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Abstract: This work evaluates the impact of different organic acids on the corrosion sensitivity and
stress-corrosion cracking (SCC) of NiCrMoV steam turbine steel. For all organic acids, potentio-
dynamic measurements shows linear relationships between corrosion rate and hydrogen proton
concentration between pH 2.4 and 3.9. For solutions with the same pH, i.e., similar conductivity, the
corrosion rate differs depending on the type of organic acid. The anodic dissolution in formic acid
is the highest, followed by acetic, propanoic and nonanoic acid. The acid dissociation reaction is
identified as the rate determining step in the corrosion process. Nonanoic acid, alternatively, clearly
acts as a corrosion inhibitor. In situ four-point constant-extension tests in formic acid, acetic acid and
nonanoic acid, at a pH value of 3.4 were performed to evaluate their impact on the SSC sensitivity.
The general degradation followed the trend of the corrosion rate, although the synergetic effect of
corrosion and stress resulted in a higher degradation depth. Though nonanoic acid induced little visi-
ble corrosion, still stress-corrosion cracks were still detected. It was shown that solutions of different
organic acids with the same pH do not have the same influence on stress-induced degradation.

Keywords: low alloy steel; stress corrosion cracking; voltammetry; in situ bending; cracking

1. Introduction

Organic acids are commonly found in the first condensate in steam turbines, acidifying
the aqueous environment of steam turbine materials [1–3]. The presence of organic acids in the
first condensate was proven by experimental first condensate measurements [4,5]. The organic
acids typically originate from (hydro)thermolysis of organic compounds present in the boiler
feed water [3,6,7]. Moreover, with the degradation into organic acids, carbon dioxide is also
formed [8,9]. The amounts and types of organic compounds in the boiler feed water sources are
continuously changing. One of the causes for this is climate change, resulting in less rainfall
and therefore leading to higher concentrations of organic compounds [10,11]. Another cause
is the shift to alternative water sources in industry, for example from the use of tap water to
surface water, or reuse of effluent [12]. Different water sources require other water treatment
practices, therefore also influencing the boiler feed water quality [13–15]. In addition, the use
of variable conditioning practices, such as dosing of film forming products (FFP), change the
water quality in steam–water cycles [16–19]. It has been proven that corrosion inhibitors, such
as oxygen scavengers and FFP, can also thermally degrade into organic acids [9,20–23]. Svoboda
and Bodmer [4] detected 600 ppb of acetic acid by first condensate sampling experiments under
normal plant operating conditions. In 2004, De Wispelaere [5] found 6000 ppb of acetic acid in
the first condensate when adding alkalising amines and FFP to the steam–water cycle. However,
due to the recent accelerations of climate change, the use of alternative water sources, new
water treatment schemes and novel conditioning practices, organic acid concentrations in first
condensates might already be higher in 2020 and could even further increase in the future.
Therefore, corrosion issues in steam–water cycles should be studied even more closely.
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The acidified first condensate in steam turbines can cause significant corrosion dam-
age [24–27], such as acidic stress-corrosion cracking [28–33] and corrosion fatigue [34]. In
addition, electrochemical impedance spectroscopy (EIS) indicated that acetic acid facilitates
pitting of steam turbine steel in first condensates containing chlorides [35]. Furthermore,
flow accelerated corrosion can be lowered when increasing the pH by lowering the organic
acid concentration [34]. Hence, organic acids have a detrimental effect on the corrosion
behaviour of steam turbines. Furthermore, corrosion can be promoted by accumulation of
organic acids due to the cyclic process of the steam–water cycle [36,37], concentrating in
the liquid first condensate by a factor of more than one hundred [38], local evaporation of
condensate [34,39] and local concentrating in impurity traps such as crevices [34]. Gaining
more insight on the impact of organic acids on the corrosion sensitivity of steam turbine
steels is an absolute prerequisite for improved corrosion control and the avoidance of steam
turbine failures.

It has been observed that each organic compound is vulnerable to hydrothermolysis
to a different extent, as such leading to formation of different amounts and types of organic
acids [40]. Therefore, not only the amount of total organic carbon (TOC), but also the type
of TOC matters [41]. Several types of (organic) acids are present in steam–water cycles.
Acetic acid and formic acid were found to be the main degradation products [2,6,8,9].
Furthermore, the presence of propionic acid [3,42] and butyric acid [9] have also been
confirmed, as well as that of oxalic acid [9,43]. Savelkoul and van Lier [3] reported the
presence of lactic acid in boiler water and turbine condensate. In addition, traces of glycolic
acid in superheated steam were observed [42]. Even the presence of succinic acid has
been reported [8]. Moed et al. [40] reported thermal stability to be key in determining the
concentrations of each type of organic acid.

As a result, it is questioned whether the type of organic acid influences the corrosion
sensitivity of steam turbine steel. One might think that the corrosion sensitivity is indepen-
dent of the type of organic acid as long as the pH of the solution is the same. Otherwise,
the (cation) conductivity of the solution has been put forward as dominant parameter
in determining the SCC susceptibility of various steels in steam turbine phase transition
zone environments [44,45]. Maeng and Macdonald [46] observed a linearity between the
conductivity and the crack propagation rate of steam turbine steel in acetic acid solutions
and concluded the importance of the conductivity in determining the SCC susceptibility
of turbine steels. According to Ljungberg and Cubicciotti [47], a small increase in conduc-
tivity caused intergranular stress-corrosion cracking (IGSCC) of sensitised 304 stainless
steel. Christman and Cragnolino [48] studied the effect of organic acids on the IGSCC of
sensitised 304 stainless steel in high temperature aqueous solutions by using slow strain
rate tests (SSRT). They reported an increased IGSCC in acetic acid, whereas formic and
oxalic acids suppressed IGSCC [48]. For industry, knowledge on allowable types and
concentrations of organic acids in steam–water cycles is very helpful to re-assess industrial
guidelines and to design an appropriate water treatment to fulfil scientifically substantiated
requirements for corrosion prevention and control.

