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Abstract: The fatigue properties and cyclic deformation behaviour of materials are usually deter-
mined using cylindrical specimens (e.g., Ø7.5 mm). Since the transferability to very small dimensions
has not been comprehensively considered so far, this study investigates the transferability of specimen
data from high-strength steel X5CrNiCuNb16-4 to real structures characterised by a wall thickness of
100 µm. Regarding fatigue, extensive calculations demonstrate that for notched specimens and thin
structures, both the material-mechanical support factor concept according to the FKM guideline and
the point method of the Theory of Critical Distance (TCD) make correct predictions of the local fatigue
strength, with a maximum deviation from experimental values of less than 5%. However, the study
points out that the TCD is only conditionally applicable for thin-walled structures, as the material
parameter a0 must be significantly smaller than the wall thickness. Regarding the deformation
behaviour, the material reveals special flow characteristics in the first hysteresis. Nevertheless, a
combined hardening approach is suitable for modelling. The validation of the model by a plastic
deformation of the structure seems plausible, although geometric influences prove to be dominant.
In conclusion, even 100 µm thin structures can be evaluated using conventional specimen tests and
established assessment or modelling methods.

Keywords: transferability; thin-walled structures; fatigue strength assessment; theory of critical
distance; support factor; material modelling; combined hardening model

1. Introduction

The experimental determination of the fatigue strength of real components or parts is
a time-consuming and cost-intensive task. Besides the challenging implementation of a
suitable testing methodology, the requirements for the experimental determination of the
fatigue strength are high, e.g., stable testing conditions, exact experimental and simulation-
based definition of the load and stress, sufficient number of tested components, etc.

For this reason, the classical approach is to determine the fatigue strength of a material
by tension–compression or rotating bending tests using standardised cylindrical or flat
specimens. Influences on the fatigue strength, such as mean stress, notch influence, size
influence, temperature, residual stresses, roughness, surface treatment, etc., are investigated
using appropriate testing techniques and specimens. Finally, the fatigue strength of the real
component is then deduced from the results of the specimen tests, taking into account the
relevant approaches [1–6]. Design codes, such as the highly regarded FKM guideline [7],
consider these influences.

For the high-strength stainless steel X5CrNiCuNb16-4 used, many properties of the
material in different heat treatment conditions, including static and high cycle fatigue
(HCF) properties at room and elevated temperatures [8], very high cycle fatigue (VHCF)
properties [9–12], fatigue crack growth behaviour [13,14], defect tolerance [15–17], influence
of test frequency [10,14,18], size effect [19,20], notch influence [20], influence of corrosive en-
vironments [21], influence of the additive manufacturing process on the cyclic deformation
and fatigue behaviour [22–24], etc., have been researched by numerous authors.

Metals 2022, 12, 1524. https://doi.org/10.3390/met12091524 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12091524
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-1651-4992
https://orcid.org/0000-0002-6637-8140
https://doi.org/10.3390/met12091524
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12091524?type=check_update&version=1


Metals 2022, 12, 1524 2 of 22

Notches in real components play a decisive role in the fatigue process. There are
numerous approaches to evaluate notched structures, e.g., support factor concepts, re-
spectively, stress gradient-based approaches [7,25], the Theory of Critical Distance (TCD)
by Taylor [26], approaches based on the strain energy density [27], energy field intensity
approaches [28,29], concepts based on the weakest-link theory [30,31], probabilistic mod-
els [32,33], among others. Spaggiari et al. [34] present a comparison between the TCD and
the classical stress gradient based approach for the fatigue assessment of notched compo-
nents and point out the advantages and disadvantages of the approaches. A review of the
methods mentioned above is provided by Mei et al. [35]. In numerous studies, notched
structures and components are investigated and assessed using stress gradient-based ap-
proaches [36,37], or the TCD [38–40]. However, these examined specimens, structures or
components have dimensions or wall thicknesses in the range of a few millimetres or even
more. There are some studies that use miniaturised specimens and investigate their fatigue
behaviour [41–43] and fatigue crack propagation properties [44–46]. However, again, the
dimensions considered are in the millimetre range. To the authors’ best knowledge, there
are no comprehensive investigations that test and assess fatigue properties of very thin
structures with wall thicknesses down to the micrometre range.

Especially in the case of notched components with high mean stress conditions, the
linear elastic range can be locally exceeded, leading to plastic deformations. For the
dimensioning and design of components or structures, knowledge about the constitutive
equation of the material is therefore important, as it provides the relationship between
the strains and stresses, whether in the elastic or plastic range [47]. A standard model for
describing cyclic deformation behaviour is the Chaboche model [48], which combines an
isotropic and kinematic hardening approach. A review of various constitutive theories is
given in reference [47]. The testing and material modelling are again based on standardised
specimens and it is assumed that the occurring stress–strain paths in the real component
can be reproduced with sufficient accuracy.

For common technical applications in mechanical engineering, the specimen size is
small or similar in size compared to the real component. However, the transferability of
the specimen results to real components, as described above, has to be critically questioned,
if the dimensions of the real component are significantly smaller or larger than those of the
specimen. Hence, the focus of this study is to investigate the transferability of conventional
specimen results to real, thin, complex shaped components. In this specific case, very
thin-walled (minimum wall thickness 100 µm), notched (radius 0.25 mm) structures are
dealt with. The fatigue strength for 107 cycles and the cyclic deformation behaviour are
examined. The structure of the chapters is also based on these two aspects.

• Transferability of fatigue data to 100 µm thin structures:
The suitability of two fatigue strength assessment approaches is discussed and com-
pared. A local assessment concept according to the FKM guideline [7], which is based
on the relative stress gradient and the support effect, and Taylor’s TCD [26] are dealt
with in detail.

