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Abstract: Monel 400 alloy is widely employed in marine engineering equipment due to its excellent
corrosion resistance, high strength and toughness. In this paper, the tribo-corrosion behavior of
Monel 400 alloy in seawater under different rotational velocities was investigated by a pin-disk
tribometer with an integrated electrochemical cell. The results revealed that the material loss rate
and friction coefficient of the Monel 400 alloy, after tribo-corrosion and mechanical wear tests,
increased with increasing rotational velocity. Under mechanical-wear conditions, the material loss
rate increased with the sliding distance extension at higher velocities, and then more serious crack
nucleation and propagation occurred at the subsurface. Under tribo-corrosion conditions, when the
rotational velocities increased from 0.125 m/s to 0.5 m/s, the thickness of the corrosion product’s
layer was reduced from 50 nm to 30 nm; that is, the lubrication of the corrosion product became
worse. As a result, the material-loss rate and friction coefficient increased significantly at the velocity
of 0.5 m/s. Importantly, the antagonistic effect, rather than the synergistic effect, between corrosion
and mechanical wear, has been verified for the tribo-corrosion of Monel 400 alloy in seawater, and
the mechanism was analyzed.

Keywords: Monel 400 alloy; antagonistic effect; corrosion product; sliding distance; crack nucleation

1. Introduction

Recently, there has been an increasing demand for friction parts with high performance
to serve in marine engineering [1–3]. Among various metallic materials, Ni-Cu alloys are
more frequently used for marine applications due to their excellent corrosion resistance [4,5].
However, the characteristics of poor lubricity and strong corrosivity of seawater usually
lead to serious tribo-corrosion problems.

For marine equipment, the working condition parameters of different friction pairs are
different, including load, velocity and movement mode. Among them, velocity is one of the
key parameters for the normal operation of friction components, which has a great influence on
the tribological behavior of materials [6–9]. Over the past 30 years, much effort has been made
regarding the influence of rotational velocity in corrosive environments [10–13]. Generally, the
material loss of the alloy after the tribo-corrosion process is larger than the additive material
loss of mechanical wear and corrosion acting independently [14,15]. The corrosion–wear
interaction contributes a nonnegligible component to the total material loss [16,17]. Under such
conditions, the impact mechanism of rotational velocity on the tribo-corrosion behavior of alloy
is mainly divided into two aspects, including the repassivation rate for the damaged surface
and subsurface deformation [18]. The wear rate of the Ni-17.5Si-29.3Cr alloy in H2SO4 solution
increases with the rotational velocities increasing, due to crack initiation and propagation [19].
A similar growing trend is also determined in titanium alloy in a Ringer solution, where, at the
highest rotational velocity, the material loss and synergistic factor are the highest [20].
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Among Ni-Cu alloys, Monel 400 alloy is widely employed in marine engineering
due to its excellent corrosion resistance, good strength and toughness. Our previous
studies have explored the influence of applied load and potential on its tribo-corrosion
behavior [21,22]. As a single-phased Ni-Cu alloy, Monel 400 alloy exhibits a unique
interaction between wear and corrosion. An abnormal antagonistic effect of corrosion on
mechanical wear is found, which is highly related to the lubricating performance of the
nano-spherical corrosion product which is only generated in tribo-corrosion conditions.
However, for the Monel 400 alloy, the influence mechanism of rotational velocity on tribo-
corrosion behavior and the resultant change in microstructure under the dual action of
corrosion and mechanical wear remain unclear.

In this study, the influence of rotational velocity on the tribo-corrosion behavior
of Monel 400 alloy was studied. The quantitative calculation was used to evaluate the
interaction of corrosion and mechanical wear of the Monel 400 alloy. Special attention
was focused on the formation of the corrosion product’s layer at the surface and the
microstructure evolution at the subsurface of the Monel 400 alloy.

2. Experiment
2.1. Materials

The chemical component (wt%) of Monel 400 alloy is placed in Table 1, which was
purchased from Shaanxi Qingye Special Materials Co., Ltd. (Xi’an, China). The counterpart
Al2O3 pin was provided by Dehe Special Porcelain Factory (Zhejiang, China). The corrosion
medium is artificial seawater, prepared according to ASTM D1141-98. The pH value was
adjusted to 8.2 using 0.1 mol/L NaOH solution. The chemical compositions are listed in
Table 2.

Table 1. Chemical components of the Monel 400 alloy.

Element Cu Fe Mn Si C S P Ni

Content (wt.%) 29.65 1.85 1.09 0.22 0.08 0.003 0.003 Bal.

Table 2. The chemical compositions of seawater.

