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Abstract: Nickel-based alloy metal matrix composite (NAMMC) is a new type of composite material
which is expected to replace traditional Nickel-base superalloy used in the manufacture of important
hot-end components in aerospace, naval ships and industrial gas turbine engines due to its excellent
high temperature strength, superior thermal fatigue resistance, high oxidation resistance and thermal
corrosion resistance. However, these outstanding properties make it hard to process these materials
with conventional manufacturing methods such as forging and machining owing to posing problems
of high cost and energy consumptions. Laser additive manufacturing (AM) with a high degree of
machining freedom and a high-energy-density laser beam as heat source has been used for processing
NAMMC hot-end components with superior performance and complicated structure. Nevertheless,
some manufacturing defects of poor bonding, high residual stress, cracking, pore etc. still exist in
laser AM NAMMC parts. Therefore, this paper reviews research progress of laser AM NAMMC
at present. The control method of manufacturing defect and the effect of reinforcements on the
microstructure and mechanical properties of NAMMC are summarized. In addition, the challenges
and prospects of laser AM NAMMC in the future are also discussed.

Keywords: nickel-based superalloy; metal matrix composites; additive manufacturing; mechanical
properties; defects

1. Introduction

Nickel-based alloy has excellent oxidation resistance, corrosion resistance and good me-
chanical properties, and can service at high temperature environments for a long time [1–4].
With the rapid development of industry in recent years, the working environment of Nickel-
based alloy parts has become more and more severe, and higher requirements are put
forward for the properties of high-temperature material. Nickel-based alloy metal matrix
composite (NAMMC) combine the properties of matrix (toughness, formability, heat and
electrical conductivity) and reinforcement (high strength, high modulus, high wear resis-
tance and high temperature resistance). Therefore, NAMMC has better higher temperature
strength and better corrosion-oxidation resistance than nickel-based alloy [5–8]. However,
it is difficult to produce high-strength and complex-structure NAMMC parts with conven-
tional manufacturing methods (forging and machining). Due to a high degree of machining
freedom and a high-energy-density laser beam as heat source, laser additive manufacturing
(AM) has been used for processing NAMMC hot-end components with superior perfor-
mance and complicated structure. Laser AM technology includes laser beam powder bed
fusion (LBPBF) [9], laser metal deposition(LMD) [10] and Laser Engineered Net-Shaping
(LENS) [11]. Among them, LBPBF has a good prospect and potential. This technology uses
the focused high energy laser beam to melt and solidify solid powder of a few tens of mi-
crons in diameter, layer-by-layer, under direct input from a computer-aided design system,
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and finally form a three-dimensional structure of parts [12–15]. Laser AM process can be
regarded as multi-layer and multi-pass welding process. So, only alloys with good welding
properties are suitable to be used as the matrix for preparing full dense NAMMC with high
performance. It has been reported that the comprehensive mechanical properties and form-
ing property of laser AM NAMMCs can be improved by ceramic particle addition [16–18].
Therefore, laser AM NAMMCs are expected to replace traditional Nickel-based alloy used
in important hot-end components with complicated structure in aerospace, naval ships
and industrial gas turbine engines [19–23]. The choice of reinforcement is particularly im-
portant for laser AM NAMMC. The common reinforcement mainly includes carbides (SiC,
TiC) [24–26], nitrides (AlN) [27,28], oxides (Al2O3, ZrO2) [29,30], carbon fibers (CFs) [31],
carbon nanotubes (CNTs) [32,33] and graphene nanoplatelets (GNPs) [34,35]. Ceramic
particles have properties such as high hardness, high strength, high modulus and high
temperature resistance. Therefore, the particle-reinforced metal matrix composites have
higher specific strength, specific stiffness and heat resistance [36,37]. CFs has good resis-
tance to high temperature oxidation and corrosion as well as self-lubricating properties.
Especially, short CFs are more homogeneously distributed in the composites, so the me-
chanical properties of short CFs reinforced composites are isotropic [38,39]. Due to the
extremely small diameter, high Young’s modulus and excellent chemical stability, CNTs
are used as reinforcement for lightweight and high-strength composites [40,41]. GNPs as
a two-dimensional (2D) material with a high aspect ratio can improve the strength and
toughness of metal matrix composites [42,43]. Adding proper amount of reinforcement
particles to nickel-based alloy metal matrix can effectively improve the comprehensive me-
chanical properties of NAMMC. In addition, laser AM is a complex processing technology
and it includes many processing parameters, such as laser beam size, laser power, scanning
speed, layer thickness, and hatch spacing [44]. The optimization of process parameters is
the main means to eliminate manufacturing defects, such as poor bonding, high residual
stress, cracking and pore. Therefore, this also attracts much attention from researchers. At
last, the reinforcement adding and process parameter adjusting impact obviously the mi-
crostructure and mechanical property of laser AM NAMMC. Therefore, this paper reviews
the research progress of laser AM NAMMC from the perspective of reinforcement adding
and process parameter optimizing, and their effect mechanism on the microstructure and
mechanical property.