• Transferability of cyclic deformation data to 100 µm thin structures:
The suitability of a standard constitutive model for thin structures is discussed. For
this purpose, the structure is specifically plastically deformed and then the calculated
and measured displacements are compared.

The current paper provides insights into the applicability of these established fa-
tigue assessment and material modelling methods even for very challenging component
geometries. This saves future expensive and time-consuming tests of the real components.

2. Material and Methods

This section describes the simulation and experimental techniques and briefly intro-
duces the fatigue strength assessment approaches as well as the approach for modelling
the cyclic deformation behaviour.
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2.1. Material

The precipitation hardening steel X5CrNiCuNb16-4, also known as 17-4PH, is used
for the investigations. The mechanical properties of this high-strength stainless steel can be
widely varied by a heat treatment (solution annealing and precipitation hardening). For
example, ASTM A564 [49] specifies minimum yield strengths Rp0.2 between 520 MPa and
1170 MPa, minimum tensile strengths Rm between 795 MPa and 1310 MPa and elongations
A between 10% and 18%. The chemical composition according to DIN EN 10088-3 [50] is
shown in Table 1.

Table 1. Chemical composition of the precipitation hardening steel X5CrNiCuNb16-4 in percent by
weight (wt%) [50].

C Si Mn P S Cr Mo Ni Cu Nb

min. - - - - - 15.0 - 3.0 3.0 5 ×C
max. 0.07 0.7 1.5 0.04 0.03 17.0 0.6 5.0 5.0 0.45

2.2. Fatigue Testing and Assessment
2.2.1. Experimental Procedure

Tension–compression fatigue tests at a stress ratio R = −1 were carried out at room
temperature (RT) with servo-hydraulic test rigs (Instron Sinus Hydropuls 100/25, ±100 kN
and Instron Structural Testing, ±50 kN). Conventional HCF tests were performed with
unnotched, mildly notched and sharply notched specimens with a test cross-section of
Ø4.0 mm and Ø7.5 mm. For all specimens, the surface in the test area was polished
(Ra = 0.4 µm). The test frequency was 30 Hz and at 107 cycles the specimen was counted as
a run-out. Figure 1 shows representative specimen geometries of the Ø4.0 mm specimen
series and Table 2 summarises the geometric properties of the other specimens. The stress
concentration factor Kt and the relative stress gradient χ′ were determined with a finite
element (FE) simulation, as detailed in Section 2.2.3.

High-frequency VHCF tests (RT, R=−1) with mildly notched specimens (Ø2.5 mm)
and thin-walled structures were conducted on an electrodynamic shaker i210 from IMV
Europe Ltd. (München, Germany) using test setups and procedures developed at the
Chair of Mechanical Engineering at the Montanuniversität Leoben [10,51,52]. Again, the
surface in the test area was polished (Ra = 0.4 µm) for all specimens and structures. The
test frequency for the specimen tests was in the range of 928 ± 8 Hz and at 109 cycles the
specimen was counted as a run-out.

(a) (b)

Figure 1. Ø4.0 mm specimen geometries for HCF testing: (a) Unnotched specimen. (b) Mildly
notched specimen (dimensions in mm).
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Table 2. Summary of the geometry characteristics of the specimens and the thin structure, and
indication of the number of tested specimens per test series.

Test Series Notch Radius ρ in mm Stress Concentration
Factor Kt

Rel. Stress Gradient
χ′ in mm−1

Number of Tested
Specimens

Ø4.0, unnotched 50 1.02 0.03 21
Ø4.0, mildly notched 3 1.28 0.56 13
Ø4.0, sharply notched 0.5 2.32 3.88 12

Ø7.5, unnotched 50 1.03 0.03 17
Ø7.5, mildly notched 5.6 1.28 0.31 14
Ø7.5, sharply notched 0.5 3.01 3.97 16
Ø2.5, mildly notched 4.5 1.11 0.37 35

Thin structure 0.25 not definable 26.00 12

A special thin-walled structure, inspired by a practical application, was designed
by the authors [51]. The geometric dimensions can be observed in Figure 2a. For the
fatigue testing of this structure, it is clamped at the outer edge of the disc. An axially
oscillating eigenmode is excited by the shaker, causing the central thickening to be strongly
deflected. The cyclic deformation fatigues the inner circumferential notch. The stress
distribution in the fatigue critical zone (FCZ) resulting from an upward deflection of
the central thickening is also presented in Figure 2b. The test frequency was between
1554 Hz and 1686 Hz, depending on the resonant frequency of the individual structure.
Small geometric deviations, such as manufacturing tolerances, have a strong effect on the
resonant frequency and notch stress. A resonant frequency drop of 1% was defined as an
abort criterion. At 109 cycles, the structure was counted as a run-out.

FCZ r

σ

    Fatigue
critical zone

Central thickening

Clamping and shaker excitation

Outer circumferential notch

Inner circumferential notch

Thin-walled disc

(a)

(b)

Figure 2. Thin-walled structure for fatigue testing: (a) Geometric dimensions (in mm) and labelling
of the main parts. (b) General stress distribution resulting from an upward deflection of the central
thickening (sectional view) and detail of the stress distribution in the fatigue critical zone (FCZ).
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A total of 93 conventional HCF tests, 35 high-frequency fatigue tests and 12 tests with
the structures were carried out, compared in Table 2. Detailed information on the tests with
unnotched and notched specimens as well as with thin-walled structures can be found in
the study by the authors [20]. Previously published fatigue test results from reference [20]
are used in this study for more advanced analysis and interpretation.

