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Abstract: In this study, advanced open-cell porous AlSi10Mg-Al2O3 composites have been success-
fully fabricated by replication of NaCl space holders. The tribological behavior under dry sliding
conditions at room temperature of composites with different pore sizes was studied via the pin-on-
disk method, and wear parameters, such as the coefficient of friction (COF) and mass wear, were
determined. Micro-hardness tests have been performed to investigate the change in mechanical
properties after the processing of the composite materials. Microstructural observation was con-
ducted by means of light microscopy and scanning electron microscopy (SEM) along with chemical
micro-analysis using an X-ray energy-dispersive spectroscopy (EDS) system. The obtained results
revealed that the investigated AlSi10Mg-Al2O3 composites possess lower COF and mass wear than
the open-cell porous AlSi10Mg material when subjected to the same test conditions. Furthermore, it
was also reported that the effect of pore size is insignificant to the COF, and in relation to mass wear,
the composite material with the larger pores shows better results.

Keywords: AlSi10Mg-Al2O3; aluminum metal matrix composites; tribological characterization;
mass wear; coefficient of friction

1. Introduction

The production of high-strength and light-weight composites has had a significant
environmentally friendly effect by reducing emissions and improving the tribological
and mechanical properties of manufactured goods intended for use in transportation
and industrial machinery. Interconnected (open-cell) aluminum metal matrix composites
(AMMCs) have been extensively studied by a large number of researchers and serve as
a vital component of many functional and structural engineering applications, such as
the development of wear-resistant and light-weight cylinder liners from aluminum alloy
reinforced with graphite, and the production of energy-saving automotive brake rotors
from aluminum reinforced with SiC [1–5].

One of the most extensively employed processes for obtaining AMMCs is the replica-
tion method. This method is characterized by its lack of sophistication in the experimental
part and high extent of control over the shape, size and pore distribution of final cellular
metal matrix structure [6]. The replication method is based on the fabrication of a pre-
form, which might consist of different materials called space holders, such as NaCl [7–14],
magnesium sulfate [15], carbamide [16], magnesium [17], saccharose [18], Acrowax [19],
ammonium bicarbonate [20] and potassium carbonate [21].

To provide improved wear resistance and hardness to the softer matrix of the AMMCs,
various types of reinforcing phases (RP) are introduced. Some of the most frequently used as
RP materials, having excellent tribological behavior, are ceramic materials such as alumina
(Al2O3) [22–26], silicon carbide (SiC) [22,27–30], graphite (Gr) [31], boron carbide (B4C) [32]
and titanium carbide (TiC) [33,34]. Due to its high thermal stability, good corrosion and
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excellent wear resistance, alumina can be considered a convenient option for reinforcement
of AMMCs [35].

Thanks to its cost-effective application and benefit of effective distribution of the reinforce-
ment, liquid-state processing is a wide-spread route for the fabrication of AMMCs [36–38].

The composite material’s wear behavior is influenced by the technological parameters
of AMMCs fabrication, inasmuch as strong bonding between the metal matrix and the
ceramic particles during the friction results in high wear resistance [39]. The tribological
behavior is also influenced by the test parameters such as applied load and reinforcement
size. An investigation of wear behavior at dry sliding conditions of Al2O3/AA6061 com-
posites concluded that the composites showed improved wear resistance compared to the
base alloy, and when the applied load was increased up to values above 230 N, a serious
wear occurred in both the composite and base alloy [40].

A study of the effect of particle size on the wear behavior under dry sliding conditions
of AA7075/Al2O3 (with 5 wt. % particles with sizes varying between 0.3 and 15 µm)
composites obtained via powder metallurgy reported that the sample with the largest rein-
forcement size showed the finest wear resistance. The authors of the study also conducted
an analysis of variance and determined that the most significant parameter influencing
volume loss is the applied load [35].

Faiz Ahmad and others [41] fabricated AA242/Al2O3 (30 vol. %) through a squeeze
casting method and conducted dry wear tests; their results indicated that with the increase
in the wear load to 100 N, the results indicated an increase in the COF and a wear loss
decrease in the composite when compared with the base material.

M. M. A. Baig and others [42] investigated the wear behavior at dry sliding conditions
of AA6061/Al2O3 and compared it with a gray cast iron brake rotor. The authors reported
lower wear rate results in the composite at lower brake power intensity, and even lower
wear results in the composite at higher brake power intensity due to the better heat
dissipation in the composite.