2. Reinforcement Adding

Ceramic particle reinforcement is the more common reinforcement including
borides [45], carbides [46], nitrides [47], oxides [48] due to their high strength, stiffness,
modulus and refractoriness. Ceramic particles reinforced NAMMCs not only has simple
processing and low cost, but also exhibit the advantages of isotropy. In addition, the ceramic
particles reinforced nickel matrix composites has good high temperature strength, thermal
fatigue resistance, oxidation resistance and thermal corrosion resistance. The yield strength
(YS), ultimate tensile strength (UTS) and elongation (EI) of NAMMCs reinforced with differ-
ent ceramic particles are shown in Table 1. In addition to ceramic particle, GNPs and CNTs
used as reinforcement has attracted much attention for reinforcing nickel-based alloys,
owing to the high strength, high thermal and electrical conductivity [49,50]. Wang et al. [51]
successfully prepared CNTs reinforced Inconel 625 composite using LBPBF technology.
The results showed that the tensile strength (998 MPa) and yield strength (788 MPa) of
LBPBF CNTs/IN625 were higher than the tensile strength (878 MPa) and yield strength
(641 MPa) of LBPBF IN625. Chen et al. [52] successfully prepared GNPs reinforced K418
Nickel-based superalloy composites by LBPBF process. The results showed that the GNPs
distributed uniformly in the matrix, and the grain of GNPs/K418 composites changed from
columnar crystal to equiaxed crystal. The tensile strength (1200 MPa) and yield strength
(1018 MPa) of LBPBF GNPs/K418 were higher than the tensile strength (1078 MPa) and
yield strength (912 MPa) of LBPBF K418 alloy. Meanwhile, the EI of LBPBF GNPs/K418
was increased from 7.13% to 10.3%. The synchronous improvement of the strength and
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plasticity was attributed to the load transfer strengthening, dislocation strengthening and
Orowan strengthening. Table 2 lists the properties of common ceramic particle reinforce-
ments [53]. The difference of physical properties between the reinforcement and the matrix
should be analyzed when the reinforcement is selected, such as physical matching, interface
bonding, coefficient of thermal expansion (CTE), laser absorption rate (LAR), shape and
size. The influence of the reinforcement with different physical properties and geometric
profile on nickel-based alloy are described in detail below.

Table 1. Mechanical properties of NAMMCs reinforced with different ceramic particles.

Reinforcement Material YS (MPa) UTS (MPa) EI (%) Ref.

WC
Hastelloy X 590.0 780.0 37.0

[54]WC/Hastelloy X 670.0 850.0 32.0

TiB2
Hastelloy X 555.9 692.5 6.1

[55]TiB2/Hastelloy X 715.5 1053.2 7.2

TiN
IN718 950.0 - 45

[56]TiN/IN718 1024.0 - 30

Y2O3
IN738 1050 1190 6.7

[57]Y2O3/IN738 1004 1148 7.2

Table 2. The properties of common reinforcements [53].