2.2.2. Test Evaluation and Processing

The specimens were tested on the basis of nominal stresses in the unnotched or
notched test cross-section. The fatigue tests were statistically evaluated using the arcsin

√
P

transformation [53,54]. All fatigue strength values refer to a survival probability of
Ps = 50%. All stress values are presented in normalised form and refer to the measured
yield strength Rp0.2.

For the evaluation of the tests, the local stresses in the notch were used in addition
to the nominal stresses. The local stress conditions in the notch were calculated with FE
simulations, as detailed in Section 2.2.3. The longitudinal stress (corresponding to the
maximum principal stress) was primarily considered.

2.2.3. FE Simulation

FE analyses were carried out using Simulia’s Abaqus CAE. Axially symmetrical
models of the specimens and the structure were built, and 8-node biquadratic axisymmetric
quadrilateral elements (CAX8) were used for meshing. Due to the 2D model, it was possible
to mesh very finely, and a special focus was on the notched areas, which were partitioned
accordingly. For the notched specimens, a minimum node spacing of 4 µm was used in the
notch root. The fatigue critical 100 µm thin zone of the structure was meshed with a node
spacing of 1 µm. Nevertheless, due to the axially symmetrical model, the computational
effort or computational time was low. Table 3 lists the material parameters of Young’s
modulus E, Poisson’s ratio ν and density ρ. The constitutive model is linear elastic, isotropic
and homogeneous.

Table 3. Material parameters used for the linear elastic FE simulations.

E in GPa ν ρ in g cm−3

200 0.3 7.8

Static analyses were performed to determine the linear elastic stress distribution in the
unnotched and notched specimens. For this purpose, a uniaxial load was applied, causing
a nominal stress of 1 MPa in the test cross-section. The calculated stress concentration
factor Kt and the relative stress gradient χ′ are summarised for each specimen geometry in
Table 2.

The small dimensions of the structure make an experimental stress analysis with
strain gauges impossible. A simulation approach is therefore essential for determining the
stress on the structure due to a given deformation. For each individual structure, static
analyses were carried out to determine the stress distribution at a defined deflection of
the central thickening. Additionally, modal analyses were conducted using the Lanczos
eigensolver. The structures were measured optically (two confocal white light sensors) with
a resolution in the micrometre range for an exact representation of the geometry. Due to the
small dimensions, it is not possible to validate the calculated stresses or strains with strain
gauges, so the FE model of the structure was validated by comparing the experimental and
calculated resonant frequencies of each structure. Further information on the simulation
techniques and the validation process can be found in reference [20].

2.2.4. Local Fatigue Strength Assessment Concept (FKM Guideline)

According to the FKM guideline [7], the local fatigue strength of a component σLLF can
be determined from the tension–compression fatigue strength of the unnotched specimen
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σLLF,0 and a design factor KWK. If the roughness of the specimen and the component is
comparable and if there is no surface hardening, the design factor is reduced to the support
factor n, which takes into account the influence of the stress gradient. The local fatigue
strength of the component can therefore be calculated as:

σLLF = σLLF,0 · n (1)

The FKM guideline [7] proposes two support factor concepts for the fatigue strength
assessment, that is the older approach of Stieler and the newer material-mechanical support
factor. Figure 3 shows a comparison of the two support factor concepts as a function of the
relative stress gradient χ′ for the investigated high-strength stainless steel. The curves for
Stieler’s approach refer to the ultimate tensile strength specifications according to ASTM
A564 [49]. The material-mechanical support factor is composed of a statistical (index “st”),
deformation-mechanical (“dm”) and fracture-mechanical (“fm”) part, see Equation (2). For
the current investigations, only the latter two proportions are considered, i.e., nst = 1 is
assumed, as fatigue results in reference [20] indicate that there is no significant difference
between Ø2.5 mm, Ø4.0 mm and Ø7.5 mm specimens. Measured material parameters,
such as Young’s modulus E, the fatigue strength of the unnotched specimen σLLF,0 and the
ultimate tensile strength Rm, are used for the calculations. Equations (3) and (4) display
the definitions of the deformation-mechanical support factor ndm and fracture-mechanical
support factor n f m. The definitions of the endurable alternating plastic strain εpl,W , the
reference tensile strength Rm,bm and the exponent n′ are given in the FKM guideline [7]

n = nst · ndm · n f m (2)

ndm =

√
1 +

E · εpl,W

σLLF,0
· (nst)

( 1
n′ −1) (3)

n f m = max

(
5 +

√
χ′ ·mm

5 · ndm · nst +
Rm

Rm,bm

√
7.5+
√

χ′ ·mm

1+0.2·
√

χ′ ·mm

; 1

)
(4)

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5
 S u p p o r t  f a c t o r  a c c .  t o  S t i e l e r  ( R m  =  7 9 5  M P a )
 S u p p o r t  f a c t o r  a c c .  t o  S t i e l e r  ( R m  =  1 3 1 0  M P a )
 M a t e r i a l - m e c h a n i c a l  s u p p o r t  f a c t o r

Su
ppo

rt f
act

or 
n

R e l a t i v e  s t r e s s  g r a d i e n t  � '  i n  m m � 1

Figure 3. Comparison of the support factor concepts according to the FKM guideline [7] for the
high-strength stainless steel X5CrNiCuNb16-4.
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For technically relevant values of the relative stress gradient χ′, the support factor
according to Stieler is significantly higher than the material-mechanical support factor. Since
the material is a high-strength steel, which generally have only a low support effect, the
material-mechanical support factor concept is considered to have more practical relevance.
The increase in the material-mechanical support factor at very high relative stress gradients,
that is χ′ > 24 mm−1, is due to the increasing influence of the fracture-mechanical part.

