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Abstract: In this work, the composition of the zinc–aluminum–magnesium alloy coating was designed
to have a fixed aluminum–magnesium ratio of 1:1, while the content of aluminum and magnesium
elements increases gradually within the range of 1–2 wt.%. The micro-morphology of the coating with
different compositions was observed by a scanning electron microscope (SEM). Combined with the
surface distribution results of energy dispersive spectrometer (EDS) analysis elements and the phase
analysis results of diffraction of X-rays (XRD), the phase distribution of the coating is understood. The
statistical calculation of the phase distribution was carried out after staining the SEM image by ImageJ,
This is consistent with the solidification simulation results of the thermodynamic simulation software
(PADAT). The influence of magnesium and aluminum elements on the microscopic morphology
and phase distribution of the zinc–aluminum–magnesium (ZnAlMg) coating was studied, and the
mechanism of action was analyzed. The results show that the volume ratio of binary eutectic phase
(Zn/MgZn2) and ternary eutectic phase (Zn/Al/MgZn2) in the coating tends to increase as the
contents of the two elements elevate. The quantity of MgZn2 is the critical factor for the corrosion
resistance of the coating; the more MgZn2, the better the corrosion resistance.

Keywords: Zn-Al-Mg coatings; coating microstructure; phase distribution; corrosion resistance

1. Introduction

The corrosion of steel has caused huge commercial expenses and subsequently poten-
tial safety hazards with direct and indirect losses reaching about 4% GDP all over the world
every year [1]. The hot-dip galvanizing surface treatment process, as the most cost-effective
and feasible method for large-scale industrial production of steel corrosion prevention,
is still not obsolete after nearly 200 years of development. With the continuous consump-
tion of limited zinc resources and the deteriorating service environment of steel materials,
pure Zn, Zn-Al and Al-Si cannot meet the demand in the status quo [2–5], so it is urgently
needed to develop new high corrosion resistance and long-life hot-dip galvanized coatings.

Zinc–aluminum–magnesium (ZnAlMg), as the innovation of hot-dip plating technol-
ogy in recent decades, has attracted more and more enterprises, universities and research
institutes for its excellent corrosion resistance and edge cutting self-healing [6–10]. There
is a relatively wide addition range of aluminum elements in ZnAlMg, which is mainly
divided into three types: low aluminum (1~3 wt.%), medium aluminum (5~11 wt.%) and
high aluminum (50~55 wt.%). The range of magnesium is small, with the 3 wt.% maximum
addition, and a higher addition will sharply deteriorate the coating quality and cause splash
spontaneous combustion of magnesium particles [11]. Compared with the traditional zinc
coating, the corrosion resistance of ZnAlMg has been greatly promoted for the addition of
magnesium and aluminum elements simultaneously. This is mainly attributed to the phase
of the ZnAlMg, in which in addition to the zinc-rich phase, the Zn/MgZn2 binary eutectic
phase and Zn/Al/MgZn2 ternary eutectic phase also ascend [12]. MgZn2 improves the
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corrosion resistance by leading to the formation of stable dense Zn5Cl2(OH)8·H2O, which
prefers to hydrolyze in alkaline environments [13–15]. Meanwhile, the hardness of ZnAlMg
increased for the addition of magnesium and it is assumed that magnesium can refine zinc
grains and form MgZn2 eutectic structures with a higher hardness [16,17].