Particals Density
ρ/(g/cm3)

CTE
α/(10−6/◦C)

Modulus of
Elasticity

E/GPa

Melting Point
◦C

TiB2 1.50 6.39 550 2980
SiC 3.21 5.40 480 2700
TiC 4.93 7.20 360 3140
WC 15.50 2.82 132 2870
AlN 3.26 4.84 310 2200

Al2O3 3.97 6.80 460 2054

2.1. Physical Matching and Interface Bonding

The physical matching and interface bonding between the matrix and the reinforce-
ment should be considered comprehensively when choosing the reinforcement. For in-
stance, the lattice structure difference between TiC particles and nickel-based alloy is
smaller, indicating that the better physical matching is easy to form between TiC ceramic
particles and nickel-based alloy matrix. Cooper et al. [58] investigated the influences of
the reinforcements with different lattice structure, such as SiC, Al2O3 and TiC, on IN625
Nickel-based superalloy manufactured by laser AM. The results showed that the surfaces
of SiC/IN625 and Al2O3/IN625 composites were rough and porous, and cracks exist. How-
ever, the surface of TiC/IN625 composite was smooth and without defects. It can be seen
from Figure 1 that there are many pores and large cracks in SiC/IN625 and Al2O3/IN625
composites, while a denser microstructure appears in TiC/IN625 composite. This indi-
cates that TiC ceramic particle with a better physical matching is suited to be used as the
reinforcement for nickel-based alloys. In addition, the good interface bonding between re-
inforcement and matrix is a key factor in the preparation of high density and high strength
laser AM NAMMC parts. Wang et al. [59] studied the microstructure and mechanical prop-
erties of TiN reinforced IN718 composites. It can be seen from Figure 2 that the interface
between TiN particles and IN718 alloy is compact, and no second phase precipitates at the
interface. In addition, lots of misfit dislocations distribute near the interface, which also
give rise to additional reinforcement effect. Tensile strength of TiN/IN718 composite are
higher than that of IN718 alloy. Hong et al. [60] studied the interface of LMD TiC/Inconel
718 composites, and found that a interface layer with the thickness of 0.8 to 1.4 mu formed
between TiC particles and matrix, as shown in Figure 3. The interfacial layer is formed by
the reaction of matrix and reinforcement into the composition of (Ti, M) C (M: Nb and Mo).
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The typical metallurgical bonding interface is helpful to improve the microstructure and
mechanical properties of Inconel 718 alloy.
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2.2. Coefficient of Thermal Expansion and Laser Absorption Rate

The difference of CTE and LAR between the matrix and reinforcement should be
considered when selecting the reinforcement. If the CTE of reinforcement is far from that
of matrix, a large amount of residual thermal stress is generated inside NAMMC parts
during laser AM process, resulting in high density dislocations around the particles [53,61].
Jiang et al. [62] studied systematically TiC/Inconel 625 composite coating by laser cladding,
and found that high density dislocations distributed around TiC particles (Figure 4), which
was attributed to the difference in CTE between TiC particles (7.74 × 10−6/K) and Inconel
625 (12.8 × 10−6/K). Introduced residual stress increased and the cracking tendency inside
NAMMC parts raised, which was not conducive to the forming property of laser AM
NAMMC. In addition, the reinforcements with higher LAR can improve the forming
quality of laser AM NAMMC parts. Due to the ceramic particles with higher LAR than
the metal, the LAR of NAMMC is higher than that of nickel-based alloy [46,63]. The LAR
of composite powders is calculated by the formula: A = ∑βi Ai (Ai and βi are the LAR
and the volume fraction of the powder, respectively). Table 3 lists the LAR of some metal
materials, ceramics and composites [46,64]. Yang et al. [22] studied the influence of TiB2
on the mechanical properties of Hastelloy-X. It is found from the Figure 5 that the LAR
of TiB2/Hastelloy-X composite increases with the increase of TiB2 content. The increase
in LAR contributes to melting the composite powders and reducing the pore due to more
energy from laser beam absorbed during laser AM process. The UTS of the TiB2/Hastelloy-
X composite was 106% higher than that of Hastelloy-X. Ceramic particles can also improve
the LAR of other metal alloys. For example, Li et al. [65] added TiB2 to AlSi10Mg alloy
and found that the LAR of TiB2/AlSi10Mg composite increased obviously. As a result,
the forming quality of laser AM AlSi10Mg/TiB2 composite was improved and its tensile
strength from 360 MPa to 530 MPa with higher EI at about 15.5%, due to the addition
of TiB2.
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Table 3. LAR of alloys, ceramics and composites powders [46,64].

