. The convergence study
was based on the eigenmode analysis.
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The number of each type of element and the number of nodes for ST-1 and ST-2 sphere-
segmented toroidal shells are presented in Figure 8. The parameters for analysis, based
on the subspace algorithm, were as follows: number of eigenvalues requested = 6, vectors
used per iteration = 12, and maximum number of increments = 3000. The parameters for
analysis, based on the modified Riks algorithm, were as follows: maximum incremental
steps = 300, initial arc length = 0.08, minimum arc length = 1 × 10−5, and maximum arc
length = 0.08. The numerical analysis results are presented in columns 6 and 7 of Table 1
and Figures 9 and 10.
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The numerical buckling loads had high repeatability and reasonable accuracy. Linear
and nonlinear analysis was based on the real geometric shape from data of ultrasonic
measurement, which could help in exploring the mechanism of the collapse behavior
of the fabricated models. As indicated in Table 1, the nonlinear buckling loads of ST-1
and ST-2 sphere-segmented toroidal shells were 6.229 and 6.292 MPa, respectively. The
linear buckling load ratio between ST-1 and ST-2 sphere-segmented toroidal shells was
1.04, and the nonlinear buckling load ratio between ST-1 and ST-2 sphere-segmented
toroidal shells was 0.92. These results indicated that the numerical results related to the
manufactured samples had high repeatability. The deviation between the numerical and
experimental results ranged from 12.8% to 13.9%, indicating that the numerical results had
reasonable accuracy.

The sphere-segmented toroidal shells had an unstable structure. As presented in
Figure 9, the path curve increased linearly during the pre-buckling stage, and during the
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post-buckling stage the path curve exhibited a sharp drop and then a slow drop. P3 was the
critical buckling load point, and other points could represent the intermediate deformation
evolution of the aforementioned shell. Maximum stress in stress distribution exceeded the
yield strength at the buckling point, indicating elastic–plastic buckling.

The sphere and ring junction was the weakest position in ST-1 and ST-2 sphere-
segmented toroidal shells. The deformation states of the two models are presented in
Figure 10 and correspond to the six points in Figure 9. The ellipticity discussed in Section 2.2
eliminated the high symmetry of the sphere-segmented toroidal shells, resulting in an
uneven force on the extrados and culminating in local pre-buckling deformation. After the
critical buckling point was reached, instability eventually occurred at the aforementioned
junction. Local dents could be observed at the same position in Figure 4, and the stress
distribution in Figure 9 indicated that this position was the weakest.

The collapse position of the numerical analysis and hydrostatic test of ST-1 was con-
sistent. The collapse of local dents occurred at the junction of the sphere and ring. The
numerical analysis results differed from the hydrostatic test, because the welding imperfec-
tions, stiffness, geometric properties, and thickness were different in the collapse location.
Since welding was incomplete, the shell model had thickness–related imperfections [32].
Moreover, when the thinning of the welded seam was small, the buckling load of the
aforementioned shells was negligibly affected.

3.3. Experimental Analysis of the Two Sphere-Segmented Toroidal Shells

To examine the buckling of sphere-segmented toroidal shells, eigenmodes were intro-
duced into the perfect model as an initial geometric imperfection. Subsequently, a nonlinear
analysis was performed on the perfect model with eigenmode imperfections.

In any analysis of the buckling characteristics of shells, the effect of worst-case im-
perfections must be considered [43–46]. The first eigenmode is typically a good estimate
of the worst shape [47]. This method of analysis is recommended under European Union
and Chinese regulations [33,34]. The aforementioned method has been successfully ap-
plied for analyzing the buckling characteristics of corrugated cylindrical and spherical
shells [48,49]. However, sphere-segmented toroidal shells are atypical toroidal shells; they
are composed of spheres and rings. Numerous studies have indicated that spherical,
toroidal, and cylindrical shells have imperfection-sensitive structures under symmetrical
load conditions [13,40,50]. Hutchinson indicated that shells composed of cylindrical and
spherical structures are the most sensitive to imperfection among all structures [51]. There-
fore, the first 50 eigenmodes should be obtained by performing a linear eigenvalue analysis,
and nonlinear buckling under each eigenmode should then be analyzed. Whether the first
mode can replace the worst mode as an eigenmode imperfection in a nonlinear analysis
requires further discussion. The boundary conditions and parameter settings were the
same as in Section 3.2. The imperfection amplitudes were set as 0.1 t in Section 3.3.