Components Concentration (g/L)

NaCl 24.53
MgCl2 5.20

Na2SO4 4.09
CaCl2 1.16
KCl 0.695

NaHCO3 0.201
KBr 0.101

SrCl2 0.025
H3BO3 0.027

NaF 0.003

Before wear tests, the specimens of Monel 400 alloy were machined into annular
shapes with an external diameter of 54 mm, internal diameter of 38 mm and height of
13 mm. The sliding surfaces of all specimens were polished by 800 mesh SiC sandpaper
and ultrasonically washed with ethanol. After that, the other surfaces of the specimens
were covered with insulating paint to avoid corrosion expect for the sliding surfaces. The
size of Al2O3 counterpart was Φ 4.6 × 15 mm, and the working surface was in spherical
form with a radius of 4.75 mm.

2.2. Tribo-Corrosion Measurement

To monitor the electrochemical signal of Monel 400 alloy during sliding in situ, a
modified MMW-1 pin-on-disk wear device equipped with a PARTAT 3000A electrochemical
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workstation (Ametek, Bowen, PA, USA) was used. A three-electrode system was employed
to collect electrochemical signal, using a Monel 400 ring as the working electrode, a Pt
gauze as the counter electrode and an Ag/AgCl electrode as the reference electrode.

Both tribo-corrosion and mechanical wear tests were performed at 75 N for 60 min
under rotational velocities ranging from 0.125 m/s to 0.5 m/s. For tribo-corrosion tests,
the open circuit potential was monitored before sliding for 20 min, during sliding for
60 min and after sliding for another 20 min. The mechanical wear test was conducted
with an applied potential of −0.9 V to inhibit electrochemical corrosion, and the specimens
were immersed in seawater before and after sliding for 20 min, respectively. The dynamic
polarization tests were measured with a scan rate of 10 mV/s from −0.7 V to −1210.2 V
under static corrosion and tribo-corrosion tests, respectively.

2.3. Characterization

A JEM−5600LV scanning electron microscope (SEM) (JSM-5601LV, Japan Electron Op-
tics Laboratory, Akishima, Japan) was utilized to observe the morphology of the damaged
surface and subsurface of the Monel 400 alloy. X-ray photoelectron spectroscopy with an
Al Kα X-ray source (Thermo Scientific, Waltham, MA, USA) was employed to analyze the
chemical composition of the corrosion product. The binding energy was calibrated by the
C1s peak binding energy at 284.8 eV. To study the microstructure evolution underneath the
damaged surface, a Helios G4 UX Focus Ion Beam (FIB) was used to take samples from
the sliding surface, and a thin membrane was prepared, which was observed by a Tecnai
G2S-Twin F20 transmission electron microscope (TEM) (FEI, Lexington, KY, USA).

3. Results
3.1. Microstructure of Monel 400 Alloy

The TEM morphology and selected-area electron diffraction (SAED) pattern of the
pristine Monel 400 alloy are shown in Figure 1. From Figure 1a, the equiaxed grains
(~50 nm) were observed. Figure 1b exhibits regular two-dimensional diffraction spots,
which are consistent with the diffraction pattern of the single-phased Monel 400 alloy in
the face-centered cubic (FCC) crystalline structure.
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Figure 1. (a) Bright field TEM image and (b) selected-area electron diffraction (SAED) pattern of
Monel 400 alloy.

3.2. Electrochemical Corrosion Behavior

Figure 2a shows the open circuit potential curves of the Monel 400 alloy under different
rotational velocities. Before sliding, the OCP was stable at −0.23 V because of the presence
of the passive film. With the onset of sliding, the OCP of the Monel 400 alloy dropped to
−0.43 V at 0.125 m/s and further decreased to −0.45 V, −0.47 V and −0.50 V at 0.25 m/s,
0.375 m/s and 0.5 m/s, respectively. This result indicated that the passive film was damaged
by mechanical wear and that the damage degree increased with the rotational velocity
increasing. As the sliding proceeds, the OCP became stable with the achievement of an
equilibrium between passivation and repassivation. When sliding stopped, the OCP value
moved in the positive direction and eventually reached the initial potential of the Monel
400 alloy, indicating totally repassivation at the wear track. Figure 2b shows the Tafel
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curves with and without sliding. Before sliding, the corrosion potential Ecorr of Monel 400
alloy was determined to be −0.37 V. When sliding against the Al2O3 ceramic, the corrosion
potential Ecorr shifted to the negative direction. At 0.125 m/s, the corrosion potential was
−0.45 V, which slowly decreased to −0.5 V as the rotational velocity increased to 0.5 m/s,
indicating that the electrochemical corrosion of the Monel 400 alloy was promoted by
mechanical wear.
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Figure 2. (a) Open circuit potential (OCP) curves and (b) Tafel curves under different rotational
velocities in seawater.