Material Laser Absorptivity Rate (%)

Ti 0.77
Ni 0.64
Fe 0.64
Al 0.15

TiB2 >0.71
SiC 0.78
TiC 0.82

AlSi10Mg 0.09
TiC/Inconel 718 0.72
TiB2/AlSi10Mg 0.71
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2.3. Shape and Size

Spherical or nearly spherical particles are widely regarded as feasible reinforcements.
Li et al. [66] studied the effect of spherical and non-spherical WC-reinforced on microstruc-
ture, mechanical properties and wear resistance of LMD Inconel 625 superalloy. The study
showed that the wear rate of spherical WC/IN625 composite coatings was smaller than that
of non-spherical WC/IN625 composite coatings. This indicated that spherical WC/IN625
composite coating had higher wear resistance. In addition, the size of the reinforcement
has great influence on the mechanical properties of NAMMC [67]. Cao et al. [68] studied
the effects of micron-TiC and nano-TiC on the microstructure and mechanical properties of
IN625 alloy by laser AM process. The results showed that the grain of nano-TiC/Inconel
625 composite was significantly refined compared with micro-TiC/Inconel 625 composite.
The hardness, tensile properties and wear resistance of the composite samples were signifi-
cantly improved, and the ductility was not significantly reduced. AlMangour et al. [69]
prepared micro-scale and nano-scale TiC particle-reinforced 316L stainless steel matrix by
LBPBF, and analyzed the effect of ceramic particle sizes on the crack propagation of metal
matrix composite. The results showed that the grain size was significantly reduced by
adding nano-scale TiC. It was found that the crack propagated along the boundary of the
molten pool in 316L stainless steel as shown in Figure 6A. But no cracks were found to
appear inside nano-TiC/316L composite (Figure 6C), because nanoscale TiC particles were
able to prevent crack propagation.
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3. Process Parameter Optimizing for Controlling Defect

The manufacturing defect of NAMMC can be reduced by optimizing the process
parameters. Guo et al. [57] successfully prepared Y2O3/Inconel 738 composites by LBPBF.
Figure 7a shows the distribution law of pore and crack in LBPBF Inconel 738 alloy. When
the laser energy density is too high or too low, a large number of pores and cracks appear in
Inconel 738 alloy. When the laser power is 290 W and the scanning speed is 1200 mm/s, the
forming quality of Inconel 738 alloy is the best. It indicates that optimizing the process pa-
rameters is a simple and effective method to reduce the manufacturing defect of NAMMC.
Figure 7b shows the defect distribution of LBPBF Y2O3/Inconel 738 composites. In addi-
tion, Guo et al. found that the Y2O3 particle addition significantly improved the forming
quality of LBPBF Inconel 738 alloy. Zr segregation along grain boundaries was effectively
eliminated and the crack density was reduced. Chen et al. [70] studied the densification be-
havior, microstructure evolution and wear properties of LBPBF TiC/Inconel 625 composites.
Their results showed that there were many defects such as pores and non-fusion in Inconel
625 alloy when laser energy density was 139 J/mm3. When laser energy density reached
208 J/mm3, the sample density reached the highest value. Microhardness reached the
maximum 440 HV. Hong et al. [67] successfully prepared LMD TiC/Inconel 625 composite
with high wear resistance and high strength by optimizing process parameters. They found
that some unmelted TiC particle severely agglomerated in columnar dendrites when laser
energy input per unit length (LEIPUL) was below 72 kJ/m, as shown in Figure 8a,b. The
columnar dendrites seriously coarsened when LEIPUL was 160 kJ/m (Figure 8d). In addi-
tion, areas 1-4 shows the EDX analysis of the chemical composition in the inter-dendrite
matrix of the LMD-processed TiC/ Inconel 625 composites under different LEIPUL. A
large number of TiC particles melted when LEIPUL was above 100 kJ/m (Figure 8c,d)
and the content of element C showed at least double increase. When LEIPUL was in the
range from 72 to 100 kJ/m, TiC/Inconel 625 composite exhibited excellent microstructure
and optimum mechanical properties. Wang et al. [71] studied the process optimization of
oxide dispersion strengthened Nickel-based superalloy by LBPBF. Figure 9 shows the effect
of process parameters on the tensile strength. Figure 9a shows that the tensile strength
decreases with increasing laser power. This is because the higher the laser power, the more
laser energy is input. Excessive laser energy input causes the metal powder to overmelting,
resulting in more porosity and cracks in the sample during the building process. This
eventually caused a decrease in the tensile strength of the sample. Figure 9b shows that
the tensile strength increases first and then decreases as the scanning speed increases. The
lower scanning speed will improve the temperature of melt pool, resulting in an instability
of the melt pool. Excessively high scanning speed results in a low melt pool temperature,
and the metal powder cannot be completely melted. Therefore, lower or higher speeds are
not good for tensile strength. Figure 9c shows that the tensile strength increases first and
then decreases with the increase of hatch spacing. This also indicates smaller or larger hatch
spacing bring manufacturing deficiency for NAMMC, resulting in poor tensile strength.