2.2.5. Theory of Critical Distance

To describe the fatigue strength behaviour of cracks and notches, a unified approach,
called the Theory of Critical Distance, was proposed by Taylor [26]. The basic idea is that
the stress or stress distribution at a certain distance from the notch root or the crack tip is
decisive for the fatigue strength assessment. In applying this theory, Taylor distinguishes
between the so-called point, line and area method of the TCD. There are also volume-based
approaches of the TCD [55]. The point and line method are considered in the course of
this work. The point method states that when ∆K = ∆Kth, that is the stress intensity factor
range equals the threshold value, the elastic stress σe f f at a distance r = a0/2 from the
notch root or from the crack tip is equal to the fatigue strength of the unnotched specimen
σLLF,0, see Equation (5).

σe f f = σ(r = a0/2, θ = 0) = σLLF,0 (5)

Instead, the line method determines an average stress σav by integrating along a line
from the notch root/crack tip r = 0 to r = 2a0, and then sets this average stress equal to the
fatigue strength of the unnotched specimen σLLF,0, see Equation (6).

σav =
1

2a0

2a0∫
r=0

σ(r, θ = 0) dr = σLLF,0 (6)

Both definitions refer to the notch root or crack plane, i.e., θ = 0. Therefore, it is
not the maximum notch stress or stress at the crack tip, but the stress σe f f at the distance
r = a0/2 or the average stress σav along a line from r = 0 to r = 2a0 that is relevant for the
fatigue assessment.

The material parameter a0 was proposed by El Haddad et al. [56] and is calcu-
lated according to Equation (7). The threshold stress intensity factor range ∆Kth was
not determined experimentally in the current investigations, instead, the value given by
Schönbauer et al. [21] for 17-4PH (condition H1150), ∆Kth = 6.7 MPa

√
m for R = −1,

is used.

a0 =
1
π

(
∆Kth

∆σLLF,0

)2
(7)

The calculated material parameter a0 has a value of only a few micrometres for the
investigated high-strength steel. For a meaningful and reliable assessment, the fatigue
critical zone must therefore be extremely finely meshed in the FE analysis in order to be
able to calculate the stress distribution in the notch root with sufficient accuracy. As already
stated in Section 2.2.3, a node spacing of 1 µm is chosen for the simulations of the structures.
Figure 2b illustrates the meshing and the stress distribution in the FCZ. The nominal wall
thickness in the FCZ is 100 µm.

2.3. Testing and Modelling of the Cyclic Deformation Behaviour
2.3.1. Experimental Procedure: Specimens

Strain-controlled low cycle fatigue (LCF) tests were performed at RT on a servo-
hydraulic test rig (Instron Sinus Hydropuls 100/25, ±100 kN), the strain was measured
using an Instron extensometer type 2620-601 (reference length l0 = 12.5 ± 5 mm). Un-
notched specimens with a test section of Ø7 mm × 20 mm were tested, see Figure 4. The
tests were carried out with a strain rate of 1%/s and the strain ratio was Rε = −1. Total
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specimen fracture was chosen as the failure criterion. In addition to the standard LCF tests,
some supplementary strain-controlled tests with a defined strain path were carried out to
improve the knowledge of the material’s deformation behaviour. A total of 19 LCF tests
were conducted.

Figure 4. Specimen geometry for strain-controlled LCF tests (dimensions in mm).

2.3.2. Modelling of the Cyclic Deformation Behaviour

For a numerical simulation of the cyclic deformation behaviour, a mathematical model
is necessary. In this study, the elasto-plastic material behaviour of the high-strength steel
X5CrNiCuNb16-4 is described with a Chaboche model [48]. This is a combined hardening
approach and includes an isotropic and a kinematic part. The yield function f of this model
is shown in Equation (8). The term J(σ − X) denotes the von Mises criterion, which is
specified in Equation (9). Here, σ is the stress tensor and X is the kinematic stress tensor,
σ′ and X ′ are the respective deviatoric components. The initial size of the yield surface is
represented by the variable k and R is the parameter for the isotropic hardening model. For
f < 0, the material behaviour is linear elastic, while f = 0 implies plastic flow [48].

f = J(σ − X)− R− k (8)

J(σ − X) =
[ 3

2
(σ′ − X ′) : (σ′ − X ′)

]1/2
(9)

Isotropic hardening describes the change of the yield surface with respect to its size,
but not with respect to its position in the stress space. The increase or decrease in the yield
surface is modelled with the parameter R. Equation (10) shows the underlying differential
equation for isotropic hardening, with the constants Q and b. By integrating Equation (10),
an explicit formula is obtained for the change in the size R of the yield surface as a function
of the accumulated plastic strain p, see Equation (11) [48].

dR = b (Q− R) dp (10)

R = Q
(
1− e−bp) (11)

Kinematic hardening describes the translation of the yield surface in the stress space,
the size of the yield surface remains constant. This is expressed by the kinematic stress
tensor X. A non-linear approach as described by Chaboche [48] is used. Equation (12) gives
the governing differential equation with constants Ci and γi of the non-linear kinematic
model. By superimposing m identical approaches Xi, the accuracy of the model is improved,
see Equation (13). Exclusively in Equation (12), dεp represents the plastic strain rate and dp
is calculated as dp = ( 2

3 dεp : dεp)1/2 [48].

dXi =
2
3

Cidεp − γiXidp (12)

X =
m

∑
i=1

Xi (13)
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For uniaxial loading, the integration of Equation (12) with the initial values εp0 and
X0,i gives Equation (14). The variable ν = ±1 indicates the direction of the flow [48,57].

