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Abstract: The corrosion of spring steel is very important for vehicle safety. In this work, we con-
ducted an experiment on multi-element micro-alloy composition design; the corrosion resistance of a
60Si2Mn spring was improved by adding Cr, Ni, Cu and other corrosion-resistant elements, and the
corrosion resistance index (I) was increased from 3.21 to 8.62. Hydrogen embrittlement resistance
was studied using a hydrogen permeation experiment and a slow strain rate tensile experiment.
For this study, the following steps were performed: Firstly, the material composition was designed,
and the experimental materials that met the experimental design were prepared according to the
corresponding deformation and heat treatment process; secondly, the experimental materials were
charged with hydrogen; and finally, conventional tensile testing, slow tensile testing and fracture
morphology testing were carried out. A hydrogen permeation experiment was carried out for the
materials. The result showed that, with the increase of hydrogen charging time, the hydrogen content
of two steel samples increased, and the plasticity indexes such as elongation and reduction of the
area appeared in three different stages which rapidly decreased, slowly declined, and then tended to
balance. The uniform NbC nano precipitated phase can double the number of irreversible hydrogen
traps (Nir) per unit volume, and decreased the effective hydrogen diffusion coefficient (Deff) from
1.135 × 10−10 to 6.036 × 10−11. It limited the free diffusion of hydrogen and made the immersed
hydrogen harmless, thus improving the hydrogen embrittlement resistance of corrosion-resistant
spring steel 60Si2Mn.

Keywords: hydrogen embrittlement; spring steel; high-speed rail elastic strip; hydrogen permeation;
hydrogen trap

1. Introduction

With the development of China’s high-speed railway, the demand for spring steel for
high-speed rail has increased rapidly [1]. The spring rod is the most important part of a
railway track fastener, which mainly uses the energy stored during elastic deformation
to reduce vibration and impact. Due to the fast running speed of a high-speed railway,
the amplitude and load of spring rods are greater than those of ordinary lines, and the
high-speed railway is sensitive to small defects and pits [2,3].

The surface of a spring rod for a high-speed railway is coated with a layer of coating to
improve the corrosion resistance before installation [4–7]. In recent years, it was found that,
with the extension of service time, the corrosion of spring rods in railway fasteners became
increasingly serious, and their performance was seriously affected. There was a risk of
failure and fracture, which greatly threatened the service life of spring rods. Therefore, it
is very important to develop spring steel that not only has the mechanical properties of a
spring rod for high-speed railway but also has excellent corrosion resistance [8,9].

As the tensile strength of spring steel is becoming higher and higher, the problem of
hydrogen embrittlement caused by high strengthening is becoming more prominent [10,11].
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On the one hand, hydrogen comes from the hydrogen in the spring steel manufacturing
process [12]. On the other hand, in the actual service process, hydrogen atoms are generated
on the steel’s surface due to the cathodic corrosion reaction [13], which causes the increase
of the hydrogen concentration in the steel solution. When the concentration of hydrogen
atoms reaches a certain threshold, the crack initiation process accelerates the propagation
and, finally, hydrogen embrittlement failure and instant fracture occur [14,15]. There are
many types of research on the hydrogen embrittlement mechanism [16,17], including
hydrogen pressure theory, dislocation interaction theory, hydrogen reducing surface energy
theory, and hydrogen induced local plastic deformation theory, etc. [18]. The factors
affecting hydrogen embrittlement sensitivity include the strength, microstructure, and
hydrogen trap of steel. Domestic research mainly focuses on martensitic steel, dual-phase
steel, and transformation-induced plasticity steel [19,20], while research on spring steel
is rare. Especially in recent years, the spring rods for high-speed rail have been widely
used [21]. It is of great significance to ensure the hydrogen embrittlement resistance of
spring steel [22,23] and develop spring steel with good corrosion resistance and hydrogen
embrittlement resistance [24,25].