In this work, the corrosion sensitivity of steam turbine steel is investigated for four organic
acids: formic, acetic, propanoic and nonanoic acid. Acetic acid was chosen since it has been
reported as main contributor of organic acids in the steam–water cycle chemistry [2,6,8,9].
Further, formic acid and propanoic acid have a shorter and longer hydrocarbon chain length,
respectively. Finally, nonanoic acid has a much longer hydrocarbon tail than the others. In this
way, the impact of the acid’s chain length on the corrosion behaviour will be evaluated. For this
purpose, electrochemical measurements on steam turbine steel in different concentrations of the
four organic acids will be performed. To investigate whether the pH is the main deciding factor,
regardless of the type of organic acid, the corrosion behaviour in aqueous solutions with different
types of organic acids, but with the same pH, will be investigated. It will be demonstrated to
which extent the conductivity of the aqueous solutions containing different types of organic
acids is influenced when having a same pH. As a consequence, it can be evaluated whether
conductivity is the key factor in the corrosion behaviour of steam turbine steel. Furthermore, the
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SCC sensitivity is investigated with in situ four-point constant-extension tests with post mortem
fractography by scanning electron microscopy (SEM). This technique will allow to investigate
whether damage occurs in steam turbine steel when the steel is subjected to a sustained high
load in an acidic aqueous environment containing organic acids. The influence of the type of
organic acid will be examined by submersing the steam turbine steel under load in different
organic acids with the same pH.

2. Materials and Methods
2.1. Steam Turbine Steel and Organic Acids

The steel used in this work was a NiCrMoV steam turbine steel of the type 27NiCrMoV15-
6, with chemical composition given in Table 1, determined via spark source optical emission
spectroscopy (SS-OES). The steam turbine steel was produced by following an industrial
quenched and tempered (Q&T) treatment. This resulted in a tempered martensitic mi-
crostructure with precipitates. A more in-depth microstructural characterisation of NiCr-
MoV steam turbine steel can be found in previous work [49] or in the literature by other
authors such as Gates et al. [50].

Table 1. Chemical composition of 27NiCrMoV15-6 in wt%.

Fe C Ni Cr Mo V

balance 0.27 3.70 1.50 0.35 0.10

The four different organic acids used in this study, i.e., formic acid (CH2O2), acetic
acid (C2H4O2), propanoic acid (C3H6O2) and nonanoic acid (C9H18O2), differ in several
characteristics, such as hydrocarbon chain length, molar mass, density and boiling temper-
ature. As can be seen in Table 2, increasing the chain length of the organic acid, results in a
larger molar mass, a lower density and a higher boiling temperature.

Table 2. Chemical formula, molar mass (g/mol), density (kg/L) and boiling temperature (◦C) of the
different organic acids.

Organic Acid Chemical
Formula

Molar Mass
(g/mol) Density (kg/L) Boiling

Temperature (◦C)

formic acid CH2O2 46.02 1.22 100.8
acetic acid C2H4O2 60.05 1.05 118.5

propanoic acid C3H6O2 74.08 0.99 141.2
nonanoic acid C9H18O2 158.24 0.90 254.0

To compare the impact of the different organic acids on the corrosion behaviour of the
NiCrMoV steam turbine steel, aqueous solutions with the same pH, i.e., the same hydrogen
proton concentration, were prepared using one organic acid at a time. Details on how these
aqueous solutions were made as well as the consequences on the solutions’ conductivity
are provided in the next section.

2.2. pH and Conductivity of the Aqueous Solutions

The (equilibrium) dissociation constant Kd (M) of the dissociation reaction of a weak
monoprotic acid HZ, cf. Equation (1),

HZ↔ H+ + Z− (1)

where, H+ is a hydrogen proton and Z− for the anionic part, can be determined via the
standard Gibbs free energy ∆G0 (J/mol), according to Equation (2),

∆G0 = −RT lnKd (2)
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where, R is the universal gas constant (8.314 J/K mol) and T is the temperature (K). The
standard Gibbs free energy ∆G0 can be calculated by knowing the standard enthalpy ∆H0

(J/mol) and the standard entropy ∆S0 (J/K mol), cf. Equation (3).

∆G0 = ∆H0 − T∆S0 (3)

The dissociation constant Kd and pKd, according to Equation (4), for the different
organic acids are shown in Table 3 [51].

pKd = −logKd (4)

Table 3. Dissociation constant Kd (M) and pKd for the different organic acids at 25 ◦C [51].

Organic Acid Kd (M) pKd

formic acid 1.77 × 10−4 3.75
acetic acid 1.74 × 10−5 4.76

propanoic acid 1.34 × 10−5 4.87
nonanoic acid 1.11 × 10−5 4.96

Ostwald [52] proposed a relationship between the dissociation constant Kd and the
degree of dissociation α of a weak electrolyte. His dilution law for the dissociation reaction
of a weak monoprotic acid HZ, cf. Equation (1), is given in Equation (5),

Kd =

[
H+
][

Z−
]

[HZ]
=

α2

1− α
c (5)

where, the square brackets denote concentration and c is the total concentration of elec-
trolyte (mol/m3). Equation (5) can be solved to express the degree of dissociation α as
a function of the dissociation constant Kd and the total concentration of electrolyte c,
according to Equation (6).

α =

√
Kd

2c

(√
Kd + 4c−

√
Kd

)
(6)

For the different organic acids, the degree of dissociation α is plotted versus the total
concentration of the electrolyte c in Figure 1. For a large total concentration of electrolyte c,
i.e., for a very small degree of dissociation α, Equation (6) becomes Equation (7).