Low-aluminum ZnAlMg products, which are mainly used in automobile and house-
hold electric appliances, require high performance stability and surface quality [18,19].
However, the element distribution in the molten zinc bath is not uniform, which is related to
the properties of zinc, aluminum and magnesium, such as the oxidation tendency, density
and alloy phase formation. So, the continuous dip process and feeding of alloy zinc ingots
commonly fluctuate the practical volume ratio between zinc, aluminum and magnesium
elements, as well as the composition and performance of same-batch products. In recent
years, lots of scholars and experts have investigated the effects of aluminum or magnesium
on the coating structure, alloy phase and corrosion resistance, but few focus on the effects
of both aluminum and magnesium elements on the coating under the fixed volume ratio,
which really reflects the actual production process. Under the condition that the Al/Mg
ratio is 1:1 and the both element contents are in the range of 1–2 wt.%, the effect of Al and
Mg on the structure, alloy phase and corrosion resistance of low aluminum ZnAlMg was
studied in this work, which intended to provide theoretical basis and reference value for
feeding of alloy ingots in the zinc molten bath.

2. Materials and Methods

The sample of ZnAlMg coating was prepared by using the self-developed hot-dip plat-
ing simulator (GCA-IV) in the laboratory(CISRI, NELACTM, China). This equipment simu-
lates the conditions of the virtual hot-dip plating production line through flexibly adjusting
the process parameters such as annealing temperature, immersion time and cooling rate.
The experimental substrates were shaped in the dimensions of 120 (length) × 200 (width)
× 0.7 mm (thickness) from commercial Interstitial-Free (IF) steel, then ultrasonic degreas-
ing and cleaning in acetone as pretreatment processes were adopted. The main route is
shown in Figure 1 and specific parameters are the following: the annealing temperature is
800 ◦C; zinc bath is kept at 450 ◦C; the steel plate at 460 ◦C immerses for 3 s. The coating
thickness is controlled around 20 um by adjusting the N2 gas knife flow rate. Finally, the
sample after plating was cooled to room temperature by the rate of 5 ◦C/s Samples with
10 × 10 mm and 60 × 60 mm dimensions were cut from the experimental hot-dip plate and
applied to the microscopic morphology observation and neutral salt spray test, respectively.
The coating compositions are shown in Table 1.
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Table 1. The compositions of experimental coatings.

Coating (wt.%) Al Mg Zn

Zn-1.0Al-1.0Mg 1.05 1.04 97.91
Zn-1.3Al-1.3Mg 1.33 1.35 97.32
Zn-1.6Al-1.6Mg 1.61 1.64 96.75
Zn-2.1Al-2.1Mg 2.11 2.08 95.81

The FEI Quant 650-FEG field emission scanning electron microscope (SEM, FEI Inc.,
Valley City, ND, USA) equipped with energy dispersive spectroscope (EDS, EDAX Inc.,
Mahwah, NJ, USA) was utilized to characterize the microstructure and element distribution
of the coating. A Brooke d8 advance X-ray diffractometer (Brooke Inc., Berlin, Germany)
was used to carry out phase analysis of the coating through a Lynxeye XE detector (Brooke
Inc., Berlin, Germany) and specific parameters were the following: Co target, tube current
40 mA, tube voltage 35 kV, scanning speed 2◦/min.

The solidification alloy phase of the coating was simulated by PANDAT software
(CompuTherm Inc., Middleton, WI, USA). The samples were solidified at a cooling rate of
5 ◦C/s after plating, which is similar to the non-equilibrium solidification in fact. Therefore,
the Scheil solidification model was adopted to simulate the solidification of the coating in
this work.

The volume percentage of the phases was quantified by image analysis. ImageJ
software (National Institutes of Health, Bethesda, MD, USA) was used to convert the
surface/section SEM results into a binary format, and the threshold value was adjusted
appropriately to obtain a clear boundary effect map of different phase structures, and
then different alloys were colored according to different phases [20]. Then, the volume
percentage of each phase structure was obtained by using the digital statistical algorithm of
the software. The research studied the numerical statistics results of the two dimensions of
the longitudinal depth and transverse surface of the coating at the same time, including the
section statistics of the coating length of 5 mm, and the surface statistics of 5 × 5 mm area.

