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Abstract: In order to achieve the goal of lightening the braking system of urban rail trains, SiCp/ZL101
and ZL101 plates were welded by friction stir lap welding (FSLW) to prepare a new type of brake
disc material. The friction and wear properties of the friction-stir-processed composite material
were studied at different temperatures (30 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C, 300 ◦C) to provide a
theoretical basis for the evaluation of braking performance. The experimental results showed that the
sliding friction processes at each temperature were relatively stable, the friction coefficients did not
vary much and the average friction coefficients changed slightly, stabilizing at about 0.4. The wear
extent and the depth of wear scars increased with the increase in the temperature, reaching the highest
at 150 ◦C and then began to decrease. At room temperature, the wear forms were mainly oxidative
wear and abrasive wear; as the temperature rose, under the cyclic shearing action of the grinding ball,
the abrasive debris fell off under the expansion of fatigue cracks and fatigue wear was the main form
at this stage. When the temperature reached 200 ◦C, it began to show the characteristics of adhesive
wear; after 250 ◦C, due to the gradual formation of a mechanical mixed layer containing more SiC
particles and oxides on the wear surface, it exhibited high-temperature lubrication characteristics,
and the wear extent was equivalent to 35% of the wear extent at normal temperature, indicating that
the composite material had good high-temperature friction and wear properties.

Keywords: FSLW; SiCp/ZL101 and ZL101 joint; temperature; friction and wear properties; wear
mechanism

1. Introduction

Aluminum matrix composites (AMCs) have the advantages of light weight, high
tensile strength, high specific stiffness and specific strength, better fatigue strength, cor-
rosion resistance and a low thermal expansion coefficient, etc. [1–6]. They have broad
application prospects in electronics, new energy vehicles, aerospace and other fields [7–9].
Traditional cast iron and cast steel brake discs are not conducive to improving the braking
performance of vehicles due to defects such as heavy weight, poor thermal conductivity
and poor fatigue performance [4,10]. Aluminum-based composite materials are ideal sub-
stitutes for traditional brake disc materials [4,11]. The application in the brake disk has been
widely considered [12]. For example, Venkatachalam et al. [13] prepared Al6082 composite
material by stir casting, and verified through performance research that the composite
material had a small friction coefficient and wear rate, and could be used to prepare auto-
mobile brake discs. Firouz et al. [14] prepared Al-9Si-SiC composite automobile brake discs
with 10% and 20% SiC volume fractions by stir casting, and conducted thermal fatigue
research. The results showed that the thermal fatigue performance of composite brake
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discs was better than that of cast iron brake discs. Sadagopan et al. [15] prepared the Al
6061 metal matrix composite brake rotor with 20% SiC volume fraction by stir casting, and
verified through experiments that the composite brake disc had better efficiency in terms of
braking distance and heat dissipation than the cast iron disc. Daoud et al. [16] prepared
the A359 particle composite brake rotor with 20% SiC volume fraction by sand casting,
and verified that the AMC brake disc had the advantages of wear resistance and higher
thermal conductivity compared with the cast iron brake disc, lighter weight and a more
uniform coefficient of friction; these characteristics reduced braking distance and braking
noise. In addition, there are many studies on the friction and wear behavior of AMCs.
For example, Jin et al. [5] conducted a high-temperature friction and wear test on as-cast
SiCp/A356 composites. The results showed that the wear rate of the as-cast SiCp/A356
was very sensitive to temperature changes, and the friction stability decreased sharply
with the increase in temperature. Hekner et al. [17] used molecular dynamic simulations to
study the nanoscale wear behavior of SiC particle-reinforced AMCs (SiC/Al NCs), and the
results showed that the wear mechanism was changed during high temperature.