α =

√
Kd
c

. (7)

Since only free ions can participate in the transport of current through a solution of an
electrolyte, the degree of dissociation α can also be expressed in terms of molar conductivity
Λm [S m2/mol], cf. Equation (8) [53],

α =
Λm

Λ0
(8)

where, Λ0 is the molar conductivity at infinite dilution, which corresponds to complete
dissociation [54]. According to Kohlrausch’s law of independent ion migration, each ion is
assumed to make its own contribution to the molar conductivity, irrespective of the nature
of the other ion with which it is associated [54]. Therefore, the molar conductivity at infinite
dilution Λ0 can be written as the sum of the ion conductivities at infinite dilution, λ0

+ and
λ0
−, for the cation and anion, respectively, cf. Equation (9) [54].

Λ0 = λ0
+ + λ0

− (9)
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The molar conductivity at infinite dilution Λ0 was calculated for the different organic
acids and can be found in Table 4.
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Figure 1. Degree of dissociation α versus the total concentration of the electrolyte c (M), for different
organic acids.

Table 4. Limiting cation conductivity λ0
+, limiting anion conductivity λ0

− and molar conductivity at
infinite dilution Λ0 of the different organic acids at 25 ◦C [54].

Organic Acid λ0
+ (mS m2/mol) [54] λ0

− (mS m2/mol) [54] Λ0 (mS m2/mol)

formic acid 35.0 5.4 40.4
acetic acid 35.0 4.1 39.1

propanoic acid 35.0 3.6 38.6
nonanoic acid 35.0 2.5 37.5

The conductivity, also known as specific conductance, κ [S/m] of a solution containing
one electrolyte is dependent on the molar conductivity Λm and total concentration of the
electrolyte c, cf. Equation (10).

κ = Λm·c (10)

When combining Equations (6), (8) and (10), the conductivity κ can be written as a
function of the molar conductivity at infinite dilution Λ0, the dissociation constant Kd and
the total concentration of the electrolyte c, cf. Equation (11).

κ =
Λ0
√

Kd
2

(√
Kd + 4c−

√
Kd

)
(11)

In Figure 2, the conductivity κ is plotted versus the total concentration of the electrolyte
c for the different organic acids. In case of high total concentrations of electrolyte c, i.e., for
very small degrees of dissociation α, Equation (11) becomes Equation (12).

κ = Λ0
√

Kd c. (12)
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The pH of an aqueous solution is determined by the concentration of protons, accord-
ing to Equation (13).

pH = − log
[
H+
]

(13)

Based on Equations (5) and (6), the hydrogen proton concentration of the aqueous
solution can also be approximated by Equation (14).

[
H+
]
= α·c =

√
Kd
2

(√
Kd + 4c−

√
Kd

)
(14)

It can be seen that depending on the type of organic acid, different total concentrations
c are needed to prepare solutions with the same pH, due to their different dissociation
constants Kd, which are determined by thermodynamics. When taking Equation (11) into
account, Equation (14) can be written as Equation (15).[

H+
]
=

κ

Λ0
(15)

Since the molar conductivity at infinite dilution Λ0 is roughly quite similar for the
different organic acids, cf. Table 4, the conductivity κ of aqueous solutions with the same
pH does not differ much for different types of organic acids. Test solutions of the different
organic acids were prepared at four fixed pH values: 3.9, 3.4, 2.9 and 2.4. These four
pH values were determined by calculating the pH of four concentrations of acetic acid:
1, 10, 100 and 1000 mM, respectively. Acetic acid was chosen as reference, because of
its predominant contribution to the steam–water cycle chemistry due to its high thermal
stability [2,9]. A concentration of 1 mM acetic acid (pH = 3.9) is one order of magnitude
more concentrated than found in normal first condensate as reported by De Wispelaere [5]
(6 ppm, pH = 4.5), to take the effect of deviating water quality into account. Such increased
concentrations can become representative for practice, as amongst others climate change
is leading to shifts towards alternative water sources with potentially deviating water
quality [11,13–15]. Furthermore, higher acetic acid concentrations were investigated for the
sake of fundamental evaluation. Based on the acetic acid concentrations, test solutions with
the same pH values for the other organic acids were calculated and prepared. The total
concentrations c and conductivities κ of these aqueous solutions are summarised in Table 5.
It can be seen that for the same pH, significantly different concentrations of organic acids
were required. The lowest concentration was needed for formic acid, which has the largest
dissociation constant, whereas for nonanoic acid the highest concentration was needed due
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to its smallest dissociation constant, cf. Table 3. Furthermore, as can be seen in Table 5,
conductivities were quite similar for test solutions with the same pH. These conductivities
were confirmed by experimental conductivity measurements (WTW conductivity probe LR
925/01-P IDS). Therefore, when evaluating the impact of different types of organic acids
by comparing solutions with the same pH, this also implies that the different organic acid
types are compared at roughly the same conductivity.