Xi = ν
Ci
γi

+
(

X0,i − ν
Ci
γi

)
e−νγi(εp−εp0) (14)

A newly developed optimisation routine, which was set up with the software MATLAB
from MathWorks, automatically determines the material model parameters from the hys-
tereses of LCF tests. These parameters can be used in conventional FE solvers. The
methodology for the derivation of the Young’s modulus E, the initial yield strength k, the
isotropic parameters Q and b and the kinematic parameters Ci and γi from experimental
data was developed at the Chair of Mechanical Engineering at the Montanuniversität
Leoben and was first published by Seisenbacher et al. [58]. An LCF test with high total
strain amplitude was used to determine the isotropic and the kinematic parameters. For the
isotropic parameters, the cyclic yield strength Rp0.005 of every cycle is plotted against the
accumulated plastic strain and then the isotropic model, Equation (11), is fitted accordingly.
For the kinematic approach, the second hysteresis was chosen to derive the parameters, as
it is representative for all further hystereses (no further softening). The ascending branch of
the stress–plastic strain hysteresis serves as input data for the fit of the kinematic hardening
model. A kinematic approach with two back stresses is used, which means m = 2 in
Equation (13). After the first rough parameter determination, the parameters were opti-
mised with the aim to optimally reproduce the stress–strain behaviour of the first cycle at
any total strain amplitude.

Once the parameters had been determined, basic simulations of the cyclic deformation be-
haviour were carried out using Simulia’s Abaqus CAE. A unit cell with element type C3D20R
(a 20-node quadratic brick with reduced integration) was modelled for the calculations.

2.3.3. Experimental Procedure: Structures

In order to check the validity of the cyclic deformation model also for 100 µm thin
structures, the structure was specifically plastically deformed. For this purpose, the struc-
ture was firmly clamped at the outer edge in the same test apparatus [51] used for the
fatigue tests. Instead of being connected to the electrodynamic shaker, the test apparatus
was placed in the materials’ testing machine ZwickRoell Z2.5/TS1S. A single deflection
of the structure was investigated, resulting in plastic deformations in the inner and outer
circumferential notch. The force was introduced into the central thickening via a punch.
The test was performed in a force-controlled manner. The testing machine recorded the
force and the displacement of the punch. At the beginning, a calibration measurement was
carried out to obtain the stiffness of the load frame of the testing machine. This deformation
of the testing machine was compensated in the subsequent analyses.

Figure 5 presents the experimental setup for the plastic deformation of the structure.
A more detailed insight into the setup is provided by the simulation model in Figure 6.
However, the simulation model only consists of the essential parts.

2.3.4. FE Simulation of the Thin Structure

The basic axially symmetrical simulation model of the structure, see Section 2.2.3,
was extended. In addition to the structure, the essential parts of the test setup (base plate,
intermediate disc and punch) were also modelled and provided with appropriate contact
conditions (penalty formulation with friction coefficient = 0.15). Again, CAX8 elements
were used for meshing. The structure was assigned the determined combined hardening
material model (compare Section 2.3.2), while the other components were given the material
parameters from Table 3.

Besides the material non-linearity, geometrically non-linear behaviour has to be as-
sumed for the simulation of the investigated thin-walled structure. The expected defor-
mations in relation to the undeformed structure make the assumption of a linear strain–
displacement relation inadmissible, moreover, the equilibrium equations may no longer
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be set up on the undeformed structure [59]. Furthermore, thin plates or structures that are
clamped at the outer edge and loaded vertically experience a stress-stiffening effect [60].
Tensile stresses lead to a change in the transverse stiffness of the component, which results
in a smaller vertical deflection in a non-linear analysis compared to a linear analysis. For
other sources of geometric non-linearity, please refer to the relevant literature. In Abaqus
CAE, the option nlgeom was therefore activated.

ZwickRoell Z2.5/TS1S

Test apparatus

Structure

Punch

Base plate

Cover plate

Intermediate disc
& disc spring

(a) (b)

Figure 5. Experimental setup for the plastic deformation of the thin-walled structure: (a) Overview.
(b) Detail of the test apparatus with firmly clamped structure.

Structure

Punch

Base plate

Intermediate disc

FPunch

FSpring

Figure 6. Simulation model for the plastic deformation of the thin-walled structure. The deflection of
the structure is exaggerated.

The analysis consists of three steps. Firstly, the preload force FSpring of the disc spring
is applied via the intermediate disc, which presses down the outer edge of the structure
with approximately 4.4 kN. Then, the force FPunch = 725 N is applied via the punch, which
moves the central thickening of the structure downwards. In the third step, the force FPunch
is reduced to 0 N. Figure 6 illustrates a sectional view of the simulation model during the
deformation of the structure, where the deflection of the structure is exaggerated. For the
evaluation, the vertical displacement of the punch top and the applied force were used.

3. Results

In this section, firstly, the statistically evaluated fatigue strength values of the un-
notched and notched test series are presented and compared with each other. Then, the
transferability of the specimen results to thin structures is demonstrated with the help of
the support factor concept and the Theory of Critical Distance. Subsequently, the tested and
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modelled cyclic deformation behaviour is compared on a specimen basis and, again, the
transferability of these deformation data from specimens to much more complex geometries
is demonstrated.

3.1. Fatigue Strength: Specimen Results

The statistically evaluated fatigue strength values for 107 cycles are considered in
the following. In Figure 7, the results of all specimen test series are plotted. The fatigue
strength values related to nominal stresses σLLF,nom,norm are displayed in a normalised form
as a function of the stress concentration factor Kt. In addition, the dashed line shows the
hypothetical fatigue strength of specimens with Kt > 1 as a function of Kt starting from
the value of the unnotched specimen σLLF,0. Since the dashed line and the test results
correspond very well, it can be stated that the fatigue notch factor K f , i.e., the ratio of the
fatigue strength of the unnotched to the notched specimen, related to nominal stresses,
is equal to the stress concentration factor Kt. Thus, no support effect is observed and the
material is classified as fully notch-sensitive.