The dynamic polarization curve, corrosion potential (Ecorr) and corrosion current
density (Icorr) were tested on the GAMRY Reference 600 electrochemical workstation
(GAMRY Inc., Warminster, PA, USA). The special parameters were the following: the
dynamic potential polarization solution is 5 wt.% sodium chloride solution (NaCl) solution,
scanning range −0.15~0.4 V (relative to reference electrode of Pt), scanning speed 1 mV/s.
The neutral salt spray test chamber was used to test the corrosion resistance and the experi-
mental temperature of it was 35 ◦C. The NaCl concentration was 50 ± 5 g/L and the pH
value of it reached 6.5–7.2 after atomization. The deposition amount was 1–2 mL/80 cm2 h
with the humidity greater than 95% Relative Humidity (RH). The test samples were taken
out at early corrosion stage, when there is no red rust appearance. After removing the
surface corrosion products, the surface morphology was observed through SEM for the
comparison and analysis of microstructure and phase distribution of the coatings with
different components.

3. Results and Analysis
3.1. Microstructure and Phase Composition

Figure 2 shows the SEM and EDS results of Zn-1.6Al-1.6Mg surface microstructure
and the corresponding Zn, Al and Mg element distribution, respectively. In Figure 2a, it can
be seen that there are mainly three distinct crystalline structures, including the Zn-hcp
single phase uniformly distributed in spherical structure, and the binary and ternary eu-
tectic phase in the shape of thick rod lamellar dendrites and thin rod lamellar dendrites,
respectively. The XRD diffraction pattern of Zn-1.6Al-1.6Mg is shown in Figure 3b, which
indicated that the diffraction peak of Zn phase is most intense and it is much higher than
other peaks. The peaks of MgZn2 and Al phases are generally low, but they still can be
clearly seen. Bruycker et al. [12]. studied thermodynamic analysis on ZnAlMg and con-
firmed that ternary eutectic hcp Zn, fcc Al and MgZn2 was formed at a certain temperature
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of the composition of 93.6 wt.%Zn-3.9 wt.%Al-2.4 wt.%Mg. They reported that under rapid
cooling conditions, MgZn2 preferred to form, rather than the thermodynamically stable
Mg2Zn11 phase. Similarly, only the MgZn2 phase was found, in this study, to respond
well [20–23].
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According to the element distribution in Figure 2b–d, Zn elements are distributed
in the whole coating and only slightly reduced at the grain boundary. Meanwhile, Mg
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elements are distributed in binary and ternary eutectic phases with Al elements only
obviously arising in the ternary eutectic phase area. Corresponding to the XRD diffraction
results in Figure 3, it confirmed that the spherical structure is the Zn phase, the coarse
rod lamellar dendrite structure is the binary eutectic phase composed of Zn and MgZn2,
and the thin rod lamellar dendrite structure is the ternary eutectic phase composed of Zn,
MgZn2 and Al, which is consistent with the results in the literature [12,20].

The micro-morphology and phase composition of the coating directly affect its pro-
tective performance. In this study, the content of magnesium and aluminum is limited to
1–2 wt.%, and the content of Al and Mg is increased with the 1:1 Al/Mg ratio simultane-
ously. The scanning electron microscope photos of the coating cross section and surface
section are shown in Figures 4 and 5, respectively. It can be seen that the microstructures
with different components coatings are composed of a zinc-rich phase (Zn), binary eutectic
phase (Zn, MgZn2) and ternary eutectic phase (Zn, MgZn2, Al). However, the volume ratio
of each phase in the coating with different components is apparently different.