Metals 2023, 13, x FOR PEER REVIEW 7 of 18 
 

 

 
Figure 6. SEM image of crack propagation with (A) LBPBF 316L; (B) LBPBF micro-TiC/316L com-
posite and (C) LBPBF nano-TiC/316L composite [69]. 

3. Process Parameter Optimizing for Controlling Defect 
The manufacturing defect of NAMMC can be reduced by optimizing the process pa-

rameters. Guo et al. [57] successfully prepared Y2O3/Inconel 738 composites by LBPBF. 
Figure 7a shows the distribution law of pore and crack in LBPBF Inconel 738 alloy. When 
the laser energy density is too high or too low, a large number of pores and cracks appear 
in Inconel 738 alloy. When the laser power is 290W and the scanning speed is 1200mm/s, 
the forming quality of Inconel 738 alloy is the best. It indicates that optimizing the process 
parameters is a simple and effective method to reduce the manufacturing defect of 
NAMMC. Figure 7b shows the defect distribution of LBPBF Y2O3/Inconel 738 composites. 
In addition, Guo et al. found that the Y2O3 particle addition significantly improved the 
forming quality of LBPBF Inconel 738 alloy. Zr segregation along grain boundaries was 
effectively eliminated and the crack density was reduced. Chen et al. [70] studied the den-
sification behavior, microstructure evolution and wear properties of LBPBF TiC/Inconel 
625 composites. Their results showed that there were many defects such as pores and non-
fusion in Inconel 625 alloy when laser energy density was 139 J/mm3. When laser energy 
density reached 208 J/mm3, the sample density reached the highest value. Microhardness 
reached the maximum 440 HV. Hong et al. [67] successfully prepared LMD TiC/Inconel 
625 composite with high wear resistance and high strength by optimizing process param-
eters. They found that some unmelted TiC particle severely agglomerated in columnar 
dendrites when laser energy input per unit length (LEIPUL) was below 72 kJ/m, as shown 
in Figure 8a, b. The columnar dendrites seriously coarsened when LEIPUL was 160 kJ/m 
(Figure 8d). In addition, areas 1-4 shows the EDX analysis of the chemical composition in 
the inter-dendrite matrix of the LMD-processed TiC/ Inconel 625 composites under differ-
ent LEIPUL. A large number of TiC particles melted when LEIPUL was above 100 kJ/m 
(Figure 8c and d) and the content of element C showed at least double increase. When 
LEIPUL was in the range from 72 to 100 kJ/m, TiC/Inconel 625 composite exhibited excel-
lent microstructure and optimum mechanical properties. Wang et al. [71] studied the pro-
cess optimization of oxide dispersion strengthened Nickel-based superalloy by LBPBF. 
Figure 9 shows the effect of process parameters on the tensile strength. Figure 9a shows 
that the tensile strength decreases with increasing laser power. This is because the higher 
the laser power, the more laser energy is input. Excessive laser energy input causes the 
metal powder to overmelting, resulting in more porosity and cracks in the sample during 
the building process. This eventually caused a decrease in the tensile strength of the sam-
ple. Figure 9b shows that the tensile strength increases first and then decreases as the 
scanning speed increases. The lower scanning speed will improve the temperature of melt 
pool, resulting in an instability of the melt pool. Excessively high scanning speed results 
in a low melt pool temperature, and the metal powder cannot be completely melted. 
Therefore, lower or higher speeds are not good for tensile strength. Figure 9c shows that 
the tensile strength increases first and then decreases with the increase of hatch spacing. 
This also indicates smaller or larger hatch spacing bring manufacturing deficiency for 
NAMMC, resulting in poor tensile strength. 