Particle-reinforced composite castings prepared by traditional casting technology have
defects such as uneven particle distribution and large porosity [18–20], and do not have
high strength and ductility compared with the base material [21], resulting in the inability
to fully exert the performance of composite materials. To overcome this problem, Friction
Stir Processing (FSP) is widely used in the preparation of composite materials [22–24];
through the continuous stirring motion of the stirring tool, the reinforced particles are
evenly distributed throughout the matrix, which reduces the porosity and improves the
friction and wear properties of the composite [25]. Based on the above research results,
this study proposed a new method for the preparation of composite brake discs, which
used friction stir welding to lap the AMC sheet on the aluminum alloy substrate, and at
the same time used FSP to modify the AMC, to prepare a functionally graded brake disc
material with both wear resistance and toughness. At present, there is much research on
FSW for AMCs. For example, Avettand-Fènoël et al. [26] reviewed the microstructure,
friction stir welding performance and other indicators of the FSW joints of various AMC
materials, and proposed ways to improve them. Zuo et al. [27] reviewed the weldability,
macrostructure and microstructure of joints, mechanical properties of joints, tool wear
and monitoring of SiCp/Al composites, and looked forward to the future development
direction. In addition, the research on the use of FSP to prepare AMCs is also a hot topic
that has attracted much attention. For example, Vijayavel et al. [28] used FSP to process the
surface of the lm25 composite material with a volume fraction of 5% SiC. The experimental
results showed that when the shaft-to-shoulder ratio of the stirring pin was 3.0, the obtained
equiaxed grains were finer [29] and the microstructures processed at a tool traverse speed
of 40 mm/min showed excellent wear resistance. Mohamadigangaraj et al. [30] evaluated
the effects of friction stir processing parameters on the properties of A390-10 wt% SiC
composite using response surface methodology, and the results showed that the speed
of rotation had a higher impact on hardness than other parameters. Kumar et al. [31]
investigated the mechanism for improving the tensile properties, wear properties and
corrosion resistance of stir-cast Al7075–2 wt.% SiC composites by friction stir processing
(FSP); the results showed that nanoparticle-reinforced composites after FSP exhibited better
wear resistance than microparticle-reinforced composites. Kurtyka et al. [32] studied the
effect of the plastic deformation generated in the FSP process on the concentration and
distribution of SiC particles in the cast composite A339/SiCp, and the study showed
that the FSP process significantly improved the distribution of reinforced particles in the
composite. Butola et al. [33] conducted pin-on-disk friction and wear tests on AA7075–2
wt.% SiC composites prepared by FSP, and the results showed that FSP can produce
surface composites with no defects and the uniform distribution of reinforcement materials,
which helped to improve the wear resistance of composites. Aruri et al. [34] studied the
effect of tool speed on the wear properties of aluminum-based surface hybrid composites
manufactured by FSP, and the results showed that reducing the tool speed appropriately
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could reduce the wear rate of Al-SiC/Al2O3 surface composites. Devaraju et al. [35]
studied the effects of rotational speed and reinforced particles such as SiC and Al2O3 on
the wear and mechanical properties of aluminum alloy-based surface hybrid composites
prepared by FSP, and found that the size of the reinforced particles was reduced, and
the wear resistance was greatly improved after FSP. Rana et al. [36] used FSP to prepare
Al 7075-T651-B4C surface composite material, and found that the wear resistance of the
composite material increased by 100% compared with the base material. The FSW process
research on AMCs mentioned in the above research rarely involves the FSLW process. The
existing research on the preparation of AMCs by FSP mainly focuses on the optimization of
process parameters, and the volume fraction of the reinforcing phase is not high (≤10%).
The research on the friction and wear properties of the prepared surface composites is
also mainly concentrated on the normal temperature in the environment. Since the sliding
friction will generate a lot of heat during the braking process, the temperature of the brake
disc will change sharply, which will affect the braking effect (thermal stability, the vibration
of the braking system, braking noise, braking safety and so on [37,38]). The above research
results rarely involve the influence of temperature on the friction and wear properties of
FSPed composite material. The friction and wear properties of this brake disc material at
different temperatures are of great significance for exploring the wear mechanism of the
brake materials at different temperatures and evaluating their braking performance.