Small deviations in adjacent order eigenvalues and repeated eigenvalues demonstrated
that the sphere-segmented toroidal shells had an imperfection-sensitive structure with
closely spaced eigenvalues. Table 2 presents the first 50 eigenmodes and linear buckling
loads for perfect sphere-segmented toroidal shells, and the corresponding statistical results
are presented in the first row of Table 3. The linear buckling load varied from 26.549 to
26.758 MPa, the standard deviation in linear buckling load was only 0.067, and the average
linear buckling load was 26.645 MPa (Table 3). As presented in Figure 11a, the ordinate
was the ratio of the linear buckling loads of each order to the first order. The ratio of linear
buckling loads of the 50th order to the 1st order was 1.0079. In addition, because of the
presence of the same eigenvalues, the minimum deviation of the eigenvalues of adjacent
orders was 0. The maximum deviation was 0.0038%, which was observed between the
ninth and tenth order.
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Table 2. First 50th linear buckling loads and eigenmodes of sphere-segmented toroidal shells.

Order 1st Mode 2nd
Mode 3rd Mode 4th Mode 5th Mode 6th Mode 7th Mode 8th Mode 9th Mode

Plin 26.549 26.550 26.550 26.551 26.557 26.558 26.558 26.564 26.564

Mode
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Model Pmin/mm Pmin/mm Pav/mm St. dev.

Plin 26.549 26.758 26.645 0.067
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The post-buckling modes of the sphere-segmented toroidal shells were all localized
dents. However, the local instability position presented stochastics, because it was affected
by closely spaced eigenvalues. The nonlinear buckling loads are presented in the first line



Metals 2023, 13, 64 13 of 21

of Table 4, and the corresponding post-buckling modes of toroidal shells are presented
in the second line of Table 4. The seventh mode was the worst, and the corresponding
buckling load was a maximum value of 9.922 MPa. The 43rd mode was the best, and the
corresponding buckling load was a minimum value of 10.668 MPa.

Table 4. Post-buckling modes and nonlinear buckling loads of sphere-segmented toroidal shells (the
results correspond to the data in Table 2).

Order 1st Mode 2nd
Mode 3rd Mode 4th Mode 5th Mode 6th Mode 7th Mode 8th Mode 9th Mode

Pnon 10.150 10.349 10.352 10.543 10.370 10.379 9.922 10.236 10.474

Mode
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As indicated in Figure 12b, the equilibrium path of the imperfect model is similar to 
the experimental model, and both show an unstable post-buckling path. The maximum 
stress exceeded the yield strength, indicating the occurrence of elastoplastic instability. 
This finding was consistent with those of the experiments. Moreover, the post-buckling 
mode of ST-1 was similar to that of the ideal model. These results demonstrated that a 
nonlinear analysis with the introduction of modal imperfections could be used for the 
preliminary investigations of the buckling of sphere-segmented toroidal shells. 
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The deviation between the buckling load of the first mode and the buckling load of
the worst mode was only 2.2%, indicating that the first mode could be considered the
worst mode for use as an eigenmode imperfection in a nonlinear analysis. As presented
in Figure 11b, the curve was the ratio of the nonlinear buckling load under the first-order
eigenmode imperfection to the nth-order eigenmode imperfection. The ratio was mostly
slightly above 1 when the order was from 1–50.
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To further prove that the sphere-segmented toroidal shell is an imperfection-sensitive
structure, an imperfection sensitivity analysis was conducted on the shell. The imperfection
amplitude was in the range of 0–1.2 t, and a total of 13 imperfection amplitudes were
selected for the analysis. The calculation results are presented in Figure 12a. On the basis
of the finding that the first mode could be considered the worst one, the analysis method
adopted was based on first-order eigenmode imperfections. The knockdown factor was the
ratio of the nonlinear buckling load under the first eigenmode imperfection to the nonlinear
buckling load of the perfect model. As can be seen from Figure 12a, the knockdown factor
decreased from 0.824 to 0.442, with the imperfection size increasing from 0.1 t to 0.5 t,
indicating that the sphere-segmented toroidal shell was a highly imperfection-sensitive
structure. Under small imperfection, the curve of the imperfection analysis had a high slope.
Instead, under large imperfection, the curve had a low slope. These findings indicated
decrease of imperfection sensitivity of the sphere-segmented toroidal shell with increase of
imperfection size.
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As indicated in Figure 12b, the equilibrium path of the imperfect model is similar to
the experimental model, and both show an unstable post-buckling path. The maximum
stress exceeded the yield strength, indicating the occurrence of elastoplastic instability. This
finding was consistent with those of the experiments. Moreover, the post-buckling mode of
ST-1 was similar to that of the ideal model. These results demonstrated that a nonlinear
analysis with the introduction of modal imperfections could be used for the preliminary
investigations of the buckling of sphere-segmented toroidal shells.
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3.4. Effect of Elliptic Imperfections on Sphere-Segmented Toroidal Shells