In order to quantitatively analyze the microstructures between different coatings,
ImageJ software was used to dye the cross section and surface (Figures 4 and 5) and
perform statistics on the volume ratio of various phases. The specific statistical results of
cross section and surface are shown in Figure 6. The cross-section statistics show that the
volume ratio of binary alloy phase increased gradually with the increase of the magnesium
and aluminum contents, while the ternary alloy phase did not significantly fluctuate.
In addition, the results of surface statistics displayed the similar trend of binary alloy phase
with minor increase trend of ternary alloy phase.
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The reason for the discrepancy of statistical results between the cross-section and
surface may be attributed to the different cooling rates of the longitudinal depth during
the nitrogen purging and cooling process. The whole solidification process belongs to
the non-equilibrium state, which leads to the difference of the microstructure and phase
distribution between non-equilibrium solidification state and equilibrium solidification
state. The solidification process initiates from the surface, and the nucleation point nucleates
and evolves from the surface to core, accompanied by gradual growth [1,24].
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3.2. Thermodynamic Calculation and Solidification Simulation

Under the same cooling rate process conditions, the solidification curve of the ternary
system varies with the variety of coating composition [24,25]. Solidification simulation
calculation of four alloy components carried out with PANDAT software portrays the
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schematic diagram of nonequilibrium solidification (Scheil) curve of ternary alloy coating,
as shown in Figure 7. With the temperature decreasing, the liquid phase starts to precip-
itate a solid zinc-rich phase, and then a binary eutectic phase (Zn/MgZn2) and ternary
eutectic phase (Zn/MgZn2/Al) appear successively. Along with the content of the two
elements ascending from 1.0 to 2.1 wt.%, the precipitation temperature of the hcp Zn phase
during solidification is gradually reduced, which also delays the initial precipitation of the
binary eutectic phase, while the precipitation temperature of the ternary eutectic phase
is consistent.
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The solidification conditions and the final solidification structure distribution are
obviously different even though the overall solidification process is alike. We can obtain
the phase fraction of ternary system with different contents of aluminum and magnesium
elements after non-equilibrium solidification by the database provided by the software as
the calculation parameter. With the increase of element content, the binary and ternary
alloy phase simultaneously increase in Figure 8a, which is consistent with the trend of the
statistical results in Figure 6.
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There are two reasons for this phenomenon: primarily, the alloy composition with
higher element contents forms a binary eutectic layer relatively later (under the same cool-
ing rate after plating), which means that MgZn2 appears later. However, the temperature at
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which the ternary eutectic phase appears is the same, which results in a shorter time for the
formation of the binary eutectic phase. At the same time, according to the MgZn2 fraction
shown in Figure 8b, it also gradually increases with the increase of the element content.
This shows that the binary eutectic reaction occurs faster in the coating with higher element
content. As a result, the fluctuation of the phase fraction of the binary eutectic phase in
different composition coatings is slight.

Secondly, since the aluminum only exists in the ternary eutectic phase, adding more
aluminum will cause it to solidify in the ternary eutectic phase. Therefore, the addition of
elements with the same aluminum–magnesium ratio will lead to a significant increase in
the volume ratio of the ternary eutectic phase.

3.3. Corrosion Performance

In order to study the electrochemical behavior of the coating under the condition that
the aluminum magnesium ratio is 1:1, the zinc aluminum magnesium coating was tested
by dynamic polarization in 3.5% NaCl solution, and the corresponding curve is shown in
Figure 9. The corrosion potential (Ecorr) and corrosion current density (icorr) were calcu-
lated by the Tafel method, as shown in Table 2. With the aluminum and magnesium content
increasing from 1.0 wt.% to 2.1 wt.%, the corrosion potential (Ecorr) and current density
(Icorr) decreased from −1055 mV to −1120 mV and from 5.68 µA/cm2 to 3.02 µA/cm2,
respectively.
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Figure 9. Dynamic polarization curve of experimental coatings in 3.5% NaCl solution.

Table 2. Corrosion potential and corrosion current density of experimental coating.