The authors in [43] obtained AA 1100/Al2O3 (3, 6, 9 and 12 wt. %) composites through
a stir casting method and reported that the optimal results for mass wear and the maximum
hardness were reached at the addition of 12 wt. % of reinforcement.

The aim of the current research is the fabrication of an advanced open-cell AlSi10Mg-
Al2O3 composite material and the investigation of the effect of tribological interaction
parameters, such as mass wear and COF, under dry sliding conditions. Furthermore,
structural and chemical characterization of the composite material is to be performed.

Open-cell AlSi10Mg-Al2O3 composites were obtained through a liquid-state process-
ing route by applying a replication method to produce the preliminary preform in which
NaCl was used as a space holder material. To attain the desired levels of porosity in the
composite and to effectively remove the space holder, a replication method was employed.
The combination of the low-density, fatigue strength, high load-carrying capacity, thermal
conductivity, excellent corrosion resistance and overall low-price characteristics of the
aluminum alloy with the combination of the reinforcement Al2O3 particles with excellent
wear and hardness behavior allows the AMMCs to be integrated in industrial processes for
the manufacture of sliding contact bearings.

This study is a continuation of our previous studies [7,9,25,26] where open-cell
aluminum-based composite skeletons were fabricated using the replication method and
thereafter the skeletons were infiltrated by babbitt alloy.

2. Materials and Methods
2.1. Production Method and Materials

The advanced open-cell composite material consists of a high-porosity AlSi10Mg-
Al2O3 composite skeleton. To attain the desired porosity, a replication method was used
for the preparation of the skeleton. The production process of the preliminary preform
starts with the preparation of a NaCl as a leachable space holder. The space holder particles
were mixed with 6 wt. % water and 5 wt. % Al2O3 particles, after which the mix was
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homogenized in a 3d powder blender—WAB T2F Turbula Heavy-Duty Shaker-Mixer (Willy
A. Bachofen AG, Muttenz, Switzerland). The obtained mixture was compacted at a pressure
of 1.5 MPa into a cylinder-shaped steel container. The moisture removal of the obtained
“green” compacts was performed via drying them in a furnace at 200 ◦C for 2 h. The green
dried compacts were sintered in a furnace at 800 ◦C ± 1 ◦C for 1 h, and the cooling of the
obtained salt leachable preform was performed at room temperature. The next process
step is the infiltration of the salt preforms with molten AlSi10Mg alloy. The preforms were
preheated before fixation in a die at 680 ◦C ± 2 ◦C. The infiltration was conducted by
employing the squeeze casting method with an applied pressure of 80 MPa for 60 s. The
obtained composite material was cooled down at room temperature and the space holder
was removed via dissolution in hot (70 ◦C) distilled water using an ultrasonic device.

The scheme in Figure 1 presents the main stages of the fabrication process of the
high-porosity AlSi10Mg-Al2O3 skeleton.
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Figure 1. Fabrication process of high-porosity AlSi10Mg-Al2O3 skeleton.

The chemical composition of the base alloy used for the infiltration of the salt preform
and the production of the AlSi10Mg-Al2O3 skeleton is given in Table 1. This specific alloy
was chosen because of its low weight, post-processing flexibility and very good thermal and
mechanical behavior. The reinforcement is achieved by Al2O3 particles with sizes varying
between 300 and 400 µm (Figure 2a). Two types of composite skeletons with different
pore sizes were produced. The pore size control was implemented using sodium chloride
particles of two sizes: (1) 800 ÷ 1000 µm and (2) 1000 ÷ 1200 µm (Figure 2b). The porosity
of composite with size (1) is 64%, while the porosity of composite with size (2) is 68%.

Table 1. AlSi10Mg alloy composition.

Element Si Fe Cu Mn Mg Ni Zn Pb Sn Ti Al

Concentration,
wt. % 9.0–11.0 0.55 0.05 0.45 0.2–0.45 0.05 0.10 0.05 0.05 0.15 rest
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Figure 2. SEM images of: (a) reinforcing phase (Al2O3) and (b) space-holder phase (NaCl).

2.2. Characterization Methods

Structural observation was performed via a light microscope, model Polyvar Met opti-
cal system (Reichert Jung, Wien, Austria) and a scanning electron microscope (SEM), model
SH-5500P (Hirox Japan Co Ltd., Tokyo, Japan). Chemical micro-analysis was executed via
an X-ray energy dispersive spectroscopy (EDS) system, model QUANTAX 100 Advanced
(BRUKER, Kontich, Belgium).