The application of the nominal stress concept is limited to components and structures,
for which a nominal cross-section can be defined. For the thin-walled notched structure, it
is therefore not possible to specify a nominal stress. In the case of real components with
complex geometry, assessment concepts based on local stresses are more suitable. The
stress concentration factor Kt refers to the maximum stress in the notch root in relation
to the nominal stress. The maximum stress in the notch root is the longitudinal stress,
which is also the maximum principal stress (as there are no shear stresses in the notch root
surface). Kt therefore refers to the maximum principal stress. Figure 8 shows a comparable
representation to Figure 7, except that the local notch stress in the notch root is now
considered. The determined normalised local fatigue strength values σLLF,norm based on
the maximum principal stress as a function of the relative stress gradient χ′ are displayed.
In addition to the specimen series, the local fatigue strength of the thin-walled structure is
also plotted.
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Figure 7. Experimentally determined normalised nominal fatigue strength σLLF,nom,norm against the
stress concentration factor Kt.
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Figure 8. Experimentally determined normalised local fatigue strength σLLF,norm against the relative
stress gradient χ′.

Figure 8 clearly shows that regardless of the notch sharpnessor the relative stress
gradient, the local fatigue strength (maximum principal stress) of the specimens is always
very similar σLLF,norm ≈ 0.52 and there is no pronounced support effect on a specimen basis.
The evaluation proves that for the material X5CrNiCuNb16-4, the maximum principal
stress governs the fatigue behaviour. A similar statement is made by Schönbauer et al. [61],
who tested the torsional fatigue limit of the same material and concluded that the biaxial
stress state at the surface is neglectable and only the maximum principal stress determines
the fatigue behaviour under torsional loading. Figure 8 also highlights the fact that the
thin-walled structure has a slightly higher local fatigue strength than the specimens. This
behaviour is studied below using two different approaches.

3.2. Fatigue Strength: Transferability to Structures

In a further step, calculations are made for the fatigue strength assessment of notched
specimens and thin-walled structures starting from the fatigue strength of the unnotched
specimen. Specifically, the methods from Sections 2.2.4 and 2.2.5 are applied. Three
different test cross-sections (Ø2.5 mm, Ø4.0 mm and Ø7.5 mm), two different notch shapes
(mildly notched and sharply notched) and the 100 µm thin structure are examined. Figure 9
summarises the entire calculations. The tested or calculated local fatigue strength σLLF for
each individual test series is shown in relation to the fatigue strength of the unnotched
specimen σLLF,0. In each case, the maximum stress in the notch root is considered.

As already demonstrated in Figure 8, the tests with mildly notched specimens demon-
strate almost the same fatigue strength, independent of specimen size or testing technique.
The difference in fatigue strength is moderately greater for the sharply notched specimens.
Possible causes have already been pointed out by Himmelbauer et al. [20], e.g., manufac-
turing tolerances, location of the tested stress levels and a statistical influence. On average,
the fatigue strength of the sharply notched specimens is again comparable to that of the
mildly notched specimens. The local fatigue strength of the thin-walled structures, on the
other hand, is significantly higher, specifically by about 6.8% compared to the unnotched
specimen series.
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Figure 9. Comparison between the results obtained with different approaches (support factor concept
according to the FKM guideline [7] and Theory of Critical Distance (TCD) according to Taylor [26]),
for the fatigue strength assessment of notched specimens and thin-walled notched structures. The
black bars on the graphs of the structure represent the influence of small geometric deviations, e.g.,
manufacturing tolerances.

The material-mechanical support factor models this behaviour correctly. As a matter
of fact, there is a very low support effect (1.8%) for relative stress gradients χ′ < 24 mm−1,
which applies to the mildly and sharply notched specimens, and at higher relative stress
gradients there is a moderate increase in the support effect. A representative value of
n = 1.036 is calculated for the structure. As shown by Himmelbauer et al. [20,51], small
geometric deviations, e.g., due to manufacturing tolerances, have a pronounced effect on
the natural frequency and the stress distribution in the fatigue critical zone of the thin-
walled structures. The black bars on the graphs of the structure represent this influence
of the geometry on the calculated local fatigue strength. Nevertheless, the FKM approach
underestimates the fatigue strength of the thin-walled structure by about−3.0% (maximum
deviation −4.1%, minimum deviation −1.4%). However, this is a conservative design.

The point method of the TCD gives plausible and conservative values for the mildly
and sharply notched specimens. It is interesting to note that both the material-mechanical
support factor and the point method of the TCD do not indicate a significant local strength
increase for the notched specimens. In contrast, a local fatigue strength in the notch of 1.11
is calculated for the structure compared to the unnotched specimen. The influence of the
geometry on the calculated fatigue strength is small. The fatigue strength determined with
the point method is +4.2% (maximum deviation +4.8%, minimum deviation +3.6%) above
the experimentally determined fatigue strength of the structure.

The line method of the TCD gives similar results to the point method for the mildly
notched specimens, but the difference becomes greater for the sharply notched specimens.
The results are still practical. However, when assessing the structure, the line method
clearly overestimates the local fatigue strength. The deviation is about +15.4% (maximum
deviation +16.9%, minimum deviation +14.3%).

The calculations confirm that for the fatigue strength assessment of thin-walled struc-
tures with a minimum wall thickness of 100 µm made of high-strength steel X5CrNiCuNb16-



Metals 2022, 12, 1524 14 of 22

4, both the local assessment concept according to the FKM guideline and the point method
of the TCD are suitable. While the first approach slightly underestimates the local fatigue
strength, the second approach overestimates it. Nevertheless, it is important to note that
the deviations from the experimentally determined value are less than 5%. This is a very
satisfactory result. The line method of the TCD is not recommended for very thin structures,
because compared to the other approaches the deviation is noticeably larger.