To study the effect of elliptic imperfections on the buckling of sphere-segmented
toroidal shells, six sets of ellipses were selected, namely, 1, 1.024, 1.047, 1.066, 1.083, 1.095,
and 1.104, for the finite-element analysis, and the analysis method was the same as that
described in Section 3.2. As presented in Figure 13a, the ellipse passed through the center
of all the spherical shells; the long semi-axis of the ellipse was denoted as a, and the
short semi-axis of the ellipse was denoted as b. Notably, the definition of ellipticity was
determined without rings because the values of the semi-axes, a and b, could be defined
more efficiently without rings. Ellipticity was caused by a deviation in the included angles
β and γ (Figure 13b) during manufacturing. Detailed geometric parameters are listed in
columns 1 to 5 of Table 5.
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Table 5. Geometrical parameters and buckling loads of sphere-segmented toroidal shells with
different ellipticities (K).

K α β a b Py Pnon Pinon

1 60.00 60.00 126.35 126.35 11.505 12.615 10.398
1.024 60.79 58.42 127.87 124.84 11.584 12.548 10.412
1.047 61.50 57.01 129.22 123.44 11.582 12.666 10.540
1.066 62.10 55.80 130.41 122.3 11.089 12.548 10.334
1.083 62.59 54.85 131.40 121.37 11.504 12.507 10.497
1.095 62.96 54.07 132.12 120.61 11.682 12.669 10.446
1.104 63.21 53.57 132.59 120.14 11.681 12.600 10.565

As presented in Figure 14, the linear buckling of a sphere-segmented toroidal shell
occurred on the symmetry plane of that shell, which was the farthest part from the two
adjacent rings. Although the ring had an equivalent stress distribution to that of the
resected spherical shell, the difference in stiffness between the ring and sphere caused a
transfer of weak areas. Figure 14 reveals that the instability position of the shell was not
fixed on the major or minor semi-axis; instead, the position was stochastic. This stochastic
position was consistent with the linear analysis results in Table 2, indicating that ellipticity
had little effect on the instability position of a sphere-segmented toroidal shell.
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The trend of the equilibrium paths of the four models was consistent with the results
in Section 3.2 and all equilibrium paths of the four models exhibited instability. The post-
buckling modes and equilibrium paths of the four sphere-segmented toroidal shells, that
were representative, under the effect of ellipticity are presented in Figure 15. The post-
buckling instability position was on the symmetry plane of the spherical shell; this position
differed from that in experimental results. This result indicated the instability position of
ST-1 was not affect by the effect of ellipticity.
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The buckling of sphere-segmented toroidal shells was negligibly affected by ellipticity.
The effect of ellipticity on the first yield load Py, the nonlinear buckling load without
imperfection Pnon, and the nonlinear buckling loads with the eigenmode imperfection
Pinon are presented in Figure 15. Detailed values are listed in the last three columns of
Table 5. As presented in Figure 15, at an approximate ellipticity (K) of 1.047, the curve of
the first yield load exhibited a small fluctuation. Compared with at an ellipticity (K) of
1, the deviations among three type loads of sphere-segmented toroidal shells under the
influence of ellipticity were in the range of 0.1%–3.6%.

3.5. Effect of Completeness Imperfections on Sphere-Segmented Toroidal Shells

To study the effect of completeness on sphere-segmented toroidal shells, the finite-
element analysis method, described Section in 3.2, was conducted on toroidal shells with a
segment number (n) of 1–6. The first eigenmodes obtained from the subspace algorithm
are presented in Figure 16 and the corresponding postbuckling modes are presented in
Figure 17. The critical buckling loads and first yield loads of sphere-segmented toroidal
shells with different segment numbers are presented in Table 6.
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Table 6. First yield load (Py) and nonlinear buckling load (∆ = 0 and 0.1 t) for sphere-segmented
toroidal shells with a segment number (n) of 1–6.