Average Vickers hardness (HV) tests were conducted using a Micro-Duromat 5000 com-
puter control semi-automatic micro Vickers hardness tester (Reichert Jung, Wien, Austria).

The wear properties of all test specimens were defined with a Ducom Rotary (Pin/Ball-
on-Disk) tribometer, model TR-20 Ducom (Ducom Instruments Pvt. Ltd., Bangalore, India).
The pin-on-disk installation was used to conduct dry wear tests at room temperature on test
specimens (pins with a spherical tip) that were 10 mm in diameter and 20 mm high with the
following test parameters: load 50 N, linear velocity 1.0 m·s−1 and sliding distance 422 m.
The COF is calculated using the data acquisition system of the tribological installation. A
counter disk with a diameter of 140 mm and consisting of EN-31 steel hardened to 62 HRC
(surface roughness: 1.6 Ra) was used for the wear experiments (Table 2).

Table 2. EN-31 steel composition.

Element C Si Mn Cr Si Fe

Concentration,
wt. % 0.90–1.20 0.10–0.35 0.30–0.75 1.00–1.60 0.20 rest

3. Results and Discussion
3.1. Microstructure

Figure 3 displays SEM images with markers indicating different zones of the test
specimen after wear tests (Figure 3a,b) and before wear test (Figure 3c,d). EDS analysis
results are given in Tables 3 and 4, and in Figure 4. The SEM images were taken after
the conducted tribological experiments with load of 50 N, linear speed of 1.0 m·s−1 and
sliding distance 422 m. The images in Figure 3 show that in the contact surface of all
four test specimens, the dominant wear mechanism under the specified load and linear
speed is abrasive wear. The abrasive wear mechanism is evidenced by the wear scar and
wear direction on the contact zone, created by the sharp asperities during the tribological
process. Due to the greater size of the pore walls and the larger area of surface interaction
in Figure 3a, the abrasive wear mechanism is more evident and prevailing when compared
with Figure 3b, where the area of surface interaction is reduced because of the larger
pores. As a result of the continuous sliding under the applied load and linear speed of
the interacting surfaces, a particular critical limit emerges in which surface deformations
occur; because of the induced strain in the contact zone of the composite, the fatigue wear
mechanism is evident very close to the pore walls of the contact zone of both specimens.
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Figure 3. SEM images of AlSi10Mg-Al2O3 composites: (a) post-tribological tests of composite with
pore size of 800 ÷ 1000 µm; (b) post-tribological tests of composite with pore size of 1000 ÷ 1200 µm;
(c) before tribological tests of composite with pore size of 800 ÷ 1000 µm; (d) before tribological tests
of composite with pore size of 1000 ÷ 1200 µm.

Table 3. EDS analysis of selected zones from Figure 3a of the wear surface of AlSi10Mg-Al2O3 with
pore size of 800 ÷ 1000 µm, at a load of 50 N and linear speed of 1.0 m·s−1, mass norm., %.

No. Analysis Al Fe O Si Mg Mn Other

1 64.26 0.52 33.22 – – 0.42 rest

2 61.06 5.87 32.20 – 0.05 – rest

Table 4. EDS analysis of selected zones from Figure 3b of the wear surface of AlSi10Mg-Al2O3 with
pore size of 1000 ÷ 1200 µm, at a load of 50 N, and linear speed of 1.0 m·s−1, mass norm., %.

No. Analysis Al Fe O Si Mg Mn Other

1 48.04 3.04 41.50 6.33 0.07 – rest

2 53.42 11.23 29.15 4.47 0.18 0.23 rest
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are more evident in zone 2. The above-mentioned arrangement of the chemical 
composition indicates the occurrence of the incorporation of alumina reinforcement into 
the pore walls of the AlSi10Mg-Al2O3 composite skeleton. The smaller peaks of iron 
content are a result of the detachment of asperities from the counter disk.  

The composite skeleton with pore size 1000 ÷ 1200 μm is presented with the two 
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Figure 4. EDS spectra of the following skeleton specimens: (a) related to Table 3, analysis 1, AlSi10Mg-
Al2O3 composite with pore size of 800 ÷ 1000 µm; (b) related to Table 3, analysis 2, AlSi10Mg-Al2O3

composite with pore size of 800 ÷ 1000 µm; (c) related to Table 4, analysis 1, Al alloy with pore size
of 1000 ÷ 1200 µm; (d) related to Table 4, analysis 2, AlSi10Mg-Al2O3 composite with pore size of
1000 ÷ 1200 µm.