Table 5. Total concentration c and conductivity κ of test solutions prepared with different organic
acids, for four pH values.

pH
Formic Acid Acetic Acid Propanoic Acid Nonanoic Acid

c (mM) κ (µS/cm) c (mM) κ (µS/cm) c (mM) κ (µS/cm) c (mM) κ (µS/cm)

3.9 0.2 50 1.0 48 1.2 48 1.5 47
3.4 1.4 166 10.0 160 12.6 159 15.8 154
2.9 11.1 533 100.0 512 127.0 509 159.6 494
2.4 103.1 1693 1000.0 1627 1272.8 1616 1601.3 1571

2.3. Electrochemical Measurements

To study the corrosion behaviour, potentiodynamic scans were performed on NiCr-
MoV steam turbine steel at 25 ◦C in the different acidic aqueous solutions as shown in
Table 5. Polarisation curves were obtained by using a potentiostat (Ivium CompactStat.h)
and a three-electrode system: the steam turbine steel as working electrode (WE), a platinum
gauze as counter electrode (CE) and a saturated leakless Ag/AgCl electrode (0.197 V vs.
SHE (standard hydrogen electrode)) as reference electrode (RE). All measurements were
performed at 25 ◦C and for all tests a scan rate of 5 mV/s was applied. Further details about
both the set-up and method used for conducting electrochemical measurements can be
found in previous work [49,55–57]. Faraday’s law, cf. Equation (16), was used to determine
corrosion rates CR (µm/s),

CR =
M

n F ρ
jcorr (16)

with, jcorr (A/m2) the corrosion current density, F (96 485 C/mol) the Faraday constant, n
the number of electrons in the reaction, M (g/mol) and ρ (7.87 g/cm3) the molar mass and
the density of the steel, respectively. The corrosion current density jcorr was determined at
the intersection of corrosion potential Ecorr (V) and anodic Tafel-slope αa,M·f, according to
Equation (17),

j = jcorr

(
eαa,M f ηcorr − e−αc,EA f ηcorr

)
(17)

with, αa,M and αc,EA the anodic charge transfer coefficient of the metal M and the cathodic
charge transfer coefficient of the electron acceptors EA, respectively, f equal to nF/RT
with R (8.314 J/K mol) the universal gas constant and T (K) the temperature, ηcorr (V) the
corrosion overpotential equal to E− Ecorr (V). The Tafel relation indicates a linear relation
between the potential and the logarithm of the current [58]. To illustrate the determination
of the corrosion current density jcorr, a polarisation curve with appropriate anodic Tafel
plot is shown in Figure 3. After recording the polarisation curve (shown in blue), the
corrosion potential Ecorr was determined (shown in green). At 100 mV above Ecorr, the
Tafel plot (shown in black) was constructed as tangent of the polarisation curve. The
intersection of Tafel plot and Ecorr (shown with a red dot) resulted in the corrosion current
density jcorr. The cathodic Tafel plot was not used for determination of the corrosion rate,
since the total cathodic current might consist of multiple currents of coexisting reduction
reactions [59]. The cathodic Tafel-slope, for example, falls short for a combination of the
reduction of protons and oxygen. In contrast, the anodic Tafel-slope is only determined by
the oxidation of the steel in the tested conditions. For each condition, a region of linearity on
the polarisation curve at 100 mV above Ecorr was identified, as such justifying the method
with Tafel plots. The effect of ohmic potential drops was negligible for the determination of
corrosion rates. Electrochemical measurements were performed at least twice and repeated
until a maximum standard deviation of 10 mV for the corrosion potential was obtained.
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2.4. In Situ Four-Point Constant-Extension Tests

In situ four-point constant-extension tests were performed to gain information on
the SCC sensitivity of steam turbine steel in acidic aqueous environments containing
organic acid. These tests were based on ASTM G39, NACE TM0177 and NACE TM0284
standards [60–62]. Figure 4 shows a schematic representation of the in situ four-point
constant-extension set-up, including a reference system.
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Figure 4. Illustration of the determination of the corrosion current density jcorr (polarisation curve in
0.01 M acetic acid at 25 ◦C).

The steam turbine steel was subjected to an extension, related to a σxx (maximal tensile
stress at the surface) of 115% σy (yield strength = 820 MPa), and immersed in test solutions
of formic acid, acetic acid and nonanoic acid at room temperature (pH = 3.4) for one month.
After the tests, cross-sections were made for post mortem fractography. The cross-sectional
surface (x-z plane) was polished. To investigate the presence of (stress-corrosion) cracks,
post mortem SEM analysis (Quanta FEG 450—spot size of 5 nm and accelerating voltage of
20 kV) was performed.

3. Results and Discussion
3.1. Corrosion Behaviour

Representative polarisation curves of NiCrMoV steam turbine steel in the different
types of organic acids, i.e., formic, acetic, propanoic and nonanoic acid, at the four pH values
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as given in Table 5, i.e., pH 3.9, 3.4, 2.9 and 2.4, are shown in Figures 5 and 6. Potentials E
(V vs. SHE) are plotted versus their current density j (µA/cm2). In Figure 5, polarisation
curves are grouped by organic acid: (a) formic acid, (b) acetic acid, (c) propanoic acid and
(d) nonanoic acid. Alternatively, potentiodynamic curves are grouped by pH in Figure 6:
(a) pH 3.9, (b) pH 3.4, (c) pH 2.9 and (d) pH 2.4.
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Corrosion rates (µm/year) of these 16 situations were determined and are summarised
in Figure 7 and Table 6. As described in previous work [49], the corrosion rate of the
NiCrMoV steam turbine steel in demineralised water without acids was determined to be
about 1.3 µm/year. Two interesting trends can be noticed in Figure 7. (i) When lowering
the pH, the corrosion rate increases for formic, acetic as well as for propanoic acid, whereas
the corrosion rate in nonanoic acid stays virtually the same. (ii) For solutions with the
same pH, the corrosion rate differs depending on the type of organic acid. The ranking
of the corrosion rates for the different types of organic acids is similar for each pH value.
The sequence is always ‘formic acid, acetic acid, propanoic acid, nonanoic acid’ (from the
highest to the lowest corrosion rate). These two trends will be discussed in more detail in
the next sections.
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Figure 7. Corrosion rates CR (µm/year) of NiCrMoV steam turbine steel in different types of organic
acids at four pH’s.
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Table 6. Organic acid type, pH, corrosion potential Ecorr, corrosion rate CR and corrosion current
density jcorr.