3.3. Deformation Behaviour: Specimen Results

A comparison between an LCF test with high total strain amplitude A and its corre-
sponding simulation is shown in Figure 10. The normalised stress σ-strain ε hystereses
for cycle 1 and cycle N f /2 (half of the number of cycles to failure) are presented. The
material shows a special deformation behaviour during initial loading. After a pronounced
linear elastic range and a very high initial yield strength, the material exhibits an almost
ideal plastic yielding in the first load cycle. However, the deformation characteristics
change fundamentally during reverse loading. The cyclic yield strength drops sharply
and additionally, there is no longer an ideal plastic behaviour. The cyclic yield strength
is practically constant from the second cycle onwards and the maximum stress remains
at the initial level. Thus, this precipitation hardening steel does not show cyclic softening
after the first cycle. A comparison of the experiments and the simulations confirms that the
determined simulation model reproduces the described complex deformation behaviour
excellently for each individual cycle.
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Figure 10. Comparison of the tested and calculated cyclic deformation behaviour at RT for (a) cycle 1
and (b) cycle N f /2 with high total strain amplitude A.

As Figure 11a displays, the previously described elastic-ideal plastic deformation
behaviour during initial loading and the changed characteristics during reverse loading
also occur with a starting direction in compression. This special yielding property is
therefore independent of the loading direction and only appears in the first load cycle.
Moreover, it is of practical interest to know how the material responds to very high plastic
strains. Figure 11b shows a test with an irregular load history, in which a conventional LCF
cycle is followed by a large tensile load. The ideal plastic behaviour reappears at the point
of the first load reversal. Again, the derived simulation model superbly reproduces all the
mentioned deformation properties of the material.
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Figure 11. Comparison of the tested and calculated cyclic deformation behaviour at RT: (a) Influence
of the starting direction. (b) Irregular load history.

A comparison between an LCF test with low total strain amplitude B and its corre-
sponding simulation is finally presented in Figure 12. The first load cycle with the very high
initial yield strength and the moderate plastification during reverse loading are again well
modelled. As long as the initial yield strength is not exceeded once, there is no reduction in
the cyclic yield strength with accumulated plastic strains. Thus, purely elastic behaviour is
correctly reproduced by the model for each cycle.
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Figure 12. Comparison of the tested and calculated cyclic deformation behaviour at RT for cycle 1
with low total strain amplitude B.

3.4. Deformation Behaviour: Transferability to Structures

The fundamental question in this section is whether the cyclic deformation behaviour
obtained on conventional specimens can be applied to 100 µm thin structures. Figure 13
shows an important first finding from a simulation study. Apparently, besides the non-
linear material behaviour, the non-linear geometric behaviour also plays a significant role
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for these thin-walled structures. A calculation with only the non-linear material model leads
to a degressive force-displacement curve (red dotted curve), as this would be expected from
the specimen tests. In contrast, a calculation with a linear elastic material model and taking
geometric non-linearity into account yields a progressive curve (blue solid curve). The
stress-stiffening effect also causes significantly smaller deflections. Additionally, the friction
conditions have a noticeable effect, as a hysteresis occurs even with a linear elastic material
model. A final calculation with consideration of all sources of non-linearity provides the
black dashed hysteresis, which is again markedly different from the other curves. Here,
both a progressive force-displacement relation and a permanent plastic deformation occur.
A direct validation of the cyclic deformation model is therefore challenging, because the
various non-linear influences are difficult to separate.

It is assumed that for the correct representation of the experimental results, the consid-
eration of the material non-linearity, the geometric non-linearity and the friction condition is
necessary. Furthermore, the realistic modelling of the geometric dimensions of the structure
is very important. As demonstrated in previous studies [20,51], manufacturing tolerances
have a large influence on the stress distribution and the natural frequencies. However,
even when looking at a single structure, variations in thickness are measured in the cir-
cumferential direction. Results of the axially symmetrical simulations with the maximum
and minimum measured dimensions are shown in Figure 14. For the analysed structure,
there is a measured difference of 8 µm in the wall thickness of the inner circumferential
notch (nominal thickness 100 µm), and the difference in the general wall thickness (nominal
thickness 0.8 mm) is a maximum of 15 µm. These variations in wall thickness do have a
noticeable effect on the force-displacement diagram. The maximum deflection differs by
20 µm. The choice of averaged dimensions seems to be a necessary compromise.
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Figure 13. Simulation study on the effects of the non-linear material model and the geometric
non-linearity on the resulting force-displacement curve of the punch during a deflection of the
thin-walled structure.

The following simulation uses the averaged dimensions as well as the non-linear
material behaviour and the geometric non-linearity. A comparison of the experimental and
calculated force-displacement curve of the punch is given in Figure 15. The experiment
reveals a pronounced progressive behaviour, as predicted by the simulation study. The
corresponding simulation maps the force-displacement curve well. In particular, the
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maximum displacement is computed precisely, and the difference between experiment
and simulation is 4 µm. There are minor differences in the permanent plastic deformation
between the experiment and simulation (∆13 µm). The application of the cyclic deformation
model therefore leads to significant improvements in the simulation of the thin structure.
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Figure 14. Simulation study on the influence of wall thickness variations, based on measured
minimum (min.) and maximum (max.) dimensions for a single structure, on the resulting force-
displacement curve of the punch during a deflection of the thin-walled structure. The simulations
consider non-linear material behaviour and geometric non-linearity.
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Figure 15. Comparison of the tested and calculated force-displacement curve of the punch during
a deflection of the thin-walled structure. The simulation considers non-linear material behaviour,
geometric non-linearity and the averaged (avg.) measured dimensions of the structure.
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4. Discussion
4.1. Applicability of the TCD for Thin-Walled Structures

The applicability of the TCD for very thin-walled structures must be critically ques-
tioned in general. In the current investigation, a structure with a minimum wall thickness
of 100 µm made of a high-strength steel is examined. For this material, the parameter a0 is
only a few micrometres, resulting from a comparatively low threshold stress intensity factor
range ∆Kth and high fatigue strength σLLF,0. In the present case, the method is applicable
and provides plausible results.