The marks in Figure 3a represent the composite skeleton with pore size 800 ÷ 1000 µm,
highlighting two zones of EDS analysis, the results of which are present in Table 3 followed
by their related EDS spectra in Figure 4a,b. It can be seen that in zone 1 and 2 there is
a dominant peak of aluminum followed by oxygen, and small peaks of iron, which are
more evident in zone 2. The above-mentioned arrangement of the chemical composition
indicates the occurrence of the incorporation of alumina reinforcement into the pore walls
of the AlSi10Mg-Al2O3 composite skeleton. The smaller peaks of iron content are a result
of the detachment of asperities from the counter disk.

The composite skeleton with pore size 1000 ÷ 1200 µm is presented with the two
marks in Figure 3b, each one highlighting different zones of EDS analysis, the results of
which are shown in Table 4 followed by their EDS spectra shown in Figure 4c,d. It can
be seen that in zone 1 and 2 there is a dominant peak of aluminum followed by oxygen,
and small peaks of iron and silicon. The above-mentioned arrangement of the chemical
composition suggests the occurrence of the incorporation of alumina reinforcement into
the pore walls of the AlSi10Mg-Al2O3 composite. The smaller peaks of iron and silicon
are as a result of the detachment of asperities from the counter disk and base alloy of the
test specimen.

In order to add more evidence of the occurrence of reinforcement particles, in the light
microscope image of Figure 5c three marks are presented, highlighting different zones of
microhardness measurement of the reinforcement particles of AlSi10Mg-Al2O3 composite
with pore size 800 ÷ 1000 µm. Again, in Figure 6c, the presence of reinforcement in the
other composite skeleton with pore size 1000 ÷ 1200 µm is shown.
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Figure 6. Light microscope images with micro-hardness measurement marks of skeleton specimens
with a pore size of 1000 ÷ 1200 µm: (a) Al alloy matrix without reinforcement; (b) Matrix of AlSi10Mg-
Al2O3 composite, zone of matrix alloy; (c) AlSi10Mg-Al2O3 composite zone containing reinforcement.
The size of the mark is much smaller compared with the marks presented in (a,b) due to measurement
carried out on the reinforcement.
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3.2. Wear and Micro-Hardness Behavior

Average micro-hardness was measured at an applied force 0.05 kg·f, a time until
attaining a specified load of 10 s and a time of retaining the load of 10 s on the cross-sections
of the Al alloy and AlSi10Mg-Al2O3 composites with pore sizes of 800 ÷ 1000 µm and
1000 ÷ 1200 µm. The results are depicted in Figure 7a,b with supporting images of the light
microscope in Figures 5a–c and 6a–c.
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alloy and composite specimen with pore sizes of 800 ÷ 1200 µm and 1000 ÷ 1200 µm; (b) alumina
particles of composite specimen with pore sizes of 800 ÷ 1200 µm and 1000 ÷ 1200 µm.

The results in Figure 7a indicate that at an applied force of 0.05 kg·f, a time until
attaining specified load of 10 s and a time of retaining the load of 10 s, the Al alloy with
smaller pores has a 10% improvement in hardness and the composite skeleton with the
smaller pores has an insignificant improvement of 1% in micro-hardness.

In Figure 7b. the results show a 4% improvement in the hardness for the composite
with the smaller pore size.

The results, with respect to the coefficient of friction at an applied load of 50 N, a
linear speed of 1.0 m·s−1 and a sliding distance 422 m at dry sliding conditions at room
temperature, of the comparison of the base Al alloy skeleton vs. the composite skeleton with
pore sizes of 800 ÷ 1200 µm and 1000 ÷ 1200 µm, are presented in Figure 8. The obtained
results indicate that the introduction of the reinforcement in the composite skeleton with
smaller pores (800 ÷ 1000 µm) decreases the COF by 4.2%, and in the composite skeleton
with larger pores (1000 ÷ 1200 µm) a decrease of the COF by 3.2% is also noted. When
we compare the two composite skeletons with respect to their pore sizes, the result shows
that the COF remains practically unchanged (0.2%), and the same result occurs when we
compare the two Al alloy skeletons with different pore sizes (0.8%).