Acid pH Ecorr (V vs. SHE) CR (µm/year) jcorr (µA/cm2)

formic 3.9 −0.233 55.7 4.80
formic 3.4 −0.328 106.8 9.21
formic 2.9 −0.313 380.2 32.78
formic 2.4 −0.298 1142.2 98.48
acetic 3.9 −0.268 35.2 3.03
acetic 3.4 −0.291 90.4 7.79
acetic 2.9 −0.241 312.5 26.94
acetic 2.4 −0.186 868.8 74.91

propanoic 3.9 −0.293 32.8 2.83
propanoic 3.4 −0.233 89.2 7.69
propanoic 2.9 −0.193 243.1 20.96
propanoic 2.4 −0.166 665.6 57.39
nonanoic 3.9 −0.088 15.8 1.36
nonanoic 3.4 −0.128 12.1 1.04
nonanoic 2.9 −0.148 9.3 0.80
nonanoic 2.4 −0.153 9.0 0.78

3.2. Influence of Organic Acid Concentration

To investigate the effect of the organic acid concentration on the corrosion rate of
NiCrMoV steam turbine steel in the different acids, the corrosion rates are plotted versus
the hydrogen proton concentration in Figure 8a, as well as versus the pH in Figure 8b. The
relation between the organic acid concentration and the hydrogen proton concentration
is given by Equation (14), whereas the link with pH is given by Equation (13). Linear
relationships between corrosion rate CR (µm/year) and hydrogen proton concentration[
H+
]

(mM), according to Equation (18), can be identified [49,56,57].

CR = a·
[
H+
]
+ b (18)

As can be seen in Figure 8a, the steepest increase in corrosion rate with increasing hy-
drogen proton concentration is observed for formic acid, followed by acetic and propanoic
acid. For nonanoic acid, no increase in corrosion rate was observed. Moreover, even a small
decrease in corrosion rate with increasing concentrations was measured for nonanoic acid,
as can be seen in Figure 7. Therefore, no trend line for nonanoic acid is given in Figure 8.
When combining Equations (13) and (18), the corrosion rate can be written as a function of
the pH, according to Equation (19).

CR = a·10−pH + b (19)

This correlation is visualised in Figure 8b. Lowering the pH has a large influence on
the corrosion rate of the NiCrMoV steel and it is clear that this influence is dependent on
the type of organic acid.

To gain more insight in the active corrosion mechanisms, corrosion potentials Ecorr (V)
were measured and plotted on a Pourbaix diagram [63–69]. Corrosion potentials of the
acidic aqueous solutions, given in Table 5, were determined from the polarisation curves
and included on a Pourbaix diagram in Figure 9. The Pourbaix diagram was constructed
based on thermodynamic data from FactSage©. The diagram was calculated for iron at
25 ◦C with an iron molality of 1. Thermodynamically stable forms of iron are delimited by
solid black lines. All corrosion potentials are situated in the Fe2+ region, i.e., above the iron
oxidation reaction line, cf. Equation (20).

Fe↔ Fe2+ + 2e−. (20)
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Figure 8. Influence of the type and concentration of organic acid on the corrosion rate of steam
turbine steel (a) corrosion rate (µm/year) versus hydrogen proton concentration (mM) (b) corrosion
rate (µm/year) versus pH.
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Diagram based on thermodynamic data from FactSage©.

As such, anodic dissolution of the steel takes place in all conditions. The anodic
reaction is coupled with at least one reduction reaction in a redox system. All corrosion
potentials are situated below the oxygen reduction reaction line, cf. Equation (21).

O2 + 4H+ + 4e− ↔ 2H2O (21)

This line is not shown in Figure 9, since it is situated at higher potentials, according to
the Nernst equation for the oxygen reduction reaction at 25 ◦C, cf. Equation (22),

E0 = 1.23− 0.059 pH (V vs. SHE) (22)

where, E0 (V vs. SHE) is the equilibrium potential. Since all corrosion potentials are
situated below the oxygen reduction reaction line, the reduction of oxygen takes place in
all tested conditions. Furthermore, almost all corrosion potentials, except for most of the
nonanoic acid solutions, are also located below the hydrogen proton reduction reaction
line, cf. Equation (23) (Volmer reaction) [65,66].

Volmer reaction H+ + e− ↔ H (23)

This means that in almost every situation, protons are reduced to atomic hydrogen, as
a second reduction reaction in the redox system. Hydrogen atoms adsorbed on the metal
surface can recombine by chemical desorption (Tafel reaction), cf. Equation (24), recombine
by electrochemical desorption (Heyrovsky reaction), cf. Equation (25), or absorb into the
steel, cf. Equation (26) [65,66].

Tafel reaction 2 Hads ↔ H2 (24)

Heyrovsky reaction Hads + H+ + e− ↔ H2 (25)

Hads ↔ Habs (26)

Hydrogen absorption into steel, followed by hydrogen diffusion through the lattice,
can cause hydrogen embrittlement [70–73]. Based on the positioning of the corrosion
potentials in Figure 9 and the corrosion rates in Figure 7, the most significant hydrogen
embrittlement would be expected in formic acid, followed by acetic acid, propanoic acid and
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nonanoic acid. Moreover, in most conditions of nonanoic acid, no hydrogen embrittlement
of the steam turbine steel would be expected.

Knowing that protons participate in the reduction reactions of the corrosion process,
cf. Equations (21) and (23), the linear correlation between corrosion rate and hydrogen
proton concentration, cf. Equation (18) and Figure 8a, can be substantiated with formulas.
According to Faraday’s law, cf. Equation (16), the corrosion rate is proportional to the
corrosion current density jcorr (A/m2). The current density j (A/m2) is related to the reaction
rate v (mol/m2s) via Equation (27).

j = n F v (27)

Furthermore, the rate equation for an electrochemical reaction can be written as
Equation (28),

v = kOcR,0 − kRcO,0 (28)

where, kO (m/s) and kR (m/s) are the rate constants for oxidation and reduction, respec-
tively, whereas cR,0 (M) and cO,0 (M) are the concentrations of reductant and oxidant at the
electrode surface, respectively. Therefore, concentrations of reacting species have a large
influence on the reaction rate v, current density j, as well as on the corrosion rate. Although
the kinetics of the oxygen reduction reaction and hydrogen proton reduction reaction are
different, the hydrogen proton concentration plays an important role in both reactions.