Masoud Moshtaghi and Tomoki Doshida [26,27] et al. have conducted relevant re-
search to investigate the joint effect of temperature and strain rate on the hydrogen em-
brittlement properties of martensitic steel. At 50 ◦C, the elongation loss first increases
and then decreases with a decrease of the strain rate. It was first reported that, at the
low strain rates, hydrogen embrittlement susceptibility was mitigated by temperature
due to an increase in the hydrogen effusion to the surface of the material and the release
of a significant amount of hydrogen before the yield point due to the temperature effect.
At 25 ◦C, elongation loss increases with decreasing strain rate, since at the lower strain
rates, the hydrogen can interact with mobile dislocations, which finally leads to H-induced
fracture. The specimen fractured under elastic stress in the presence of hydrogen showed,
macroscopically, a brittle fracture without necking. The fractured surface was attributed
to localized plastic deformation, since the morphology of the microscopic fracture surface
was mostly a quasi-cleavage fracture. The increased lattice defects in the near-fracture
area were subsequently removed by annealing at 200 ◦C. The mean positron annihilation
lifetime measured with the PPMA for a fractured specimen was longer in the near-fracture
area than in other areas. Thus, the most probable reason for the increase in the amount of
lattice defects can be ascribed to an increase in the amount of vacancies or vacancy clus-
ters. Regarding hydrogen embrittlement involving microscopic plastic deformation, the
localized enhanced vacancies due to interactions between dislocations and hydrogen under
elastic stress directly caused ductility loss, because ductility loss occurred even though
hydrogen was completely removed by degassing before the tensile test. Besides hydrogen
content and applied stress, the time of formation and the accumulation of vacancies are
also concluded to be important factors causing hydrogen embrittlement. There is no report
on the application of the above research results to the railway spring rod.

In this paper, through the rolling and heat treatment process, the composition and
content of a multi-element micro-alloy were designed to precipitate the NbC nanophase,
which can double the number of irreversible hydrogen traps (Nir) per unit volume based
on meeting the service conditions of corrosion-resistant spring steel. The hydrogen evenly
distributed in the grain can inhibit the hydrogen embrittlement of high-strength spring steel
and solve the problem of hydrogen embrittlement and hydrogen damage of high-strength
spring steel under the condition of ensuring corrosion resistance. It has important theoreti-
cal value for developing and perfecting the research on hydrogen embrittlement resistance.

2. Materials and Methods

The experimental sample materials were corrosion-resistant 60Si2Mn NH spring steel
(referred to as material A) and conventional 60Si2Mn spring steel (referred to as material
B). Their chemical compositions are listed in Table 1. Based on material B, the atmospheric
corrosion of material A was improved by adding elements such as Cu, Ni, and Cr, which
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can improve the corrosion resistance of the material. The trace Nb was added, forming
the second phase of NbC to refine the grains. The relevant samples were prepared by hot
rolling and heat treatment. The heat treatment process of material A was at 960 ◦C for
0.5 h, 847–860 ◦C for oil quenching, 485 ◦C for tempering, and 1.5 h for holding. The heat
treatment process of material B was at 960 ◦C for 0.5 h, 860–880 ◦C for oil quenching, 440 ◦C
for tempering and 1.5 h for holding. The hydrogen brittleness resistance was studied using
a slow strain rate tensile test and a hydrogen permeation test. The hydrogen embrittlement
resistance of the experimental steel was evaluated according to the change of mechanical
properties before and after hydrogen charging, the effective hydrogen diffusion coefficient,
and the number of hydrogen traps per unit volume during hydrogen permeation.

Table 1. Chemical composition of spring steel (Mass Fraction, %).

Material C S Si Mn P Cr Ni Cu Nb

Material A 0.60–0.63 0.020 1.50–1.7 0.80–1.00 ≤0.025 0.20–0.35 0.20–0.30 0.25–0.30 0.02–0.03
Material B 0.60–0.63 ≤0.020 1.50–1.7 0.80–1.00 ≤0.025 - - - -

2.1. Electrolytic Hydrogen Charging

The electrolytic hydrogen charging experimental device is a single electrolytic cell
structure. A 1000 mL beaker was used as the electrolytic cell. Six graphite electrodes were
symmetrically placed inside the beaker. The sample was placed in the center of the beaker
and connected to the negative pole of the IDX IT6720 digital display DC stabilized voltage
power supply (ITECH Electronics Co. Ltd., Tokyo, Japan). The sample was used as the
cathode, and the graphite electrode was used as the anode. The graphite electrode was
connected to the positive pole of the power supply. Then, 5% H2SO4 aqueous solution was
taken with 0.3 g/L thiourea as an electrolyte solution, the hydrogen charging current was
15 mA, and the hydrogen charging times were 0.5 h, 1 h, 1.5 h, and 2 h.