3.3. Tribo-Corrosion Behavior

Figure 3 shows the total material loss rate and the friction coefficient under both tribo-
corrosion- and mechanical-wear conditions at different rotational velocities. Generally, it
was observed that the total material loss rate and friction coefficient under mechanical wear
were larger than those under tribo-corrosion, which increased with the rotational velocity
increasing under both conditions. Under tribo-corrosion conditions, the total material loss
rate and friction coefficient of Monel 400 alloy were 31.8 mm/y and 0.32 at 0.125 m/s,
respectively. As the rotational velocity increased to 0.5 m/s, the total material loss rate and
friction coefficient of the Monel 400 alloy increased to 120.5 mm/y and 0.43, respectively.
Similarly, under mechanical-wear conditions, when the rotational velocity increased from
0.125 m/s to 0.5 m/s, the material loss rate increased from 88.8 mm/y to 314.8 mm/y, and
the friction coefficient increased from 0.35 to 0.45.
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Figure 3. (a) Total material loss rate and (b) friction coefficient of Monel 400 alloy in seawater under
both tribo-corrosion- and mechanical-wear conditions, with different rotational velocities ranging
from 0.125 m/s to 0.5 m/s.

To evaluate the interaction between the corrosion and mechanical wear of the Monel
400 alloy in artificial seawater, extensive calculations were performed according to ASTM
G119-09. The corresponding results are shown in Figure 4. From Figure 4a, as the rotational
velocity increased from 0.125 m/s to 0.5 m/s, the total corrosion rate of the Monel 400 alloy
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during tribo-corrosion slightly increased from 0.35 mm/y to 0.44 mm/y, which indicates
accelerated electrochemical corrosion because of mechanical wear. Figure 4b shows the
influence of corrosion on mechanical wear under the tribo-corrosion condition. Both
the total wear rate and pure mechanical wear rate increased with the rotational velocity
increasing, being 31.4 mm/y and 88.3 mm/y at 0.125 m/s and increasing to 120.0 mm/y
and 314.8 mm/y at 0.5 m/s, respectively. However, the pure mechanical wear rate was
larger than the total wear rate, suggesting that electrochemical corrosion has an antagonistic
effect on mechanical wear. Since the corrosion rate was far less than the wear rate, the
total material loss rate was determined by the wear rate W0, and the interaction S between
corrosion and mechanical wear was oriented by the degree of corrosion-inhibited wear
∆Wc, as shown in Figure 4c. It proves that there exists a negative synergy between corrosion
and mechanical wear for the Monel 400 alloy, under various velocities.
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and mechanical wear-corrosion interaction (S) in total material loss rate (T), at different rotational
velocities in seawater.

3.4. Damage Morphologies

Figure 5 shows the representative damaged surface of the Monel 400 alloy at different
rotational velocities in seawater. It was noticed that the wear of Monel 400 alloy aggravated
under both conditions, with the rotational velocity increasing. There were numerous
parallel grooves together with flaky peelings on the damaged surface under tribo-corrosion-
and mechanical-wear conditions, which was a typical characteristic of delamination wear
and became more prominent at higher rotational velocities. Compared with the tribo-
corrosion condition, the flaky peeling was more serious under mechanical wear at the
same rotational velocity. For example, at 0.5 m/s, the dimensions of flaky peeling were
183 µm in length and 72 µm in width under tribo-corrosion conditions, which increased
to 205 µm and 155 µm under independent mechanical wear, respectively. The damaged
surface morphology observations partially explained why the total material loss rate was
higher under the condition of mechanical wear, as shown in Figure 4c.

The cross-section morphologies of the Monel 400 alloy are presented in Figure 6. At
0.125 m/s, a few cracks were observed under tribo-corrosion conditions, while several
voids were generated beneath the sliding surface under mechanical wear. With the rota-
tional velocity increasing, cracks nucleated and propagated into the subsurface under the
conditions of tribo-corrosion and mechanical wear. Compared with the tribo-corrosion
conditions, the crack propagation was more serious under mechanical wear, presenting as
a deeper damaged location and a larger area of the fractured region.
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Figure 6. The cross-section morphologies of Monel 400 alloy in conditions of (a) tribo-corrosion
and (b) mechanical wear under different rotational velocities of 0.125 m/s, 0.25 m/s, 0.375 m/s and
0.5 m/s in seawater.