The kinetics of the oxygen reduction reaction in these conditions are determined by
mass transfer [59,74]. The limiting current density jL (A/m2) can be written as Equation (29),

jL = n F kD cO,b (29)

where, cO,b is the concentration of oxidant in the bulk of the aqueous solution and kD (m/s)
is the mass transfer coefficient, equal to Equation (30),

kD =
D
δ

(30)

where, δ (m) is the thickness of the diffusion layer and D (m2/s) is the diffusion coefficient
of the reacting species, according to Equation (31),

D = D0 e
−∆G∗D

RT (31)

where, D0 (m2/s) is a temperature-independent pre-exponential and ∆G∗D (J/mol) is the
activation energy for diffusion. The kinetics of the oxygen reduction reaction, cf. Equation
(21), can be limited by oxygen diffusion, but also by hydrogen proton diffusion [75,76]. In
the latter case, the limiting current density increases when increasing the hydrogen proton
concentration in the bulk solution, cf. Equation (29).

In contrast, the kinetics of the hydrogen proton reduction reaction are determined by
the charge transfer rate. For this situation, the current density can be written according to
the Butler–Volmer equation, cf. Equation (32),

j = n F
(

kO,0 e
αanFE

RT cR,0 − kR,0 e
−αcnFE

RT cO,0

)
(32)

where, αa and αc are the anodic and cathodic charge transfer coefficients, respectively;
kO,0 (m/s) and kR,0 (m/s) are equilibrium rate constants for oxidation and reduction,
respectively. The reaction rate constants k (m/s) typically follow an Arrhenius equation, cf.
Equation (33),

k = A e
−∆G∗

RT (33)

where, A (m/s) is a pre-exponential factor and ∆G∗ (J/mol) is the activation energy for
the reaction. Note the similarity of Equation (31) and Equation (33). The concentration
of oxidant cO,0 in the Butler–Volmer Equation of Equation (32) can be identified with
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the hydrogen proton concentration in the hydrogen proton reduction reaction (Volmer
reaction), cf. Equation (23). As such, increasing the hydrogen proton concentration leads to
an increase in current density. In addition, as can be seen in Figure 9, it must be taken into
account that also the equilibrium potential E0 of the hydrogen proton reduction reaction
is dependent on the hydrogen proton concentration, cf. Equation (13) and the Nernst
equation of the hydrogen proton reduction reaction at 25 ◦C, given in Equation (34) [49].

E0 = −0.059 pH (V vs. SHE) (34)

The concentration dependent equilibrium potential E0 is present in the Butler–Volmer
equation of Equation (32) since the potential E (V) is equal to E0 + η (V), with η (V) the overpo-
tential.

Therefore, when increasing the hydrogen proton concentration, the current densities of
both the oxygen reduction reaction and the hydrogen proton reduction reaction, according
to Equations (29) and (32), respectively, roughly increase linearly. When taking into account
Faraday’s law, cf. Equation (16), this also leads to a linear increase in corrosion rate
with increasing hydrogen proton concentration, as such explaining the linear correlation
observed in Figure 8.

3.3. Influence of Organic Acid Type

Another remarkable observation is the difference in corrosion rate depending on the type
of organic acid, for solutions with the same pH, as can be seen in Figures 7 and 8. The rate of
metal dissolution is determined by the kinetics of the reduction reactions. Based on the location
of the corrosion potentials, cf. Figure 9, protons are consumed by both reduction reactions, cf.
Equations (21) and (23). When protons are consumed, new protons are produced by organic
acid dissociation, according to the principle of Le Chatelier. Hence, protons are continuously
consumed and produced during the corrosion process. Therefore, the rate of acid dissociation,
which depends on the type of organic acid, plays an important role. The equilibrium dissociation
constant Kd can be written as the quotient of the dissociation rate constant kd (s−1) and the
association rate constant ka (M−1 s−1), cf. Equation (35).

Kd =
kd
ka

(35)

Values of kd and ka for formic, acetic and propanoic acid are given in Table 7 [77–79]. It can
be seen that a larger equilibrium dissociation constant Kd corresponds with a larger dissociation
rate constant kd for these organic acids. The organic acid with the largest dissociation rate
constant kd, i.e., formic acid, can produce protons the fastest, which means that protons are
again the earliest available for the reduction reactions, as such explaining the larger corrosion
rate in formic acid, followed by acetic acid and propanoic acid, cf. Figures 7 and 8. Although the
solutions of different types of organic acids were prepared in such a way that their concentrations
were balanced taking into account their different equilibrium dissociation constants, cf. Equation
(14), as such incorporating thermodynamics, their difference in kinetics of acid dissociation still
has a significant impact on the corrosion process. In Figure 10, the acid dissociation reaction,
acting as the rate determining step in the corrosion of steam turbine steel in organic acid
solutions, is schematically represented.

Table 7. Dissociation rate constant kd (s−1) and association rate constant ka (M−1 s−1) of formic,
acetic and propanoic acid [74–76].