ZL101 has excellent casting performance and good weldability, and is widely used in
the preparation and welding of AMCs [39–44]. In this study, the 20% volume of the stir-
casted SiCp/ZL101 composite sheet and the ZL101 sheet was used for the preparation of the
composite material using the FSLW. The friction and wear performances and mechanisms
of the SiCp/ZL101 and ZL101 composite material at 30 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C
and 300 ◦C were studied, providing a theoretical basis for the evaluation of the braking
performance of the brake disc material.

2. Experimental Procedure
2.1. Experimental Materials

In this experiment, the SiCp/ZL101 composite material with 20% SiCp volume fraction
was prepared by stir casting method, and the size of the SiC particles was 1000 mesh. The
material composition of ZL101 aluminum alloy is shown in Table 1. The prepared composite
materials were cut into sheets of size 6 mm × 180 mm × 90 mm by wire cut, ZL101 sheets
were cut into sheets of size 9 mm × 180 mm × 90 mm by the wire cut, and the surface
roughness of the two sheets was processed to Ra 0.8 by machining technology.

Table 1. Chemical composition of the ZL101 aluminum alloy (wt.%).

Aluminum Alloy C Si Mn Mo Cr Ni Mg Al Fe

ZL101 - 6.5~7.5 ≤0.35 - - - 0.25~0.45 Bal -

The experimental equipment in this study was a FSW equipment modified from
a X35K milling machine from Zhengling (Liuzhou, China), and the FSLW process was
adopted to weld SiCp/ZL101 composite plate (upper plate) and ZL101 plate (lower plate)
to prepare multiple sets of welding samples. Figure 1a is a schematic diagram of the FSLW
process. The overlapping rate of adjacent welding passes was 50%. The detailed welding
parameters are shown in Table 2. After the welding samples were prepared, natural aging
was carried out for 7 days.
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Figure 1. (a) Schematic diagram of FSLW; (b) Schematic diagram of the size of the stirring pin;
(c) Schematic diagram of the sampling location of the friction and wear specimen; (d) Schematic
diagram of the sizes of the friction and wear specimen.

Table 2. The parameters of the FSLW process.

No. Speed (rpm) Welding Speed
(mm/min)

Pressing
Amount (mm)

Welding
Pass

Tool Tilt
Angle (◦)

1 375 35.5 0.15 1 3.5

Six friction and wear test specimens were cut from the weld joint of the sample by wire
cut. The sampling location is shown in Figure 1c, and the sample size is shown in Figure 1d.
The surface roughness of the specimens was treated to Ra0.8 by the machining technology.

2.2. Friction and Wear Test

The equipment used in this experiment was MMQ-02G ball-on-disk high-temperature
friction and wear testing machine from Yihua (Jinan, China), and six specimens were
subjected to friction and wear tests in air atmosphere at different temperatures. Figure 2 is
a schematic diagram of the experimental device. As can be seen, the specimen was fixed
on the rotating disk, and the counter-grinding ball was in contact with the surface of the
specimen under the specified load. The distance between the counter-grinding ball and the
center of the rotating disc is the friction radius. After the device was heated to the specified
temperature in the incubator, the rotating disk drove the friction specimen to perform
relative frictional motion with the grinding ball at a specified speed. Si4N3 balls with a
diameter of 6 mm were used as the counter-grinding balls, and the test time was 60 min.
The test parameters of the six specimens are shown in Table 3. During the experiment, the
test parameters such as test force, rotational speed, friction coefficient, temperature, time,
etc., were collected and calculated by the computer in real time, and the wear debris was
collected after each test.
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Figure 2. Schematic diagram of the friction and wear test device.

Table 3. The parameters of the friction and wear test.