Coatings (wt.%) Ecorr, mVSCE Icorr, µA/cm2

Zn-1.0Al-1.0Mg −1055 ± 5 5.68 ± 0.5
Zn-1.3Al-1.3Mg −1070 ± 5 4.71 ± 5
Zn-1.6Al-1.6Mg −1185 ± 5 3.95 ± 5
Zn-2.1Al-2.1Mg −1120 ± 5 3.02 ± 5

The results were mainly attributed to the fact that the potentials of both Al and
MgZn2 are more negative than that of Zn (Figure 9). In addition, there is galvanic
corrosion between Zn and MgZn2, and the potential difference between them is 0.5
(VSCE) according to the literature [26]. MgZn2 is dissolved and provided Mg2+ to re-
act with OH− to form the precipitation of Mg(OH)2. The Mg(OH)2 leads to the de-
crease of pH value, thus creating thermodynamic conditions for the formation of water-
insoluble simonkolleite (Zn5Cl2(OH)8·H2O) to prevent its further hydrolysis in alkaline
environment [27]. The added aluminum element mainly participates in the formation of
Mg6Al2(OH)16CO3·4H2O and Zn2Al(OH)6(CO3)1/2·xH2O) in the corrosion process, which,



Metals 2023, 13, 46 9 of 11

as protective corrosion products, inhibit the further corrosion rate, thus improving the
corrosion resistance [28,29]. With the increase in the aluminum and magnesium content,
the volume ratio of binary eutectic and ternary eutectic phases increases, which leads to
the corrosion potential and corrosion current density of the coating being reduced. During
the corrosion process, the increase of binary eutectic and ternary eutectic phases leads to a
greater formation of Zn5Cl2(OH)8·H2O in the corrosion products. In the range of 1–2 wt.%
Mg and Al, the coating with higher Al and Mg content has better sacrificial protection for
steel plates [4,30].

During the neutral salt spray corrosion test, the SEM of the sample surface showed
that MgZn2 in the interdendritic area was preferentially dissolved, as shown in Figure 10.
With the increase of aluminum and magnesium content in the coating, the volume ratio of
binary eutectic and ternary eutectic phases in the coating increased. At the same corrosion
time, the area of MgZn2 dendrite corrosion in the coating with high aluminum and magne-
sium content decreased, indicating that more binary eutectic and ternary eutectic phases
reduce the corrosion rate and improve the corrosion resistance of the coating.
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Figure 10. The SEM results of the experiment coatings, removing corrosion products after 15 weeks
of a cyclic salt spray test’ (a) Zn-1.0Al-1.0Mg, (b) Zn-1.3Al-1.3Mg, (c) Zn-1.6Al-1.6Mg, (d) Zn-2.1Al-
2.1Mg.

4. Conclusions

(1) Under the condition that the ratio of aluminum to magnesium of zinc aluminum
magnesium coating is 1:1, and the content of aluminum and magnesium is in the
range of 1–2 wt.%, with the increase of the two elements, the micro morphology
of the coating has a certain regularity of change, in which the composition of the
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phase type has not changed and is composed of a zinc-rich phase, binary (Zn/MgZn2)
and ternary eutectic phase (Zn/MgZn2/Al). The zinc-rich phase decreases with the
synchronous increase of magnesium and aluminum, and the volume ratio of binary
and ternary eutectic phases increases.

(2) The calculation results of the thermodynamic simulation software are consistent with
the statistical results of the cross section, and surface SEM images of the zinc alu-
minum magnesium coating show the trend of the coating phase distribution, basically.
The content of two elements increases at the same time, resulting in an obvious in-
crease in the volume ratio of ternary eutectic phase Zn/MgZn2/Al. In addition, with
the increase of magnesium and aluminum, MgZn2 shows an obvious increasing trend,
and the presence of aluminum in the ternary eutectic structure is the main reason for
this phase distribution trend.

(3) The quantity of MgZn2 in the coating is the key factor for its corrosion resistance.
The research shows that with the increase of element contents in the coating, the cor-
rosion resistance of the coating will also be improved. The main reason is that the
existence of MgZn2 reduces the corrosion potential of the coating, preferentially dis-
solves in the corrosion process, and plays a role in the protection of sacrificial anode.
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