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Abstract: Based on the solidification heat transfer model and the CAFE model, the solidification
behavior and structure of 2311 die steel, with a cross-section dimension of 415 × 2270 mm at different
casting speeds, specific water flow and superheat, is numerically simulated. Nail-shooting and
acid-etching experiments are carried out on the slab to verify the model’s macroscopic size. With the
increase in casting speed, the slab’s central equiaxed grain ratio (ECR) decreases and the average grain
size increases. The increase in superheat promotes the growth of columnar grains and inhibits the
growth of central equiaxed grains. When the superheat increases from 23 to 38 K, the ECR decreases
from 43.2 to 29.64%, and the average radius of grains increases from 0.89 to 1.01 mm. With the
increase in specific water flow, the ECR decreases, and the average grain radius is the smallest when
the specific water content is 0.32 L kg−1. Finally, the slab quality is improved by process optimization,
and the central segregation index of carbon decreases from mean value of 1.15 to 1.05.

Keywords: CAFE; equiaxed crystal ratio; macrosegregation; numerical simulation; continuous
casting; process optimization

1. Introduction

As a widely used plastic die steel in the world, 2311 die steel has good anti-rust ability.
With improvement of the internal quality control ability of the continuous casting slab, the
continuous casting process has become the main method to prepare 2311 die steel, but the
center segregation of 2311 in 420 mm extra-thick is very serious [1]. This is mainly because
the extra-thick slab has large thickness, low casting speed and long solidification time,
which makes it easy to produce central segregation in the production process [2,3]. Soft
reduction and electromagnetic stirring are main means to control the macrosegregation of
the casting slab [4,5], which can compensate for shrinkage at the end of solidification and
increase the ECR [6]. Soft reduction technology can obviously improve the center quality
of the slab and effectively improve the quality of the subsequent rolled products [7–9].

The soft reduction technique was developed in the 1990s and is considered the best
way to minimize centerline segregation by reducing the shrinkage cavity to compensate for
negative pressure [10]. Rogberg et al. studied the effect of reduction amount on centerline
segregation in high carbon and stainless steel [11]. Zhu et al. studied the influence of
reduction position and reduction on center segregation by numerical simulation [10]. VAI
believes that when the f s < 30 %, the central porosity and segregation almost does not occur.
At this time, the shrinkage roll gap makes it easy to increase the incidence of internal cracks,
so it is recommended that the best solid phase rate (f s) is 0.30–0.95 [12]. Chen et al. believed
that the central segregation was significantly improved by the soft reduction when the f s is
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between 0.55 and 0.75 [13]. Moreover, with the increase in slab thickness, it is difficult to find
the best optimization parameters. Slabs with a thickness of 210,240 and 300 mm are the most
studied. However, the influence of reduction parameters on macrosegregation were rarely
studied for 420 mm thickness. Only a few people have studied the optimum parameters
for 400 mm thickness [14]. In actual production, the continuous casting process parameters
will affect the solidification end position, thus affecting the reduction position. Therefore,
it is particularly important to determine the soft reduction parameters by studying the
influence of the process parameters on the solidification structure and the position of the
solidification end point of the 420 mm extra-thick slab. To determine the solidification end
point, it is necessary to measure the solidified shell thickness of the continuous casting slab.
Because a nail-shooting test is convenient and accurate [15], the nail-shooting method is
commonly used to determine the solidified shell thickness of continuous casting slabs.

In addition, macrosegregation is also closely related to the solidification characteristic
structure [16,17]. This is mainly because macrosegregation is closely related to the liquid
phase flow between dendrites [18–20], and grain size and the ECR will affect the liquid
phase flow between dendrites [21–23]. Therefore, it is valuable to study the grain size and
ECR of the continuous casting slab. Although research has provided some useful informa-
tion for practical production, there are few studies on the simulation of the solidification
structure of ultra-thick slabs.