Figure 6. SEM image of crack propagation with (A) LBPBF 316L; (B) LBPBF micro-TiC/316L compos-
ite and (C) LBPBF nano-TiC/316L composite [69].
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10). The yield strength (830MPa) and UTS (1150MPa) of LBPBF TiC/Hastelloy X composite 
are much higher than that the yield strength (690MPa) and UTS (920MPa) of LBPBF Has-
telloy X alloy. Cheng et al. [73] studied the effect of adding Y2O3 on cracks and mechanical 
properties of LBPBF Hastelloy X alloy. It can be seen from Figure 11a that many cracks 
(yellow arrows) were found in the LBPBF Hastelloy X alloy. The results showed that the 
addition of Y2O3 eliminated the crack, and the microstructure uniformity of LBPBF 
Y2O3/Hastelloy X composite was improved (Figure 11). 

Figure 8. High-magnification SEM images showing composite structures of LMD-processed
TiC/Inconel 625 parts using (a) P = 500 W, v = 900 mm/min, LEIPUL = 33 kJ/m; (b) P = 800 W,
v = 900 mm/min, LEIPUL = 53 kJ/m; (c) P = 500 W, v = 300 mm/min, LEIPUL = 100 kJ/m; and
(d) P = 800 W, v = 300 mm/min, LEIPUL = 160 kJ/m [67].
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In addition to process parameter optimizing for controlling manufacturing defect, it
has been proved by a large number of studies that adding ceramic particles to the metal
matrix is feasible to eliminate cracks forming during laser AM process. For example,
Han et al. [72] investigated the effect of nano-TiC on the distribution of defects and molten
pool boundaries in LBPBF Hastelloy X matrix composites. They found that TiC particles
addition eliminated obviously pores and cracks in the molten pool in Hastelloy X alloy
(Figure 10). The yield strength (830MPa) and UTS (1150MPa) of LBPBF TiC/Hastelloy X
composite are much higher than that the yield strength (690MPa) and UTS (920MPa) of
LBPBF Hastelloy X alloy. Cheng et al. [73] studied the effect of adding Y2O3 on cracks and
mechanical properties of LBPBF Hastelloy X alloy. It can be seen from Figure 11a that many
cracks (yellow arrows) were found in the LBPBF Hastelloy X alloy. The results showed that
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the addition of Y2O3 eliminated the crack, and the microstructure uniformity of LBPBF
Y2O3/Hastelloy X composite was improved (Figure 11).
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4. Strengthening Mechanism

It has been demonstrated that the strength of laser AM NAMMC is able to be enhanced
by the reinforcement without sacrificing plasticity, which is mainly attributed to some
strengthening synergy mechanism, such as stress-transfer strengthening, grain refinement
strengthening, Orowan strengthening and high-density dislocation strengthening [69,74–76].
Wang et al. [77] studied the strengthening mechanism of LBPBF TiC/GTD222 composites.
As can be seen from Figure 12a, the yield strength (1270 MPa) and UTS (1390MPa) of
LBPBF TiC/GTD222 composite are much higher than the yield strength (831 MPa) and UTS
(1100MPa) of LBPBF GTD222 alloy. This is mainly due to Orowan strengthening of TiC
particles evenly dispersed in the cellular and columnar structures (Figure 12b). Both TiC
and γ’ phases prevent movable dislocations from moving (Figure 12). Yao et al. [78] deemed
that the increased strength of TiC/IN718 composites alloy was mainly attributed to the
combination of grain refinement strengthening and high-density dislocation strengthening.
Zheng et al. [11] thought the strengthening mechanism of LENS TiC/IN625 composite
was ascribed to a large number of dislocations around TiC particles (Figure 13), which
was caused by the residual stress between the reinforcement TiC and the matrix IN625
alloy. Zhang et al. [5] considered that LBPBF TiC/GTD222 composite with high strength
was concerned with the well-combined interface between matrix and TiC reinforcement
(Figure 14a). The inset in Figure 14a shows the Fourier transform image of the carbide,
and it can be identified as TiC particles. In addition, they found that there were a large
number of dislocations (yellow symbols) at the interface between the matrix and the rein-
forcement due to the difference in lattice constants between matrix and the reinforcement
(Figure 14b). Therefore, they believed that the increase in strength of TiC/GTD222 compos-
ite was attributed to the synergistic effect of load-bearing strengthening of particles and
Orowan strengthening.
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5. Heat Treatment of Nickel-Based Alloy Composites