No. Speed (r/min) Temperature (◦C) Load (N) Radius of Friction (mm)

1 150 30 6 5
2 150 100 6 5
3 150 150 6 5
4 150 200 6 5
5 150 250 6 5
6 150 300 6 5

2.3. Wear Detection and Structural Characterization

After cleaning and drying the friction and wear specimens with alcohol, the MS-M9000
multifunctional friction tester from Huahui (Lanzhou, China) was used to measure the
wear extent and wear scar depth of the friction and wear specimens by the surface profile
method. Each specimen was measured at four symmetrical parts of the friction ring, and
the arithmetic mean value of the four groups of data was taken.

In order to study the microstructure of the wear surface and wear debris, a Quanta
400 scanning electron microscope (SEM) equipped with an energy-dispersive X-ray spec-
trometer (EDS) (FEI, Eindhoven, The Netherlands) was used to observe the microstructure
of the wear surface and wear debris, and the elemental compositions of the wear debris
were analyzed by EDS.

3. Results
3.1. Macrostructure Morphology of Wear Surface

Figure 3 is a schematic diagram of the macrostructure of the wear surface at 30 ◦C,
100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C and 300 ◦C. As shown in the figure, the wear scar of the
30 ◦C specimen (Figure 3a) is relatively wide, and the wear surface is rough and uneven,
showing a silvery white luster. The wear surface of the specimens from 100 ◦C to 300 ◦C
is black; the wavy folds caused by extrusion deformation can be clearly observed on the
wear surface of the specimen at 100 ◦C (Figure 3b), and the distribution is relatively dense.
The distribution of wavy folds on the wear surface of the 150 ◦C specimen (Figure 3c) is
relatively sparse. The wear surface of the 200 ◦C specimen (Figure 3d) is relatively flat,
with only one obvious wavy fold observed. The wear surfaces of the 250 ◦C and 300 ◦C
specimens (Figure 3e,f) are relatively flat.
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Figure 3. (a–f) Macrostructures of the wear surfaces of 30 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C and
300 ◦C.

3.2. Microstructure Morphology of Wear Surface

Figure 4 is a schematic diagram of the microstructure morphology of the wear surface
at 30 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C and 300 ◦C. As shown in Figure 4a, there are a large
number of pits on the wear surface at 30 ◦C due to the shedding of wear debris, and these
pits are connected to each other, resulting in uneven wear surfaces. The high-magnification
image of the SEM (Figure 4a1) shows that there are fine furrows on the surface of the wear
scar. The wear surface at 100 ◦C (Figure 4b,b1) shows obvious traces of plastic deformation
due to extrusion, and the amount of wear debris falling off is reduced compared with that
at 30 ◦C, and it begins to show obvious peeling marks. At 150 ◦C, the amount and area
of the wear debris shedding on the wear surface (Figure 4c) increase significantly, and
the SEM high-magnification image (Figure 4c1) shows obvious peeling marks. The wear
surface above 200 ◦C shows significant plastic deformation traces. Due to the extrusion of
the grinding ball, the metal softened at high temperature overflows at the edge of the wear
scar to form an obvious flash-like structure (Figure 4d–f). The high-magnification image
of the SEM (Figure 4f1) shows that fatigue cracks are generated on the wear scar surface
under the action of cyclic stress.
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Figure 5 is a graph of the wear extent curve, wear scar depth curve and average
friction coefficient curve at each experimental temperature. As shown in Figure 5a,b, as the
temperature increases, the wear extent and wear scar depth first decrease and then increase,
and then show a downward trend after reaching the highest level at 150 ◦C. The wear
extent above 200 ◦C is equivalent to about 35% of the wear extent at room temperature; the
wear extent and wear scar depth show the smallest dispersion at 30 ◦C, and the largest
dispersion at 150 ◦C. As shown in Figure 5c, the average friction coefficient does not show
significant differences with the change of temperature, and is stable at around 0.4; the
average friction coefficient has the largest dispersion at 300 ◦C.
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Figure 6 is a graph of the friction coefficient changing with time at various exper-
imental temperatures. As shown in the figure, at each experimental temperature, the
friction coefficient does not show large fluctuations with time, reflecting a stable friction
performance.
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3.3. Morphology of Wear Debris