In this paper, the solidification heat transfer model of a 2311 die steel slab with an area
of 2270 × 415 mm2 is established by ProCAST software, and the accuracy of the model is
verified by a nail-shooting experiment and surface temperature measurement. Then, the
solidification structure of the slab is simulated and verified by an acid etching test. The
ECR and the average grain size under the different casting speeds, superheats and specific
water are calculated and analyzed. On this basis, the soft reduction position and reduction
amount are optimized. Finally, an industrial test is carried out to verify the optimized
process parameters, which effectively improves the central segregation of the slab.

2. Model Descriptions
2.1. Solidification Heat Transfer Model

To simplify the calculation process of the numerical simulation, the following assump-
tions are made [24]:

1. Heat transfer along the casting direction is ignored.
2. The heat exchange of the slab in the secondary cooling zone is described by the heat

transfer coefficient.
3. The influence of mold vibration and protective slag film on heat transfer is ignored.
4. The effect of fluid flow on heat transfer is described by adjusting the thermal conductivity.

Equations (1) and (2) are the two-dimensional heat transfer-governing equations for
slab continuous casting:

∂

∂x

(
λ

∂T
∂x

)
+

∂

∂y

(
λ

∂T
∂y

)
= ρ

∂H
∂T

(1)

H =
∫ T

0
CPdT + L ( 1 − f s ) (2)

where T is the temperature, t is the time, ρ is the liquid density, CP is the heat capacity, λ is
the effective thermal conductivity, L is the latent heat of fusion and fs is the solid fraction.
The main chemical compositions of 2311 die steel are listed in Table 1. The composition
of steel was inputted into the material database to calculate the density, enthalpy, solid
fraction and other thermal physical parameters.

Table 1. Chemical composition (mass%) of 2311 die steel.

Fe C Si Mn P S Cr Al Ni

95.4 0.398 0.2881 1.43 0.0178 0.0018 1.89 0.02 0.0155
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2.2. Nucleation Model

In 1989, Rappaz [25] proposed a continuous nucleation model based on Gaussian
distribution, as shown in Equations (3) and (4):

n(∆ T) =
∫ ∆T

0

dn
d(∆ T)

d(∆ T) (3)

dn
d(∆T)

=
nmax√
2π∆Tσ

exp[− (∆T − ∆Tn)
2

∆Tσ
2 ] (4)

where ∆T is the undercooling, K; nmax is the maximum nucleation density, m−3 for volume
and m−2 for surface; ∆Tσ is the standard deviation undercooling, K; and ∆Tn is the mean
undercooling, K. The effect of melt movement on the grain morphology cannot be consid-
ered in ProCAST software. The effect of melt movement on the grain morphology can only
be expressed by adjusting nucleation parameters. The effect of fluid flow on the equiaxed
grain rate is described by increasing the number of nuclei, but the effect of melt movement
on the grain morphology cannot be described directly. The nucleation parameters and
growth parameters used in this paper are shown in Table 2.

Table 2. Nucleation parameters of CAFE model.

Parameters ∆TS,max, K ∆TS,σ , K nS ∆TV,max, K ∆TV,σ , K nV

Values 1 0.1 2.5 × 106 2.5 1 3.0 × 109

Note: nV = 0.8 nS
3/2.

2.3. Dendrite Tip Growth Kinetics Model

In casting, the growth kinetics of equiaxed crystals and columnar crystals can be
calculated by the KGT model [26,27]. Based on the marginal stability criterion, Equation (5)
is obtained:

V2 π2Γ
P2D2 +V

mC0(1 − k0)

D [1 − (1 − k0)Iv(P)]
+G = 0 (5)

where V is the dendritic tip growth rate, m·s−1; Γ is the Gibbs-Thomson coefficient, P is
the solutal Peclet number, D is the solute diffusion coefficient, m is the liquidus slope,
C0 is the nominal concentration, k0 is the partition coefficient, G is the temperature gra-
dient, and set as 0, without considering the thermal effect, Iv(P) is the Ivantsov function
Iv(P) = Pexp(P)E1(P) and E1 is the exponential integral.