The extremely high melting and solidification rates of laser AM technologies result
in high residual stresses of NAMMC parts [79–82]. In addition, NAMMC parts may
undergo phase transitions or harmful phase precipitation at high temperatures, resulting
in insufficient material strength and premature component failure in practical applications.
Therefore, a subsequent heat treatment is required for liminate residual stress and improve
microstructure performance of the AM NAMMC. Zhang et al. [5] investigated the effect
of heat treatment on the microstructure and mechanical properties of TiC/GTD222 nickel
matrix composites prepared by LBPBF. Figure 15 shows the microstructure and the particle
size distribution in GTD222 alloy and the TiC/GTD222 composite after heat treatment.
It shows that the microstructures of both materials consist of γ matrix, γ′ phase (black
contrast) and carbide (bright contrast). It can be seen from Figure 15e,f that the average
carbide size in GTD222 and the TiC/GTD222 composite after heat treatment are 123 nm
and 125 nm, and the latter has more uniform carbide size distribution. In addition, the yield
strength (1270 MPa) and UTS (1470 MPa) of the TiC/GTD222 composites are higher than the
yield strength (1270 MPa) and UTS (1380 MPa) of the GTD222 alloy. However, the EI (8.1%)
of the TiC/GTD222 composites is lower than that (15%) of the GTD222 alloy. Guo et al. [57]
investigated the effect of heat treatment on the microstructure and mechanical properties of
Y2O3/IN738LC composites prepared by LBPBF. Figure 16a,b shows the microstructures of
IN738LC alloy and Y2O3/IN738LC composite after heat treatment, respectively. It is clearly
seen from the figures that there are 2 groups of precipitates, i.e., coarse (red arrows) and
fine precipitates (yellow arrows) in the microstructure. The coarse precipitates are primary
γ′ (400 nm), while the fine precipitates are secondary γ′ (50 nm). The volume fractions of
primary and secondary γ′ for IN738LC alloy and Y2O3/IN738LC composite are 36–38%
and 24–26%, respectively. Figure 16c,d shows the inverse pole figures of the IN738LC alloy
and the Y2O3/IN738LC composite after heat treatment, respectively. The average grain
size of the IN738LC alloy increased from 16.7 µm to 27.5 µm, and the average grain size of
the Y2O3/IN738LC composite increased from 19.9 µm to 29.3 µm after the heat treatment
process. In addition, the yield strength (633 MPa) and UTS (773 MPa) of the Y2O3/IN738LC
composites are higher than the yield strength (615 MPa) and UTS (714 MPa) of the IN738LC
alloy. However, the EI of the Y2O3/IN738LC composites is slightly decreased.
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6. Conclusions and Prospect

In summary, due to the excellent high temperature strength, superior thermal fatigue
resistance, high oxidation resistance and thermal corrosion resistance, the NAMMC is
expected to replace traditional nickel-based alloys used in the manufacture of important hot-
end components in aerospace, industrial gas turbines, seawater pipelines and other fields.
It is well known that the future aerospace manufacturing industry requires more and more
high temperature parts with complex structural designs. Using traditional manufacturing
methods (forging and machining) to process these parts with complex internal and external
profiles needs high-time cost and high-complexity complex process flow, and even some
parts cannot be manufactured. From the above general description, high performance and
complex structure parts of NAMMC was successfully fabricated using laser AM through
a proper selection of reinforcement addition and process parameters. However, due to
the large temperature gradient and extremely high cooling rate of laser AM process, high
residual stress introduced deformation and cracking come out easily inside laser AM
NAMMC. This problem should deserve a lot of attention of researchers. In addition,
the traditional reinforcement addition improves the strength of the metal matrix at the
price of sacrificing metal matrix plasticity as well as fracture toughness. Moreover, the
microstructure stability of some reinforcement is deteriorated during long-term and high-
temperature service. Therefore, the research and development of new reinforcement with
stable crystal structure for improving strengthen and toughen synchronously is the great
challenge of the field in the future.
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