Figure 7 shows SEM micrographs of wear debris at 30 ◦C, 100 ◦C, 150 ◦C, 200 ◦C,
250 ◦C and 300 ◦C. As shown in Figure 7a, the abrasive debris consists of a small amount
of large-sized massive abrasive debris and a large amount of powdery abrasive debris at
30 ◦C. As the temperature increases, the powdery abrasive debris decreases greatly (as
shown in Figure 7b). The size of the massive abrasive debris reaches the maximum at
150 ◦C. As the temperature rises further, the powdery abrasive debris begins to increase,
and the size of the debris tends to be consistent (as shown in Figure 7e,f); obvious cracks
appear on the surface of the massive wear debris at 150 ◦C and 200 ◦C.
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Figure 7. (a–f) SEM micrographs of wear debris of 30 ◦C, 100 ◦C, 150 ◦C, 200 ◦C, 250 ◦C and 300 ◦C.

An energy-dispersive X-ray spectrometer was used to analyze the composition of the
wear debris of 30 ◦C and 150 ◦C. As shown in Figure 8, besides the Al and Si elements
contained in the matrix material, there are more O elements in the wear debris. Since the
grinding balls are Si4N3 ceramic balls with high hardness and stable chemical properties, it
shows that the O element in the grinding debris comes from the oxidation of the composite
material during the wear process.

An energy-dispersive X-ray spectrometer was used to analyze the composition of
the wear debris at 300 ◦C. As shown in Figure 9, the EDS component analysis shows the
presence of Al, Si, O and C. Since the friction and wear experiments were carried out in air
atmosphere, the surface of the exfoliated SiC particles was easily stained with the oxide
produced by the Al matrix. Therefore, according to the EDS analysis results in Figure 9b, it
is judged that the particles in Figure 9a are SiC particles.
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4. Discussion
4.1. Effect of Temperature on the Morphology of Wear Scars

The roughness of sliding friction surfaces plays a crucial role in the wear process [45].
When the grinding balls first come into contact with the composite surface, they only make
contact at a few rough points where these micro-protrusions cover only a small portion of
the surface area. As a result, very high stresses are generated in these small surface areas
and wear occurs at these points [46]. Figure 10 is a schematic diagram of the wear surface
morphology change from low temperature to high temperature. As shown in Figure 10a,
when the temperature is low, the plastic deformation of the contact surface is small, and the
uneven contact point cracks and breaks under the cyclic shearing action of the grinding ball;
the wear process at 30 ◦C fits this type (Figure 3a). In addition, due to the higher fracture
energy [46], the plastic deformation of the metal caused by wear at 30 ◦C is small; a silver-
white rough wear surface is finally formed. As the temperature increases, the plasticity of
the friction surface of the composite material improves; the uneven contact points on the
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friction surface are fractured due to the large plastic deformation under the sliding shear
of the grinding ball and accumulate to the advancing side of the grinding ball. With the
increase in accumulation, due to insufficient shear force, the grinding ball will move on
over the accumulated metal. Wavy folds are formed on the wear surface under this cyclic
friction (as shown at point A in Figure 10b). Since the plasticity of the composite material is
further enhanced with the increase in temperature, more metal needs to be accumulated on
the advancing side of the grinding ball to generate sufficient shear resistance (Figure 10c).
Therefore, the spacing of the wavy folds on the wear surface gradually increases (as shown
in Figure 3b–d).
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Figure 10. (a) Schematic diagram of the change of the wear surface morphology during the friction
and wear process at room temperature; (b) Schematic diagram of the formation of wavy folds on
the wear surface when the temperature of the friction and wear test increased; (c) The temperature
of the friction and wear test was further increased; the spacing of the wavy folds on the wear
surface increases.

When the temperature reaches 200 ◦C, the increased plasticity of the composite leads
to the improvement of the fluidity, leading to flashing at the edge of the wear scar due
to composite spillage (as shown in Figure 4d–f). When the temperature exceeds 250 ◦C,
the wear surface exhibits extensive plastic deformation. Therefore, the wear groove track
formed parallel to the sliding direction is relatively clear (as shown in Figure 4e,f).