2.2. Mechanical Property Test

The mechanical properties were tested using a conventional tensile test and a slow
strain rate tensile test. The slow strain rate tensile test was carried out on a Shimadzu AG-X
universal test machine, and the gauge length of the tensile specimen was 50 mm. The
tensile rate used in a conventional tensile test is 3 mm/min, and the tensile rate used in
a slow strain rate tensile test is 0.1 mm/min. Figure 1 shows the sample size of the slow
strain rate tensile test.
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2.3. Hydrogen Permeation Test

A Devanathan Stachurski double electrolytic cell hydrogen permeation testing de-
vice (Fe-HP-12 metal hydrogen permeability tester, Northeastern University, Shenyang,
China) As shown in Figure 2, was used for the hydrogen permeation experiment. The
hydrogen permeation test process was conducted according to standard ISO17081-2014.
In the experiment, the solution of the hydrogen charging pool was a 0.2 mol/L NaOH
solution + 17 mol/L saturated Na2S solution, and the solution of the hydrogen releasing
pool was a 0.2 mol/L NaOH solution. The hydrogen permeation sample was an 80 mm
(RD) × 50 mm (TD) × 1 mm (ND) sheet steel. Before the experiment, the samples were
electropolished and anodized. The mass fraction of each component in the electropolishing
solution was 70% H3PO4 + 10% H2SO4 + 9% CrO3 + 11% H2O, while the mass fraction of
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the anodized solution was 10% diluted hydrochloric acid. Then, one side of the sample
was plated with nickel. The mass ratio of each chemical in the plating solution used was m
(H2O):m (NiSO4 · 7H2O):m (NiCl2 · 6H2O):m (H3BO4) = 1000:125:22.5:20. During hydrogen
permeation, a sample with a thickness of 1 mm was placed between the hydrogen charging
pool and the hydrogen releasing pool, and the contact area between the sample and the
solution on both sides was 7.065 cm2 (30 mm in diameter). The nickel-plated surface of
the sample was the anode side (hydrogen-releasing side), and the nickel-free surface was
the cathode side (hydrogen-charging side). Nitrogen was continuously introduced into
both electrolytic cells to remove oxygen. The anode side was plated with nickel to prevent
the steel substrate from being oxidized, and the potentiostat parameters were set to make
the sample at potentiostatic polarization with a constant potential of 250 mV. After the
residual current at the anode side decreased to a stable state, the hydrogen charging current
at the hydrogen charging side was set to 4 mA/cm2 to promote hydrogen penetration into
the steel. After the current at the anode side increased to a stable state, the first hydrogen
charging process was completed. After that, the hydrogen charging current was set to zero,
and the anode side current started to decrease. After the anode side current decreased to
a stable state again, the second hydrogen charging was started. The hydrogen charging
parameters were the same as those in the first experiment. After that, the curve of the anode
side current changes with time could be obtained.

1 

 

 

Figure 2. Schematic diagram of hydrogen permeation test device.

According to the ISO 17081-2014 standard, hydrogen permeation parameters such as
hydrogen permeation flux (Jss), effective hydrogen diffusion coefficient (Deff), hydrogen
concentration (C0) on the hydrogen charging side of the sample, number of hydrogen
traps per unit volume (NT), and irreversible hydrogen traps per unit volume (Nir) were
calculated. The calculated formulas are shown in (1)~(6).

Jss =
iss

AF
(1)

De f f =
L2

6tlag
(2)
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C0 =
JssL
De f f

(3)

De f f = DL(1 +
3NT

NA.C0
)
−1

(4)

NT =
NA.C0

3
(

DL
De f f

− 1) (5)

Nir = NT1 − NT2, (6)

where iss is the steady state current density of hydrogen permeation, A; A is the contact area
between the sample and solution, m2; F is the Faraday constant, C/mol; L is the sample
thickness, mm; tlag is the time corresponding to i/iss = 0.63, s; i is the instantaneous current
during hydrogen permeation; DL is the diffusion coefficient of hydrogen in the lattice,
9.5 × 10−5 m2/s; NA is the Avogadro constant, 6.022 × 1023; and NT1 and NT2 are the
number of hydrogen traps per unit volume measured during the first and second hydrogen
permeations, respectively, m−3.