3.5. XPS Analysis of Corrosion Products

XPS analysis was conducted to reveal the chemical composition of corrosion products
on the Monel 400 alloy under different conditions. Figure 7 presents the XPS spectrum
of Ni 2p, Cu 2p and O 1s of the Monel 400 alloy at the original state and after the static
corrosion and tribo-corrosion processes, respectively. The peak position, assignment and
proportion are listed in Table 2. In the O1s spectrum, the peaks of O2−, OH− and O–C were
located at 531.2 eV, 531.6 eV and 532.4 eV, respectively [23–25]. In the Ni 2p3/2 spectra, it
was observed that the Ni species was the same under the three conditions. The peak of
elemental Ni was detected at 852.3 eV, and the peaks located at 856.2 eV and 860.8 eV were
indexed Ni(OH)2 and its accompanying peak, respectively [26–28]. However, compared
with the original state and static corrosion, the amount of Ni decreased to 4.1%, but the
amount of Ni(OH)2 increased to 61.1% after the tribo-corrosion tests. For the Cu 2p3/2
spectra, the binding energies of CuO and Cu(OH)2 were 933.0 eV and 935.0 eV, respectively.
The peak located at 932.1 eV belonged to elemental Cu or Cu2O [29–31]. According to the
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O1s spectra and the peak proportion listed in Table 3, it was deduced that Ni was oxidized
to Ni(OH)2 under both the static corrosion and tribo-corrosion conditions, while Cu(OH)2
was generated after the corrosion process, together with a larger amount of Cu2O.
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Figure 7. The XPS spectra of Ni 2p, Cu 2p and O 1s detected for corrosion products formed under the
(a) original state, (b) static corrosion and (c) tribo-corrosion conditions.

Table 3. The assignment, binding energy and proportion of characteristic peaks from XPS analysis.

Samples Ni 2p3/2/Binding
Energy/Amount

Cu 2p3/2/Binding
Energy/Amount

O 1s/Binding
Energy/Amount

Original
State

Ni metal
Ni(OH)2

852.3 15.5% Cu/Cu2O 932.1 12.9% O2− / /
Main 856.2 43.8% CuO 933.0 87.1% OH− 531.6 36.9%
Sat. 860.8 40.7% Cu(OH)2 / / O-C 532.4 63.1%

Static
Corrosion

Ni metal
Ni(OH)2

852.3 5.2% Cu/Cu2O 932.1 45.5% O2− 531.2 17.1%
Main 856.2 54.2% CuO 933.0 23.7% OH− 531.6 25.8%
Sat. 860.8 40.6% Cu(OH)2 935.0 30.8% O-C 532.4 57.1%

Tribo-
Corrosion Ni metal 852.3 4.1% Cu/Cu2O 932.1 41.7% O2− 531.2 46.1%

Ni(OH)2
Main 856.2 61.1% CuO 933.0 38.7% OH− 531.6 18.2%
Sat. 860.8 34.8% Cu(OH)2 935.0 19.6% O–C 532.4 35.7%

4. Discussion
4.1. Effect of Rotational Velocity on Mechanical Wear

The influence of rotational velocity on the microstructure after mechanical wear was
explored by observing the subsurface morphologies of the Monel 400 alloy, and the typical
TEM morphologies are presented in Figure 8. The rotational velocity had a significant effect
on the microstructure of the subsurface. As can be seen from Figure 8a, compared with
the original grain size of the Monel 400 alloy (~100 nm), the grain size of the Monel 400
alloy was significantly smaller (~25 nm) at the rotational velocity of 0.125 m/s, indicating
that grain refinement occurred in the subsurface of the Monel 400 alloy after undergoing
plastic deformation. However, at the rotational velocity of 0.5 m/s, the subsurface of the
Monel 400 alloy exhibited extremely elongated grains, and fine grains only existed near the
damaged surface.
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From the mechanical-wear perspective, the maximum contact stress was calculated as
~2.2 GPa based on the Hertz theory, as in spherical pin/ring contact, which is approximately
10 times larger than the yield stress of Monel 400 (typically 283 MPa). It means that the
Monel 400 alloy would suffer severe plastic deformation under this condition. During the
process of plastic deformation, part of the mechanical energy was stored in the metallic
matrix, in the form of dislocation, with a medium value of the stacking fault energy of
the Monel 400 alloy in the range of 80–128 mJ/m2, even under the lubricating effect of
seawater [32,33]. Firstly, under the action of shear stress, grain reorientation results in grain
elongation in the shear direction. At the same time, there are many dislocations around
the elongated grain boundary, and the slipping of dislocations caused by severe plastic
deformation led to the rupture of the elongated grain. Next, the elongated grains were
refined to form nanocrystalline [34,35]. At a higher rotational velocity, the wear is mainly
controlled by plastic deformation peeling and fatigue fracture, which rapidly consumes the
nanocrystalline layer on the surface. Therefore, at rotational velocity of 0.5 m/s, only a few
refined grains were observed on the subsurface of the Monel 400 alloy.