4.2. Effect of Temperature on Wear Mechanisms

Friction Stir Processing improves the defects in the as-cast composites [25] and pro-
motes the performance improvement of the composites [47]. Figure 11a is the photo of the
cross-section of the FSLW joint; Figure 11b is the SEM photograph of the as-cast composite
material area at point A not affected by FSP in Figure 11a; Figure 11c is the SEM photo
of the nugget area at point B in Figure 11a. As shown in Figure 11b, the SiC particles
are agglomerated and unevenly distributed, and there are casting shrinkage defects in
the as-cast SiCp/ZL101. The microstructure of the as-cast SiCp/ZL101 is significantly
improved after FSP (Figure 11c). The SiC particles are refined and evenly distributed, and
casting shrinkage cavities are eliminated. The composite material after stirring is denser,
and the wear surface maintains better compactness and continuity [46,48]. Therefore, the
friction process at each temperature is relatively stable, and the fluctuation range of the
friction coefficient is small. A stable friction coefficient can lead to better braking effects,
such as better thermal stability, the reduction of the vibration of the braking system, low
noise, controllable braking safety and so on [37,38].
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as-cast composite material area at point A not affected by FSP in Figure 11a; (c) SEM photo of the
nugget area at point B in Figure 11a.

When the friction and wear test was carried out at 30 ◦C, the micro-protrusions on
the surface of the composite material were plastically deformed under the cutting action
of the grinding ball and the rotating torque; a large amount of heat was generated locally,
resulting in the partial oxidation of the material and it falling off the surface to form wear
debris, leading to pitting on the wear surface. This phenomenon exhibited characteristics
of oxidation wear. The fine scratches on the wear surface along the sliding direction were
mainly caused by the reinforcement particles shed from the matrix [49], indicating that
abrasive wear also occurred during the sliding friction process [50]. It is worth noting that
the stirred composite materials show very shallow grooves after sliding wear, which may
be attributed to the following two factors. First, the SiC particle becomes smaller and has
a good interfacial bond with the Al matrix after the stirring treatment. Good interfacial
bonding persists at 30 ◦C and allows load transfer across the particle/matrix interface.
Therefore, only a small number of SiC particles fracture and detach from the Al matrix.
Secondly, since there is no obvious accumulation of reinforced particles after the stirring
treatment [51], the evenly distributed small-sized and high-hardness SiC particles improve
the hardness, strength and wear resistance of the composite material [52], which can act as
a hard barrier against scratching and plowing by abrasive particles [53]. These two factors
lead to the formation of shallow grooves in the wear surface.

The plasticity of the wear surface is improved with the increase in temperature.
Figure 12 is a schematic diagram of fatigue crack growth on the wear surface. As shown in
the figure, due to the repeated extrusion of the grinding ball, microcracks nucleate at the
stress concentration of the friction surface, gradually break through the wear surface, and
then grow and connect with each other during the sliding process. Eventually, the surface
metal will fall off and become wear debris. This statement is confirmed by the cracks on
the wear debris in Figure 7c,d and the pits with irregular edges formed by the shedding of
wear debris in Figure 4c1,d1. The wear surface exhibits fatigue wear behavior at this stage.
The initiation and growth of the fatigue cracks are further accelerated with the increase
in temperature; the size of the wear debris is larger; the wear extent and wear scar depth
reach the maximum at 150 ◦C. The fatigue wear leads to the shedding of large pieces of
wear debris at 150 ◦C (Figure 7c), and the wear surface is rough and uneven. Therefore,
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the fluctuation range of the friction coefficient becomes significantly larger after 1500s
(Figure 6c), which shows significant differences with the friction coefficient curves at other
temperatures. As shown in Figure 3c, there were wavy folds caused by plastic deformation
on the wear surface at 150 ◦C. When the surface profiling method was used to detect the
wear extent and wear scar depth, if the sampling part was just near the wavy folds, it would
cause a large deviation between different measurements. Therefore, the large dispersion of
wear extent and wear scar depth at 150 ◦C can be attributed to the combination of the high
roughness of the wear surface and the morphology of the measurement sampling part.
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Figure 12. (a) Fatigue crack initiation on the wear surface; (b) Fatigue crack growth on the wear
surface; (c) Fatigue cracks penetrated through the wear surface, and wear debris fell off.