3. Results and Discussion
3.1. Effect of Hydrogen on Mechanical Properties of Spring Steel

The value of I is an index related to the corrosion resistance of the material. The
higher the value of I, the better the corrosion resistance of the material. According the to
Legault–Leckie Formula (7) [28,29]:

I = 26.01(%Cu) + 3.88(%Ni) + 1.20(%Cr) + 1.49(%Si) + 17.28(%P) − 7.29(%Cu)(%Ni) − 9.10(%Ni)(%P) − 33.39(%Cu)2. (7)

The I values of three spring steel samples are calculated by the Formula (7): IA (material A) = 8.62,
IB (material B) = 3.21. From the I value, the corrosion resistance of corrosion-resistant 60Si2Mn NH
spring steel with added corrosion-resistant elements is much higher than that of the conventional
60Si2Mn spring steel.

Table 2 shows the results of the mechanical properties of the experimental steel after conven-
tional tension. It can be seen from the table that the strength, elongation, and hardness of the two
spring steel samples are similar, and the overall mechanical properties of the corrosion-resistant
spring steel are slightly improved. Figures 3 and 4 show the comparison and change of the mechani-
cal property indexes of two types of spring steel after a slow strain rate tensile test after hydrogen
charging for 0.5 h, 1 h, 1.5 h, and 2 h. It can be seen from the figure that the two kinds of experimental
steel show three stages of changes with the increasing hydrogen charging time, that is, the hydrogen
content in the steel increases and the plasticity indexes, such as elongation and reduction of the area,
show a rapid decline, a slow decline and then tend to balance. The change rules of elongation and
reduction of area are consistent. The plasticity index decreases significantly after the hydrogen is
never charged and 0.5 h after the hydrogen is charged, which reflects the damage hydrogen causes
to the plasticity index. With the increase of hydrogen charging time, the hydrogen content in the
steel increases until the hydrogen content of the steel reaches saturation, and the damage gradually
reaches equilibrium.

Table 2. Conventional tensile mechanical properties after heat treatment.

Material Yield Strength
/MPa

Tensile
Strength/MPa

Elongation A11.3
/%

Reduction of
Area/%

Hardness
/HRC

Material A 1470 1594 6.0 30.1 46.9
Material B 1457 1572 5.2 30.6 45.3

At the same time, it can be seen that the plasticity index of corrosion-resistant spring steel A
is better than that of conventional spring material B, and the reduction rate of the plasticity index
caused by hydrogen damage is lower than that of conventional spring steel under the same hydrogen
charging time. However, with the increase of hydrogen charging time, the gap between the reduction
of elongation and the area reduction of the two experimental kinds of steel gradually decreases.
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3.2. Fracture Morphology Analysis
Figures 5 and 6 show the slow strain rate tensile fracture morphology of material B and ma-

terial A. It can be seen that the normal strain rate tensile fracture surface of the two types of steel
without hydrogen charging is dimple morphology. After hydrogen charging, the number of dimples
decreases, and local quasi-cleavage morphology gradually appears. The proportion of quasi-cleavage
morphology increases with the increase of hydrogen charging time. When the hydrogen charging
time reaches 2 h, the area of quasi-cleavage morphology increases significantly. At the same hydrogen
charging time, compared with material B, material A has more dimples and larger sizes of its fracture
morphology. With the increase of hydrogen charging time, the area of quasi-cleavage morphology
increases less.

3.3. Hydrogen Permeation Behavior
There are many hydrogen traps (such as precipitates, grain boundaries, dislocations, vacancies,

etc.) in high-strength steel [30–32], and hydrogen atoms can be enriched on these traps [33]. Delayed
fracture of high-strength steel is caused by room temperature diffusible hydrogen. However, diffusible
hydrogen is not uniformly distributed in steel and it is affected by the nature, size, and distribution
of reversible hydrogen traps [34]. The diffusion process of hydrogen in materials is affected by the
existence of hydrogen traps [31]. One of the effective ways to improve the hydrogen embrittlement
resistance of high-strength steel is to increase the number of hydrogen traps in steel by changing the
chemical composition of the steel and using reasonable heat treatment process [35–37].
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Figure 6. Tensile fracture morphology of material A. (a) Normal strain rate tensile test without
hydrogen charging; (b) Hydrogen filling 0.5 h slow strain rate tensile test; (c) Hydrogen filling 1.0 h
slow strain rate tensile test; (d) Hydrogen filling 1.5 h slow strain rate tensile test; (e) Hydrogen filling
2.0 h slow strain rate tensile test.