In the actual calculation process, to accelerate the calculation process, the KGT model
is fitted to obtain the following equation (Equations (6)–(8)) [28]:

V(∆ T) = α2∆T2+α3∆T2 (6)

α2= [
−ρ

2mC0(1 − k)2Γk
+

1
mC0(1 − k)D

]
D2

π2Γ
(7)

α3 =
D

πΓ
· 1

(mC 0)
2(1 − k)

(8)

where α2 and α3 are the fitting polynomial coefficients of dendrite tip growth kinetics
parameters, the units are m·s−1·K−2 and m·s−1·K−3 and ρ is the density of steel.

In this paper, the 2311 die steel is divided into seven binary systems of Fe-C, Fe-Si,
Fe-Mn, Fe-P, Fe-S, Fe-Al and Fe-Cr. The composition c, distribution coefficient k, liquidus
slope m, solute diffusion coefficient D [29] and Gibbs-Thompson coefficient Γ [30] of Fe-X
alloys are shown in Table 3.
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Table 3. Liquidus slope, solute partition coefficient, diffusion coefficient and Gibbs-Thompson
coefficient of binary Fe-X steels.

Element K m/K·(wt.%)−1 D/m2·s−1 Γ/m·K

C 0.16 −87.14 1.1 × 10−8

3 × 10−7

Si 0.61 −44.93 3.5 × 10−9

Mn 0.71 −5.32 2.4 × 10−9

P 0.25 −32.39 1.9 × 10−9

S 0.06 −44.93 3.9 × 10−9

Cr 0.9 −1.73 3.5 × 10−9

Al 1.22 −4.9 3.0 × 10−9

3. Solution Conditions and Model Validation
3.1. Geometric Model

The solidification process of the slab is simulated by the thin−slicing method. The
ProCAST software is used for grid division. The geometric model and mesh are shown
in Figure 1.
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3.2. Initial and Boundary Conditions
3.2.1. Initial Condition

The initial condition is given by Equation (9):

T0= TC (9)

where T0 is the initial temperature, K; TC is the casting temperature, K.

3.2.2. Boundary Condition

In the mold, the heat flux is calculated by Equations (10) and (11) [31]:

qm= (2.688− β
√

t) × 106 (10)
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β =
1.5×(2.688×106 − qc

)
√

lm/v
(11)

where qm is the heat flux of the mold, W·m−2; β is a coefficient depending on the mold
cooling condition, W·m−2·s−1/2; qc is the average heat flux in the mold, W·m−2; lm is the
effective length of the mold, m; t is the time in the mold, s and v is the casting speed, m·s−1.

In the foot roller section and the secondary cooling zone, the heat transfer coefficient
is calculated by Equations (12) and (13):

h1 = α·[581W0.541(1 − 0.0075TW) (12)

h2 = γ·(130 + 350W) (13)

where h1 and h2 are the heat transfer coefficient of the foot roller section and the secondary
cooling zone, W/(m2·K); W is the water flow rate, L/(m2·s); Tw is the temperature of the
environment, K and α and γ are the correction factors.

In the air-cooling zone, the heat flux is calculated by Equations (14) and (15) [32]:

qa = εσ(T4 − Ta
4) (14)

ε = 0.85/(1 + exp(42.68 − 0.02682Ts)0.0115 (15)

where ε is the radiation coefficient and σ is Stefan-Boltzmann constant, 5.67 × 10−8 W/(m2·K4).
The cooling parameters are shown in Table 4.

Table 4. Parameters at different sections of secondary cooling zone.