Organic Acid kd (s−1) ka (M−1 s−1)

formic acid 1.0× 107 5.0× 1010 [74]
acetic acid 8.0× 105 4.5× 1010 [75]

propanoic acid 6.5× 105 3.0× 1010 [76]
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Figure 10. Schematic representation of the acid dissociation reaction, acting as the rate determining
step in the corrosion of steam turbine steel in organic acid (HZ) solutions. kd = dissociation rate
constant of organic acid, ka = association rate constant of organic acid, kD = mass transfer coefficient
of hydrogen proton, kR,O2 = rate constant of oxygen reduction, kR,H+ = rate constant of hydrogen
proton reduction, kO = rate constant of iron oxidation.

The influence of the dissociation constant Kd of the different organic acids on the
overall kinetics of the corrosion process can be represented in a similar way as the Brønsted
catalysis equation. The Brønsted catalysis equation constitutes the first linear free-energy
relationship, i.e., Gibbs energy relation [80]. It gives a relationship between acid strength
(dissociation constant Kd) and catalytic activity (reaction rate constant k) in general acid
catalysis, cf. Equation (36) [81,82],

log(k) = µ log(Kd) + ν (36)

where, µ is the slope and ν is the intercept. This equation implies that the strongest acids
are the most effective in producing protons, as such contributing the most to reaction rate
acceleration. In this work, the reaction rate constant k of Equation (36) can be represented
by an Arrhenius relation, cf. Equation (37),

kt = At e
−∆G∗t

RT (37)

where, kt (m/s), At (m/s) and ∆G∗t (J/mol) are the reaction rate constant, the pre-exponential
factor and the activation energy of the total reaction, respectively. When combining
Equations (2), (36) and (37), it can be seen that the Gibbs free energy for proton dissociation
∆G0 is proportional to the activation energy of the overall reaction ∆G∗t , as such resulting
in a relationship according to the Evans–Polanyi principle, cf. Equation (38) [83,84],

∆G∗t = σ ∆G0 + τ (38)

where, σ is the slope and τ is the intercept. Therefore, a larger (i.e., more negative) Gibbs
free energy for proton dissociation ∆G0, i.e., favoured thermodynamics, corresponds
with a decrease in activation energy ∆G∗t , i.e., enhanced kinetics, which is in accordance
with the experimental observations for the different organic acids, as such confirming
Figures 7 and 8.

Furthermore, the hydrocarbon chains of the organic acids can also influence the cor-
rosion behaviour. Especially for nonanoic acid a lot of long chains were present in the
test solutions due to its large molar mass, cf. Table 2, and its small dissociation constant,
cf. Table 3, as such requiring large concentrations of nonanoic acid to obtain a certain
low pH, according to Equations (13) and (14). Nonanoic acid, also known as pelargonic
acid, has been reported to form an emulsion in water [85]. Without emulsifiers, such as
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surfactants, an unstable nonanoic acid emulsion progressively separates, and hydrocarbon
chains can gather at the metal surface. Increased van der Waals interactions between long
hydrocarbon chains and the charge density of the surface film can induce a change in local
pH at the surface compared to bulk values [86–88]. As a result of the gathering at the
metal surface, hydrocarbon chains can block the surface active sites for corrosion, as such
acting as a corrosion inhibitor [89–92]. This can explain the low corrosion rates observed in
Figures 7 and 8. Moreover, when lowering the pH of the nonanoic solution, a decrease
in corrosion rate can be noticed. When decreasing the pH, the effect becomes more pro-
nounced due to the increasing nonanoic acid concentration, as such even more shielding
the metal surface from its environment.

It must be mentioned that the oxygen concentration in the first condensate of steam–
water cycles is much lower than in the tested solutions because of the partitioning of oxygen
between the steam and liquid phases in the low-pressure steam turbine section [2]. The
International Association for the Properties of Water and Steam (IAPWS) [2] reported that
oxygen levels in the first condensate might be lower than 1 ppb for steam inlet oxygen
levels of 150 ppb. However, the solutions were not deaerated in this study. The main goal
of this study was to evaluate whether, next to the role of the concentration of organic acid,
the type of organic acid also matters in terms of corrosion behaviour for steam turbine
steel in an acidic aqueous environment with a certain pH. To investigate this, no deaeration
of the solutions was required. Nevertheless, electrochemical measurements in deaerated
conditions are recommended for more industrially relevant quantitative corrosion rates.

Conclusively, the experiments were designed to compare solutions of organic acids
with the same pH, i.e., similar conductivity, according to Table 5. Based on the findings
in this work, it can be stated that using (cation) conductivity as a guide value for general
corrosion behaviour in steam–water cycles is only partially correct, cf. the increase in
corrosion rate when increasing the organic acid concentration, cf. Figures 7 and 8. However,
based on these graphs, it can be seen that it is also important to know the type(s) of organic
acids present in the aqueous solution, especially at low pH, i.e., at high organic acid concen-
trations. Therefore, drawing conclusions for corrosion monitoring on (cation) conductivity
measurements alone fall short to some extent. By only measuring the conductivity, no
information is gained on the composition of the organic acids, thus lacking information
about the active dissociation kinetics, which play a crucial role. An inherent problem in
practice is that organic acids with long chains are less stable at high temperatures, as such
leading to a shift towards small, more corrosive, organic acids [40]. Unfortunately, knowing
the exact composition of the aqueous environment is not at all straightforward in indus-
try. Nevertheless, screening which compounds are detrimental on a fundamental level,
combined with goal-oriented measurements of their concentrations, seems feasible. In this
way, industrial guidelines should be re-assessed, and appropriate water treatments can
be designed, as such aiming for a better corrosion prevention and control in steam–water
cycles and beyond.