Hydrogen traps have a great impact on the solubility, diffusion, and enrichment of hydrogen.
According to the binding energy of traps, hydrogen traps can be divided into reversible traps and
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irreversible traps [38–41]. If the binding energy E of the hydrogen and the trap is large, hydrogen
cannot escape from the trap and participate in diffusion at room temperature [42–44]. Such traps are
irreversible traps. They can absorb hydrogen from their surroundings and prevent enough hydrogen
from concentrating on the potentially dangerous parts that are prone to crack nucleation [45–50].
Therefore, controlling the type, quantity, and distribution of traps is one of the important ways to
improve the delayed fracture resistance of materials [51–57].

Based on the research of Masoud Moshtaghi and Tomoki Doshida et al. [26,27], it can be inferred
that fine carbides that are dispersed and precipitated are generated to refine grains. As a hydrogen
trap with high binding energy, NbC is an irreversible hydrogen trap. A large number of particles are
precipitated inside grains to effectively capture hydrogen, inhibit the diffusion of hydrogen, make
hydrogen in steel evenly distributed, and make invading hydrogen harmless. Nb and C form NbC
particles by adding trace elements of Nb. NbC precipitates in the grain boundary during tempering
hinder the expansion of the grain boundary, which plays a role in refining the grain and improving
the delayed fracture resistance. Figure 7 shows the hydrogen permeation curve of experimental steel
under the same heat treatment process obtained after the hydrogen permeation experiment. In the
first hydrogen permeation process, a large number of irreversible hydrogen traps in the steel have
captured hydrogen, and the captured hydrogen cannot escape from the irreversible hydrogen traps
position. Therefore, in the second hydrogen permeation process, only reversible hydrogen traps
remain in the steel that can capture hydrogen, and the total number of hydrogen traps decreases
significantly. Therefore, the second hydrogen permeation time is shorter than the first one.

Metals 2023, 13, x FOR PEER REVIEW 10 of 13 
 

 

that can capture hydrogen, and the total number of hydrogen traps decreases signifi-
cantly. Therefore, the second hydrogen permeation time is shorter than the first one. 

  
(a) (b) 

Figure 7. Variation of normalized current density with time. (a) Material A; (b) Material B. 

The calculated results of the hydrogen diffusion parameters are shown in Table 3. It 
can be seen that the number of hydrogen traps per unit volume (NT) and the number of 
irreversible hydrogen traps per unit volume (Nir) in material A are significantly increased 
nearly one time compared with material B, and the effective hydrogen diffusion coeffi-
cient (Deff) is significantly lower one time than material B. This is mainly due to the high 
binding energy of NbC in material A, which can be used as irreversible hydrogen traps to 
capture hydrogen in steel, and hydrogen cannot be diffused in steel. It reduces the 
amount of diffusible hydrogen in steel, so the invalidation of hydrogen penetrating steel 
greatly improves the hydrogen solubility and hydrogen embrittlement resistance. 

Research shows that the development of high-strength martensitic steels can control 
the precipitation of C, N and other nano compounds by optimizing the composition de-
sign of micro alloys and matching reasonable heat treatment, and form a benign “hy-
drogen trap”, thus reducing the risk of delayed cracking caused by hydrogen in the 
process of application. This paper compared the precipitation forms and hydrogen trap-
ping sites of Ti, Nb and Cu alloy elements in martensitic steels under different heat 
treatment processes, and evaluated the hydrogen trapping ability of precipitated phases 
in high-strength martensitic steels. The results show that the hydrogen capture capacity 
is ranked as follows: NbC > TiC > grain boundary > e-Cu > dislocation, and the com-
pound addition of microalloying elements can have a better anti-hydrogen embrittlement 
effect [58–60]. 

Table 3. Calculation results of hydrogen diffusion parameters. 

Material 

Deff/(m2.s−1) C0/(mol.m−3) NT/m3 

Nir/m3 First Hydrogen 
Charging 

Second Hydro-
gen Charging 

First 
Hydro-

gen 
Charg-

ing 

Second 
Hydrogen 
Charging 

First Hydro-
gen Charging 

Second Hy-
drogen 

Charging 

Material B 8.146 × 10−11 1.135 × 10−10 3.88 2.61 9 × 1025 4.33 × 1025 4.67 × 1025 
Material A 4.681 × 10−11 6.036 × 10−11 4.39 3.29 1.78 × 1026 9.29 × 1025 8.51 × 1025 

0 20 40 60 80 100 120
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Cu
rre

nt
 d

en
sit

y/
i/i

ss

Time/min

 First hydrogen charging
Second hydrogen charging

0 20 40 60 80 100 120
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

Cu
rre

nt
 d

en
sit

y/
i/i

ss

Time/min

 First hydrogen charging
 Second hydrogen charging

Figure 7. Variation of normalized current density with time. (a) Material A; (b) Material B.