In addition, from the quantitative measurement of tribo-corrosion components at
various velocities shown in Figure 4, it was revealed that the total material loss (T) was
mainly determined by the additive of mechanical wear (W0) and corrosion-accelerated
wear (∆Wc). The exact values of T, W0 and ∆Wc increased as the increasing velocity, and,
thus, the sliding distance increased. However, as shown in Figure 9, it was revealed that
the increased value of T and W0, with the distance per cycle remaining constant, indicates
that the microscopic accelerated wear loss at a higher velocity is mainly the result of
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the accumulation of the sliding distance, and elongated grains were observed at higher
velocities.
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4.2. Effect of Rotational Velocity on Corrosion

From the above results, it can be concluded that the corrosion of the Monel 400
alloy in artificial seawater inhibited the mechanical wear to different extents, which was
mainly dependent on the excellent lubricating performance of the corrosion product’s
layer. According to our previous study [22], nanoscale copper-rich particles were produced
in situ on the worn surface of the Monel 400 alloy, which was attributed to the selective
corrosion of nickel during the tribo-corrosion tests. The copper-rich grains were extruded
under cyclic shear stress and gradually evolved into a discontinuous corrosion product’s
layer. Owing to the excellent lubrication of the corrosion product’s layer, the shear stress
during the friction process was greatly weakened, leading to lower material loss and a
lower friction coefficient after the tribo-corrosion tests than after the mechanical wear tests.

The tribo-corrosion behavior of the Monel 400 alloy was influenced remarkably by the
rotational velocity. The material loss rate and friction coefficient after both tribo-corrosion
and mechanical wear tests increased, with the rotational velocities ranging from 0.125 m/s
to 0.5 m/s. Figure 10 depicts the TEM morphologies of the Monel 400 alloy after tribo-
corrosion tests at 0.125 m/s and 0.5 m/s. The corrosion products’ layer on the worn
surface was observed. Spot-scanning results revealed that the chemical composition of
the corrosion product’s layer was mainly Cu, which was consistent with our previous
research. However, the thickness of the corrosion product’s layer decreased from 50 nm to
30 nm as the velocity increased from 0.125 m/s to 0.5 m/s. The evolution of the corrosion
product’s thickness was clearly controlled by the process of passivation and repassivation
competition [36]. Mischler et al. observed the same behavior after tribo-corrosion tests,
when AISI 430 steel sliding against an alumina ball was held at a passive potential in
H2SO4 [37]. This evolution can be explained by the truth that the corrosion product’s layer
was continuously removed and exposed the matrix area where the corrosion took place at
a higher rate when the rotational velocity increased [38], which is confirmed by Figure 4a.
It can be observed that the degree of mechanical wear accelerated the increased corrosion
(∆Cw) with the velocity increasing, indicating that, although the thickness of the corrosion
product’s layer thinned with the rotational velocity increasing, it still allowed the Monel
400 alloy to completely repassivate, even at the maximum rotational velocity.
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5. Conclusions

The influence of rotational velocities on the tribo-corrosion behavior of the Monel 400
alloy in artificial seawater was investigated. The components of mechanical wear, corrosion
and wear-corrosion interaction were quantitatively determined. The results revealed that
the tribo-corrosion behavior was highly dependent on the rotational velocity. The specific
conclusions are listed as follows:

1. The total material loss and friction coefficient increased with the increasing velocity,
presenting as delamination alongside the sliding direction at the surface and the crack
nucleation and propagation at the subsurface.

2. Compared with mechanical wear, the damage induced by tribo-corrosion was much
lower due to the formation of the corrosion product’s layer in a thickness of several
tens of nanometers, exhibiting excellent lubricating performance.

3. After the mechanical wear tests, the increased material loss rate with the increasing
velocity was mainly the result of the accumulation of the sliding distance.

4. Since the thickness of the corrosion product’s layer decreases from 50 nm to 30 nm
as the velocity increases from 0.125 m/s to 0.5 m/s, the material loss rate after the
tribo-corrosion tests also increases with the velocities increasing, possibly due to the
rebuilt balance between the passivation and slowed repassivation at higher velocities.
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