Secondary Cooling
Zone Length, m Distance from the

Meniscus, m
Water Flow Rate,

L·min−1

Foot roller section (W) 0.29 0.8–1.09 93.4
Foot roller section (N) 0.89 / 161.9

L2 1.68 1.09–2.77 188.2
L3 1.77 2.77–4.54 84.1
L4 1.87 4.54–6.41 75.0
L5 2.13 6.41–8.54 73.8
L6 2.13 8.54–10.64 35.6
L7 4.49 10.67–15.16 71.4
L8 4.71 15.16–19.87 68.9
L9 2.36 19.87–22.23 37.6

L10 5.16 22.23–27.39 63.6
L11 4.75 27.39–32.14 60.2
L12 5.00 32.14–37.61 53.2
L13 7.00 37.61–44.91 64.2

3.3. Model Validation
3.3.1. Validation of Heat Transfer

The surface temperature measured at half of the narrow surface of the slab is com-
pared with the simulation results, as shown in Figure 2. The error between the simulated
temperature and the measured temperature is within 5%. The absolute error is not more
than 40 °C, which indicates that the processing of model boundary conditions is close to
the actual production process. In this paper, the accuracy of the solidification heat transfer
model is further verified by the nail-shooting experiment. The liquid zone thickness at the
end of segment 7 is 84 mm and the actual shell thickness is 331 mm, as shown in Figure 3a.
The liquid zone thickness at the end of segment 8 is 56 mm and the actual shell thickness is
359 mm, as shown in Figure 3b, and the simulated shell thickness is 351.2 mm, with an error
of 2.2%. The liquid core thickness at the end of segment 9 is 17 mm and the actual shell
thickness is 394 mm, as shown in Figure 3c. The solidification end position is 27.54 m from
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the meniscus. The error does not exceed 2.2%, which accurately reflects the solidification
characteristics of the slab continuous casting process.
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3.3.2. Validation of Solidification Structure

The calculated ECR is 29.64%, as shown in Figure 4a. The macrograph of the solidifi-
cation structure after pickling is shown in Figure 4b, and the ECR in the inner arc is about
30.36%. Different colors in Figure 4 represent grain orientation. The experimental and
simulated ECR are almost identical, which indicates the model accuracy is high enough to
predicate the solidification structure of the slab.
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4. Results and Discussion
4.1. Effect of Superheat on Solidification Structure

Under the casting speed of 0.5 m·min−1 and the specific water flow of 0.32 L·kg−1,
the solidification structures with various superheats of 23, 28, 33 and 38 K are simulated.

When the superheat is 23 K, the ECR is 43.2%, as shown in Figure 5a. The ECR is
37.84% when the superheat is 28 K, as shown in Figure 5b. As can be seen from Figure 5c,
the ECR is 32.43%. Figure 5d shows the solidification structure when the superheat is 38 K
and the ECR is 29.64%. With the increase in superheat, the ECR decreases and the columnar
crystals zone expands. At the same time, the width of the columnar crystals increases
significantly. This is because with the increase in superheat, the number of free grains
decreases, which leads to the decrease in the number of nucleation sites at the solid–liquid
interface and the decrease in undercooling degree. This promotes the growth of dendrites
and inhibits the development of equiaxed crystals. In addition, the excessive growth
of dendrites leads to the widening of the columnar crystal zone. This may lead to the
formation of a bridge, making shrinkage more serious. Too low superheat can cause nozzle
clogging. Therefore, it is suggested that the appropriate superheat should be adopted to
obtain fine grains and high ECR.

Table 5 lists the statistical results of grain parameters and distribution under differ-
ent superheats. When the superheat is 23 K, the total number of grains is 20,509, and
when the superheat rises to 38 K, the total number of grains is 17,025. When the su-
perheat increases from 23 to 38 K, the average surface area of the grains increases from
0.8260 × 10−6 to 0.9950 × 10−6 m2, and the average radius of the grains increases from
0.89051 to 1.01031 mm. With the increase in superheat, the number of grains per meter and
per square meter decreases.
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Table 5. Statistical results of grain parameters and distribution in simulated area under
different superheats.