3.4. SCC Sensitivity

Cross-sections of the steam turbine steel after the in situ four-point constant-extension
tests for one month in formic acid, acetic acid and nonanoic acid, are given in Figure 11a–c,
respectively. Degradation was observed for all the organic acid solutions. The average
degradation depth (cf. Table 8) showed an increasing trend from nonanoic acid (6 µm) to
formic acid (32 µm), which can be linked to the increasing corrosion rate from nonanoic acid
(12 µm/year) to formic acid (107 µm/year) (cf. Figure 7) for a pH of 3.4. Table 8 also shows
the measured CR of steam turbine steel in formic acid, acetic acid and nonanoic acid (pH
= 3.4) converted to µm/month. The average degradation depth, however, was generally
higher than the CR per month. This phenomenon can be attributed to the synergetic effect
of corrosion and stress.
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Table 8. Degradation depth of steam turbine steel at 115% σy for one month (pH = 3.4) and CR per
month in formic, acetic and nonanoic acid.

Organic Acid Degradation Depth (µm) CR (µm/Month)

formic acid 32 ± 7 8.9
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Cracks were observed on the cross-sections of steam turbine steel tested in formic
acid (cf. Figure 12a) and nonanoic acid (cf. Figure 12b). No cracks were found in the
cross-section of acetic acid. Since nonanoic acid showed a low CR and it is known to shield
the metal from its environment, no severe corrosion was expected. Indeed, the surface
remained relatively intact after one month of submersion in nonanoic acid. However,
perpendicular cracks were found that can be linked to SCC (cf. Figure 12b). No cracks
were observed in acetic acid, because the CR was presumably high enough to even out the
cracks by anodic dissolution. Only general corrosion was observed.
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In formic acid, therefore, no cracks were expected, since the CR is even larger than
for acetic acid. Yet cracks were observed on the cross section of steam turbine steel tested
in formic acid (cf. Figure 12a). However, the observed cracks were parallel rather than
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perpendicular to the surface. Another factor was, therefore, contributing to the formation
of cracks in formic acid. On top of the general degradation, that was also observed in
acetic acid, more local degradation, caused by the high amount of anodic dissolution, was
observed in formic acid as well. This local degradation created additional stress concen-
trations. Moreover, since formic acid has the highest dissociation rate constant (kd) (cf.
Table 7), it can produce protons the fastest, which means that protons are again the earliest
available for the reduction reactions. This causes, on the one hand, a higher corrosion rate,
but on the other hand, it also causes the highest probability for hydrogen adsorbed to the
metal surface to be absorbed into the metal, which can result in H embrittlement. It is
energetically favourable for hydrogen atoms to diffuse to regions of high tri-axial stresses,
such as these present at a crack tip or around local degradation. Consequently, stressed
regions were embrittled due to a locally increased hydrogen concentration, leading to crack
initiation below the surface. This phenomenon is called hydrogen induced cracking (HIC).

In industry, steam turbines are regularly checked for corrosion damage or damage
in general. Since formic acid and acetic acid caused more noticeable corrosion, measures
would be taken to prevent and protect the steam turbine against corrosion and the steam
turbine would be checked for damage regularly. Since nonanoic acid caused no substantially
noticeable corrosion, it would be tempting to assume no damage was induced. However,
the combination of nonanoic acid and stress created a favourable situation for stress-
corrosion cracking to occur.

4. Conclusions

Potentiodynamic measurements on NiCrMoV steam turbine steel in different types of
organic acids, i.e., formic, acetic, propanoic and nonanoic acid, at different pH values, i.e.,
pH 3.9, 3.4, 2.9 and 2.4, were conducted to evaluate the impact of different organic acids
on the corrosion sensitivity of steam turbine steel. To evaluate and verify the impact of
different organic acids on the stress-corrosion cracking sensitivity of steam turbine steel, in
situ four-point constant-extension tests in different types of organic acids at a pH value of
3.4 were conducted as well. The main takeaways were summarized below.

• Based on the positioning of the corrosion potentials, both anodic dissolution and
oxygen reduction took place in all tested conditions. Furthermore, the most hydrogen
embrittlement was expected in formic acid, followed by acetic acid and propanoic acid,
whereas in most conditions of nonanoic acid no hydrogen embrittlement of the steam
turbine steel was expected. Linear relationships between corrosion rate and hydrogen
proton concentration were identified for all organic acids. This was explained by the
increase in linear proportion of current densities of both the oxygen reduction reaction
and the hydrogen proton reduction reaction when increasing the hydrogen proton
concentration.

• For solutions with the same pH, the corrosion rate in formic acid was the highest,
followed by those in acetic, propanoic and nonanoic acid. Although the solutions of
different types of organic acids were prepared in such a way that their concentrations
were balanced with respect to their different equilibrium dissociation constants, as such
taking into account thermodynamics, their difference in kinetics of acid dissociation
still had a significant impact on the corrosion process. The acid dissociation reaction
acted as a rate determining step in the corrosion of steam turbine steel in organic acid
solutions. The conductivity appeared to be an insufficient guide value for corrosion
due to the significant difference in corrosion rate in solutions of different organic acids
with similar conductivities. When lowering the pH, a small decrease in corrosion rate
was measured for nonanoic acid. Long hydrocarbon chains of nonanoic acid blocked
active sites for corrosion, as such acting as a corrosion inhibitor.

• For the same pH value of 3.4, the general degradation in formic acid was the highest,
followed by acetic acid and nonanoic acid, nicely in agreement with the trend of the
corrosion rate. However, the general degradation depth was higher than what could be
predicted by the measured corrosion rates. This could be explained by the synergetic
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effect of corrosion and stresses applied to the material. Moreover, stress–corrosion
cracks were present after the test in nonanoic acid. This could lead to potentially
dangerous situations, since nonanoic acid would induce the least amount of visible
corrosion. Consequently, no severe damage would be expected, while stress-corrosion
cracks are initiating and propagating. Another type of cracks was found in formic acid.
The parallel cracks are presumably caused by the combination of additional stress
concentrations, induced by localised corrosion, and hydrogen embrittlement.
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