The calculated results of the hydrogen diffusion parameters are shown in Table 3. It can be seen
that the number of hydrogen traps per unit volume (NT) and the number of irreversible hydrogen
traps per unit volume (Nir) in material A are significantly increased nearly one time compared with
material B, and the effective hydrogen diffusion coefficient (Deff) is significantly lower one time than
material B. This is mainly due to the high binding energy of NbC in material A, which can be used as
irreversible hydrogen traps to capture hydrogen in steel, and hydrogen cannot be diffused in steel. It
reduces the amount of diffusible hydrogen in steel, so the invalidation of hydrogen penetrating steel
greatly improves the hydrogen solubility and hydrogen embrittlement resistance.

Table 3. Calculation results of hydrogen diffusion parameters.

Material

Deff/(m2.s−1) C0/(mol.m−3) NT/m3

Nir/m3First
Hydrogen
Charging

Second
Hydrogen
Charging

First
Hydrogen
Charging

Second
Hydrogen
Charging

First
Hydrogen
Charging

Second
Hydrogen
Charging

Material B 8.146 × 10−11 1.135 × 10−10 3.88 2.61 9 × 1025 4.33 × 1025 4.67 × 1025

Material A 4.681 × 10−11 6.036 × 10−11 4.39 3.29 1.78 × 1026 9.29 × 1025 8.51 × 1025
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Research shows that the development of high-strength martensitic steels can control the pre-
cipitation of C, N and other nano compounds by optimizing the composition design of micro alloys
and matching reasonable heat treatment, and form a benign “hydrogen trap”, thus reducing the risk
of delayed cracking caused by hydrogen in the process of application. This paper compared the
precipitation forms and hydrogen trapping sites of Ti, Nb and Cu alloy elements in martensitic steels
under different heat treatment processes, and evaluated the hydrogen trapping ability of precipitated
phases in high-strength martensitic steels. The results show that the hydrogen capture capacity is
ranked as follows: NbC > TiC > grain boundary > e-Cu > dislocation, and the compound addition of
microalloying elements can have a better anti-hydrogen embrittlement effect [58–60].

4. Conclusions
In this paper, the corrosion resistance of 60Si2Mn spring steel can be effectively improved by

adding Cr, Ni, and Cu corrosion-resistant elements. the corrosion resistance of 60Si2Mn spring was
improved by adding Cr, Ni, Cu and other corrosion-resistant elements, and the corrosion resistance
index (I) has been increased from 3.21 to 8.62. With the Nb alloy element, the hydrogen embrittlement
resistance of 60Si2Mn spring steel is enhanced. The following conclusions can be drawn:

(1) The mechanical properties of conventional 60Si2Mn spring steel and Niobium-containing
corrosion-resistant 60Si2Mn spring steel decrease after hydrogen charging. The longer the hydrogen
charging time, the greater the decline;

(2) The decreased rate of mechanical properties of Niobium-containing corrosion-resistant
60Si2Mn spring steel is lower than that of conventional 60Si2Mn spring steel with the same hydrogen
charging time. The difference in this value gradually becomes smaller as the hydrogen charging
time increases;

(3) Compared with the conventional 60Si2Mn spring steel, the number of hydrogen traps
(NT) per unit volume of Niobium-containing corrosion-resistant 60Si2Mn spring steel significantly
increases, and the effective hydrogen diffusion coefficient (Deff) significantly decreases. Using the
uniform NbC nano precipitated phase as hydrogen traps can double the number of irreversible
hydrogen traps (Nir) per unit volume, and decreased the effective hydrogen diffusion coefficient (Deff)
from 1.135 × 10−10 to 6.036 × 10−11. It limited the free diffusion of hydrogen and made the immersed
hydrogen harmless, thus improving the hydrogen embrittlement resistance of corrosion-resistant
spring steel 60Si2Mn.
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