The results, with respect to the mass wear at an applied load of 50 N, a linear speed of
1.0 m·s−1 and a sliding distance of 422 m at dry sliding conditions at room temperature of
the comparison of the base Al alloy skeleton vs. the composite skeleton with pore sizes of
800 ÷ 1200 µm and 1000 ÷ 1200 µm, are presented in Figure 9. The acquired results point
out that the introduction of the reinforcement in the composite skeleton with smaller pores
(800 ÷ 1000 µm) decreases the mass wear by 53.5%, and in the composite skeleton with
larger pores (1000 ÷ 1200 µm) a decrease of the mass wear by 53.7% is also noted. When
we compare the two composite skeletons with respect to their pore sizes, the results point
out that the mass wear of the composite skeleton with bigger pores has a 6% decrease in
mass wear, and when we compare the Al alloy skeletons with respect to their pore sizes, the
results show that in the skeleton with the bigger pores, there is a decrease in the mass wear
of 5.6%. The results from the comparison between the composites and the results from the
comparison between the Al alloy skeletons are both within the limits of the measurement
error resulting from the scattering of the results.
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The main focus of the present research is the fabrication of an advanced open-cell
AlSi10Mg-Al2O3 composite material and the investigation of the effect of tribological
interaction parameters, such as mass wear and COF, under dry sliding conditions. Fur-
thermore, structural and chemical characterization of the advanced composite material
was performed.

By applying a load of 50 N with a sliding distance of 422 m and a linear velocity
of 1.0 m·s−1 against an EN-31 steel counter disk, the composite skeleton, with respect to
both pore sizes (800 ÷ 1000 µm and 1000 ÷ 1200 µm), indicates great improvement in
mass wear and a slight improvement in COF in comparison with the skeleton material.
Due to the presence of alumina particles in pore walls, the latter are without visible signs
of deformation and the inner pore surfaces are smooth and free of cracks thanks to the
liquid-phase processing technology.

As a result of the inner pore surfaces being smooth and crack-free, with the increase
of the pore size, the pore walls become thinner, and the composite skeleton as well as the
skeleton material with the bigger pores suggest a slight improvement in their results in
relation to the mass wear, and practically no improvement in the COF when compared
with the composite skeleton and skeleton material with smaller pores. The reason for this
is that the interactive surfaces have a decreased area of contact when compared with the
specimen with smaller pores and a bigger surface area of contact.

4. Conclusions

In this study, a process to produce an advanced open-cell AlSi10Mg-Al2O3 composite
skeleton was developed, and the effect of pore size on tribological parameters, such as
the coefficient of friction and mass wear at 50 N load, 1.0 m·s−1 linear speed and 422 m
sliding distance under dry sliding conditions at room temperature, was investigated. The
novelty of the present research is centered in the combination of the (1) low-density, fatigue
strength, high load-carrying capacity, thermal conductivity, excellent corrosion resistance
and overall low-price characteristics of the aluminum alloy with the (2) excellent wear
and hardness behavior of the reinforcing Al2O3 particles, which might result in a potential
practical application for the fabrication of sliding contact bearings.

Based on the performed tribological tests, a number of conclusions can be drawn,
as follows:

• The AlSi10Mg-Al2O3 composite skeleton with pore size 800 ÷ 1000 µm decreases the
COF 4.2% in comparison with the AlSi10Mg skeleton.

• The AlSi10Mg-Al2O3 composite skeleton with pore size 1000 ÷ 1200 µm decreases the
COF 3.2% in comparison with the AlSi10Mg skeleton.

• Based on the above two facts, it can be concluded that the effect of the pore size in
the range 800 ÷ 1200 µm does not affect the COF (1% difference, which is within the
limits of the measurement error).

• The AlSi10Mg-Al2O3 composite skeleton with pore size 800 ÷ 1000 µm decreases the
mass wear 53.5% in comparison with the AlSi10Mg skeleton.

• The AlSi10Mg-Al2O3 composite skeleton with pore size 1000 ÷ 1200 µm decreases the
mass wear 53.7% in comparison with the AlSi10Mg skeleton.

• Based on the above two facts, it can be concluded that the effect of the pore size in the
range 800 ÷ 1200 µm does not affect the mass wear (0.2% difference, which is within
the limits of the measurement error).
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