∆T No. Grains Mean Surf/m2 Nl/m Na/m2 Mean Radius/m

23 20,509 0.8260 × 10−6 1.6934921 × 103 1.2106648 × 106 0.89051 × 10−3

28 19,239 0.8802 × 10−6 1.6720469 × 103 1.1356956 × 106 0.93727 × 10−3

33 18,061 0.9379 × 10−6 1.6245649 × 103 1.0664572 × 106 0.97005 × 10−3

38 17,025 0.9950 × 10−6 1.5949357 × 103 1.0050000 × 106 1.01031 × 10−3

4.2. Effect of Casting Speed on Solidification Structure

With a superheat of 38 K and a specific water flow of 0.32 L·kg−1, the solidification
structures with casting speeds of 0.45, 0.50, 0.55 and 0.60 m·min−1 are simulated. When
the casting speed is 0.45, 0.50, 0.55 and 0.60 m min−1, the ECR is 31.08 (Figure 6a), 29.64
(Figure 6b), 28.67 (Figure 6c) and 27.71% (Figure 6d), respectively.

Under the same specific water flow, the ECR decreases with the increase in casting
speed. In the range of 0−15 mm from the slab surface, the cooling rate decreases with the
increase in casting speed, as shown in Figure 7a. The main reason is that with the increase
in casting speed, the residence time of molten steel in the mold decreases, which makes the
export of superheat delayed. This promotes the growth of columnar crystals and reduces
the ECR. In the range of 15−50 mm from the slab surface, the cooling rate increases with
the increase in casting speed, as shown in Figure 7b. This is mainly due to being under the
same specific water; the greater the total water, the higher the cooling intensity, resulting in
a bigger temperature gradient at the solid–liquid interface, thereby promoting the growth
of columnar crystals. The cooling rate is basically the same in the range of 50−220 mm
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from the slab surface, as shown in Figure 7c,d. The cooling water volume is small, so
that there is no significant difference in cooling intensity. As the casting speed increases,
the average grain radius increases, as shown in Figure 8. The reason for this is the short
residence time of the slab in the mold and the secondary cooling zone, which is unfavorable
for eliminating the superheat of molten steel.
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4.3. Effect of Specific Water Flow on Solidification Structure

Four kinds of specific water flow of 0.28, 0.32, 0.36 and 0.40 L·kg−1 were selected
to study the effect of specific water flow on the surface temperature of slab. With the
increase in specific water flow, the liquid core length of the slab decreases. For every
0.04 L·kg−1 increase in specific water flow, the position which superheat is eliminated is
decreased by about 0.25 m, as shown in Figure 9a. Before the slab completely solidified, the
specific water flow has a great influence on the slab surface temperature, especially in the
secondary cooling zone, as shown in Figure 9b. For every 0.04 L·kg−1 increase in specific
water flow, the surface temperature of the slab decreases by about 20 ◦C. As the specific
water flow increases from 0.28 to 0.40 L·kg−1, the superheat−eliminating position and the
solidification position slightly reduces.

With a superheat of 38 K and the casting speed of 0.5 m·min−1, the solidification
structures with the specific water flow of 0.28, 0.32, 0.36, and 0.40 L·kg−1 are simulated.
When the specific water flow is 0.28 L·kg−1, the ECR is 31.08%, as shown in Figure 10a.
The ECR is 29.64% when the specific water flow is 0.32 L·kg−1, as shown in Figure 10b. It
can be seen from the Figure 10c, the ECR is 28.67%. Figure 10d shows the solidification
structure when the specific water flow is 0.40 L·kg−1, the ECR is 27.71%. It indicates that
as the specific water flow increases, the ECR decreases. The main reason is that with the
increase in specific water, the heat transfer coefficient in the secondary cooling zone also
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increases, which makes the cooling intensity increase. The increase in temperature gradient
promotes the growth of columnar crystals and enlarges the columnar zone.
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As the specific water flow increases from 0.28 to 0.40 L·kg−1, the average grain radius
decreases first and then increases, as shown in Figure 11. When the specific water flow is
0.32 L·kg−1, the average grain radius reaches the minimum. With the increase in specific
water flow, the cooling intensity increases, which makes the grain refined. In addition, the
slab surface temperature is low (Figure 9b) and the temperature gradient in the thickness
direction is large, which promotes the growth of columnar crystals. When the specific water
is greater than 0.32 L·kg−1, the cooling intensity is further enhanced. This promotes the
growth of columnar crystals; the columnar crystals become wider, and the refined equiaxed
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crystals are not enough to offset the increase in grain size caused by the expansion of the
columnar crystal region. Therefore, the grain size increases.
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4.4. Optimization of CC Process Parameter