In Figure 4d1, the irregular tear ridges are shown after the wear debris breaks away
at 200 ◦C, and the wear scar depth is significantly smaller, showing the characteristics
of adhesive wear [53], indicating that the further improvement of the plasticity of the
composite material at high temperature leads to the transition of the wear behavior to
adhesive wear. As the temperature further increases, the softening of the Al matrix leads to
the cracking or loosening of the SiC particles. As shown in Figure 9, the EDS component
analysis of the abrasive debris at 300 ◦C shows the presence of small-sized SiC particles
and oxide particles. Figure 13 is a schematic diagram of the sliding friction process at high
temperature. As shown in Figure 13b, these small-sized SiC particles and oxides aggregate
between the wear surface and the grinding ball, and gradually form a mechanically mixed
layer on the wear surface under the action of cyclic load [54]. Elastic deformation occurs
on the wear surface at high temperature [55], and this mechanically mixed layer is more
likely to cause shear instability on the sliding friction surface [56,57]. Meanwhile, the wear
surface maintains better compactness and continuity due to the denser composite material
after stirring [46,48], and is not easily damaged by the shear force of the mechanical mixing
layer, which further reduces the severity of the microplowing action caused by interactions
between abrasive particles. The combined effect of appealing factors leads to a reduced
wear rate at elevated temperatures. On the other hand, the plastic deformation resistance
of the composite decreases due to the increase in temperature. The wear debris adhered
to the grinding ball forms a clear furrow on the wear surface; the wear does not progress
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further, due to the lubrication of the high-hardness mechanical mixed layer [58]. Therefore,
there were no pits on the wear surface caused by the shedding of large-sized wear debris at
250 ◦C and 300 ◦C, and the depth of the wear scars did not continue to increase.
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Figure 13. (a) The SiC particles started to loosen and detach from the matrix during sliding friction at
high temperature; (b) SiC particles and oxides aggregated on the wear surface to form a mechanically
mixed layer.

5. Conclusions

(1) The wear scars of the specimen at 30 ◦C were relatively wide, and the wear surface was
rough and uneven. The wear scars of the specimens at 100 ◦C to 300 ◦C were black,
and obvious wavy folds could be observed on the wear surface. The distribution of
wavy folds was denser and decreased with increasing temperature. The wear surfaces
showed significant signs of plastic deformation at temperatures above 200 ◦C. The size
of the wear debris reached its maximum at 150 ◦C, and obvious cracks appeared on
the surface of the wear debris. Then, the powdery abrasive debris began to increase,
and the size of the wear debris tended to be consistent. The O element was detected
in the wear debris at each temperature.

(2) The friction process at each temperature was relatively stable; the friction coefficient
did not change much. The average friction coefficient changed slightly and was
stable at around 0.4. The wear extent and the depth of wear scars increased with
increasing temperature, reaching the highest at 150 ◦C, and then began to decrease.
The wear extent above 200 ◦C was equivalent to about 35% of the wear extent at
room temperature.

(3) The wear mechanisms were mainly oxidation wear and abrasive wear at 30 ◦C. As the
temperature increased, the wear debris fell off under the propagation of the fatigue
cracks caused by the action of the cyclic shearing of the grinding ball; fatigue wear
was the main form at this stage. When the temperature reached 200 ◦C, it began
to show the characteristics of adhesive wear. Due to the gradual formation of a
mechanical mixed layer containing SiC particles and oxides on the wear surface at
high temperature, it exhibited high-temperature lubrication characteristics and better
high-temperature friction and wear performance.
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