However, if the same structure is made from a different material, resulting in a
significantly larger value for a0, the TCD would no longer be applicable for the thin-walled
structure. Characteristic values for a0 are given in references [62–65], among others, and
range from 5 µm for high-strength steels, 0.3 mm for mild steels to 3 mm for grey cast iron.
Either the calculation is not possible because a0 is greater than the wall thickness or, if a0
is smaller than the wall thickness, the stress at the considered location (r = a0/2) has no
physical meaning for the fatigue strength assessment (think of a thin bending beam, where
for the assessment of the tensile side the effective stress σe f f = σ(r = a0/2) is already a
compressive stress).

It has to be noted that the TCD calculations for the thin-walled structure are only valid
and plausible because the parameter a0 is correspondingly small. The larger deviations
with the line method already indicate that the range r = 0 to r = 2a0 over which the stress is
averaged is too large compared to the wall thickness of the structure. Since the TCD seems
to provide practical results for 100 µm thin structures only for high-strength materials, a
support factor concept based on the relative stress gradient is more preferable for these
types of thin-walled structures.

In principle, thin structures show comparable fatigue properties to conventional
specimens. The slightly increased local strength can be explained with known concepts,
e.g., support effect approaches. The transferability of specimen fatigue data to thin-walled
structures characterised by a wall thickness of 100 µm and made of X5CrNiCuNb16-4 can
therefore be confirmed. An ongoing study by the authors also confirms the transferability
in the VHCF regime and at elevated temperatures.

4.2. Transferability of the Deformation Behaviour

The transferability of conventional specimen deformation data to thin-walled struc-
tures seems to be given in principle, but the comparatively high forces and displacements
lead to a number of additional effects. The consideration of geometric non-linearity in the
simulation, the realistic representation of the geometrical dimensions of the structure and
the modelling of the friction conditions require more detailed FE analyses. The influences
mentioned make it difficult to validate the cyclic deformation model on its own.

In addition to the challenges in the simulation, there are also challenges in the experi-
mental setup. The clamping of the structure in the test apparatus and the measurement of
the very small displacements in the micrometre range are worth mentioning here. Under
all these aspects, one can speak of a satisfactory agreement between the experiment and
simulation, as compared in Figure 15. A detailed measurement of the structure before
and after the plastic deformation and a comparison of the contour with the simulation
could eliminate uncertainties in the measurements of the testing machine and provide
further clarity.

The cyclic deformation model contributes to a significant improvement and the oc-
curring stress–strain paths can certainly be mapped more realistically. Nevertheless, the
exact representation of the geometric dimensions and the treatment of the geometric non-
linearity have a major impact on these thin structures characterised by a wall thickness of
100 µm. However, the transferability of the cyclic deformation behaviour from conventional
specimens to thin-walled structures seems to be given.
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5. Conclusions

This study deals with the transferability of conventional specimen data (Ø2.5 mm,
Ø4.0 mm, Ø7.0 mm and Ø7.5 mm) to very thin structures characterised by a minimum
wall thickness of 100 µm and made of high-strength stainless steel X5CrNiCuNb16-4.
Specifically, the fatigue strength for 107 cycles and the cyclic deformation behaviour are
investigated. The main findings can be summarised as follows:

• If only unnotched and notched specimens were examined, the material would be
classified as fully notch-sensitive, i.e., no support effect. However, the tested local
fatigue strength of thin-walled structures is approximately 7% higher than that of the
unnotched specimens.

• Both the local assessment concept according to the FKM guideline, based on the
material-mechanical support factor, and the point method of the Theory of Critical
Distance (TCD), describe this fatigue behaviour of the specimens and the structure
well. The FKM approach is conservative, while the TCD overestimates the fatigue
strength of the structure by a maximum of 5%.

• The TCD calculations for the 100 µm thin structure are only feasible because the
material parameter a0 is a few micrometres. As this only applies to very high-strength
materials, support factor concepts based on the relative stress gradient are more
preferable for these kinds of thin-walled structures.

• Regarding the cyclic deformation behaviour, the material shows a very high initial
yield strength with subsequent ideal plastic flow during initial loading and distinctly
different flow characteristics during reverse loading. A combined hardening approach
models this behaviour superbly.

• The numerical simulation of a plastic deformation of the thin structure requires
not only the non-linear material behaviour but also the consideration of geometric
non-linearity, suitable friction conditions and a realistic mapping of the component
dimensions. Geometric influences seem to have a dominant impact and thus obscure
the effect of the material model.

• In conclusion, even 100 µm thin structures can be evaluated using conventional
specimen fatigue tests and suitable, established fatigue assessment methods. The
transferability of the cyclic deformation behaviour appears to be given in principle.
This saves future expensive and time-consuming tests of the real structures.
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10. Milošević, I.; Renhart, P.; Winter, G.; Grün, F.; Kober, M. Validation of a new high frequency testing technique in the VHCF

regime—Fatigue properties of a 42CrMoS4 and X5CrNiCuNb16-4 steel. Int. J. Fatigue 2018, 112, 198–205. [CrossRef]
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