When the specific water flow is 0.32 L/kg, the average grain size reaches the minimum
value. Therefore, the specific water flow does not need to be adjusted. According to the
simulation results, the increase in casting speed will reduce the ECR and increase the
average grain size. Therefore, the adjustment of the process parameters has little effect on
the improvement of central segregation.

The center porosity and centerline segregation of the 2311 die slabs are difficult to
control. The current control methods mainly include secondary cooling system control,
soft/heavy reduction, electromagnetic stirring, etc. The soft reduction is an important
method to reduce the center porosity and centerline segregation of the slab. Therefore, the
soft reduction process of the slab is optimized. Taking the BT/50 and S355 slab of Xinyu
Steel as the research object, the slab center quality was improved by soft reduction when
the f s is between 0.65 and 0.75 [33]. In this paper, when the solid fraction is between 0.7
and 0.8, soft reduction is used to improve the central segregation.

Through the previous calculation and analysis, the slab has completely solidified when
it is 27.54 m away from the meniscus. The central solid fraction at the end of segment 7
is less than 0.3. For every 0.04 L·kg−1 increase in specific water flow, the position which
superheat is eliminated is decreased by about 0.25 m, as shown in Figure 12a. It can be seen
from the Figure 12b that the central solid fraction at the end of segment 8 is greater than 0.3.
Figure 12c shows the central solid fraction at the end of segment 9. From the position of
soft reduction, the solidification end point calculated by the dynamic soft reduction system
is relatively forward, and there is no effective soft reduction at the end of solidification,
which has little effect on the improvement of central segregation and porosity of the slab.
Therefore, it is necessary to move the position of soft reduction backwards (relative to
the casting direction) accordingly. The optimized soft reduction parameters are shown
in Table 6. The slab before optimization is shown in Figure 13a, showing that center
segregation is very serious. Figure 13b shows the slab after optimization.
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Table 6. The soft reduction parameters after optimization.

Reduction Position Reduction Amount/mm

Segment 8 4
Segment 9 4
Segment 10 2

To quantitatively describe the macrosegregation, the carbon segregation index of
the slabs is quantitatively measured by a chemical analysis of the drillings, as shown in
Figure 14. A carbon−sulfur analyzer is used to obtain the carbon content at different
locations in the slab. The carbon segregation index before and after optimization is shown
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in Figure 15. The carbon segregation at the center of the slab is reduced from 1.045 to 0.98.
It proves that the centerline segregation is weakened.
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5. Conclusions

1. The simulation results are verified by a nail-shooting experiment, acid etching and
a surface temperature measurement. The error of the shell thickness and surface
temperature is controlled within 5 %.

2. The ECR decreases with the increase in the casting speed and the specific water flow.
Superheat has a great influence on the ECR, which is mainly because the nucleation
amount in the molten steel decreases with the increase in superheat.

3. The average grain radius increases with the increase in the casting speed and su-
perheat. As the specific water flow increases from 0.28 L·kg−1 to 0.40 L·kg−1, the
average grain radius decreases first and then increases. When the specific water flow
is 0.32 L·kg−1, the average grain radius reaches the minimum.

4. With the optimized the position of soft reduction, the central carbon segregation
is weakened.
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