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Py 12.007 11.635 11.362 11.491 11.651 11.505
∆ = 0 12.753 12.350 12.585 12.431 12.420 12.615

∆ = 0.1 t 10.483 10.381 10.244 10.186 10.492 10.398

The eigenmode of a sphere-segmented toroidal shell with different segment numbers
took the form of multiple waves, as presented in Figure 16. This finding was consistent
with the linear analysis results for a single spherical shell [51]. The instability position
was not affected by the number of segments and the position was stochastic. Zhang
et al. explored the effect of completeness on toroidal shell segments [42]. The results
revealed that the buckling load increased with the rotation angle. The difference between
the results of the present study and those of Zhang et al. arise from the distinct design
principles of sphere-segmented toroidal shells [20], which is represented by the consistent
deformation principle.

The post-buckling modes that correspond to linear buckling locations all indicated
localized buckling. As presented in Figure 17, the collapse position of shells was affected
by eigenmodes and was stochastic; these phenomena might result from the sensitive
structure of sphere-segmented toroidal shells under the number of segments from 1–6.
Since single spherical shells [51] have been proven to have closely spaced eigenvalues,
sphere-segmented toroidal shells designed using the principle of consistent deformation
might have closely spaced eigenvalues.

Completeness exerted a small effect on the buckle loads of sphere-segmented toroidal
shells. As indicated in Table 6, the nonlinear buckling load of perfect toroidal shells ranged
from 12.350 to 12.753 MPa. Under small imperfection size, the nonlinear buckling load
ranged from 10.186 to 10.492 MPa.

4. Conclusions

In this study, sphere-segmented toroidal shells were designed, based on structure
optimization results related to bi-segmented spherical shells. The buckling characteristics
of sphere-segmented toroidal shells were proposed, based on numerical and experimental
methods. The main conclusions are as follows:

(1) The deviation between the experimental and numerical analysis results was within
a reasonable range (12.8–13.9%). The collapse position of numerical analysis and the hydro-
static test of ST-1 was consistent. The numerical analysis results of ST-2 sphere-segmented
toroidal shells were different from the hydrostatic test, because the welding imperfections,
stiffness, geometric properties, and thickness were different in the collapse location.

(2) The proposed sphere-segmented toroidal shells are highly imperfection-sensitive
structures with closely spaced eigenvalues. The minimum deviation of the eigenvalues of
adjacent orders was 0, the maximum deviation was only 0.0038%, and the linear buckling
load varied from 26.549 to 26.758 MPa. Imperfection sensitivity analysis verified that the
sphere-segmented toroidal shell was a sensitive structure.

(3) For a nonlinear analysis, the numerical analysis results under the first eigenmode
were consistent with the worst eigenmode imperfection. The post-buckling modes of the
sphere-segmented toroidal shells were all localized dents. A deviation of only 2.2% was
noted between nonlinear buckling loads under the effect of the first mode and the worst
mode; however, the location of the imperfection was different.

(4) The trend of the equilibrium path for sphere-segmented toroidal shells is consistent
with that for spherical shells, revealing instability. The post-buckling mode instability
occurred near the ring, due to geometric imperfection, which is typical for a hemisphere
subjected to external pressure. The post-buckling mode instability occurred on the sym-
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metry plane of the sphere, due to incomplete welding, which is typical for a single sphere
subjected to external pressure.

(5) Ellipticity exerted a negligible effect on the buckling loads of sphere-segmented
toroidal shells. The deviation in various loads of sphere-segmented toroidal shells under
the effect of ellipticity was in the range of 0.1–3.6%. The trend of the equilibrium paths of
the four models with different ellipticities was consistent with the manufactured models,
and all equilibrium paths of the four models exhibited instability. Similarly, completeness
had a negligible effect on the buckling loads of sphere-segmented toroidal shells under a
scenario of small imperfections. The nonlinear buckling load ranged from 10.186 to 10.492
MPa. The post-buckling modes exhibited unpredictability, owing to the presence of closely
spaced eigenvalues. The eigenmode of a sphere-segmented toroidal shell with different
segment numbers took the form of multiple waves.
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