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Abstract: This study aims to promote an adequate methodology for coating an experimental Ti-30Ta
alloy with P(VDF-TrFE)/BaTiO3. The combination of a copolymer with a ceramic has not been used
until now. Ti-30Ta is an excellent choice to replace current alloys in the global market. The composite
deposition on the Ti-30Ta substrate was performed by a spray coating process and at low temperature
using two different surface modifications: surface acidic etching and surface polishing. Characteriza-
tion was divided into four areas: (I) the substrate surface treatments used and their influences on the
adhesion process were evaluated using surface energy, wettability, and roughness analyses; (II) the
properties of the composite film, which were carried out using X-ray diffractometry (XRD), Fourier
transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and differential scanning
calorimetry (DSC); (III) the study of the adhesion of the film on the substrate, which was performed
by a scratch test; (IV) the final product, which was evaluated to determine the surface properties
after the coating process. Biofilm formation using Staphylococcus aureus and Staphylococcus epidermidis
strains and a hemocompatibility test were performed as biological assays. The results indicated that
the P(VDF-TrFE)/BaTiO3 film showed high thermal stability (up to ≈450 ◦C); the FTIR and DSC
tests indicated the presence of the β phase, which means that the material presents a piezoelectric
nature; and the scratch test showed that the samples with the polish treatment provided a better
adhesion of the film with an adhesion strength of ~10 MPa. From the SEM analysis, it was possible to
determine that the spray deposition coating process resulted in a well-applied film as evidenced by
its homogeneity. Microbiological tests showed that for Staphylococcus aureus, the bacterial growth in
the coated Ti-30Ta presented no significant differences when compared to the alloy without coating.
However, for Staphylococcus epidermidis, there was considerable growth on the coated Ti-30Ta, when
compared to the non-coated alloy, indicating that the film surface may have favored bacterial growth.
The hemolysis assay showed that the coated material presents hemocompatible characteristics when
in contact with blood cells. The results obtained indicate that the Ti-30Ta alloy coated with P(VDF-
TrFE)/BaTiO3 is a promising alternative for implant applications, due to its biocompatible properties,
simplicity, and low cost.

Keywords: Ti-30Ta alloy; P(VDF-TrFE)/BaTiO3 composite; spray coating; surface characterization;
biofilm adhesion

1. Introduction

Commercially-pure titanium (cp-Ti) and its alloys are widely used as implants and
prostheses for substitution, fixation, or regeneration of bone tissue, due to their excellent
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properties such as chemical stability, high mechanical strength, high biocompatibility, low
Young’s modulus, as well as good corrosion and fatigue resistance. These characteristics
provide fast recovery and improve patient quality of life [1–3]. The biocompatibility of cp-Ti
is a consequence of its low electrical conductivity, which influences the electrochemical
oxidation of the surface itself, and promotes a passive layer of oxide that provides corrosion
resistance [4].

Despite these aspects, cp-Ti has a bioinert nature, which means that the presence of this
metal does not stimulate a tissue reaction, being indifferent to the biological environment [4].
It occurs because the non-treated surface of cp-Ti is not able to induce new bone formation
during the initial healing process [5]. Furthermore, the elastic modulus of cp-Ti (≈110 GPa)
is higher than that of bone (≈10–40 GPa). This difference impairs the functionality of the
implant and the tissue, leading to the possibility of fatigue and bone resorption [6,7].

To enhance the properties of metallic biomaterials, several titanium alloys have been
studied over the years. Thus, the binary system Ti-Ta presents both combinations of
titanium and tantalum (Ta), promoting a decrease in elastic modulus when compared to
cp-Ti [8,9]. Tantalum is a refractory metal that does not present adverse effects on patient
organisms. It has high applicability in the implant field and, once employed at 30% of
its proportion, this metal presents high corrosion resistance, excellent biocompatibility,
and low elastic modulus (≈69 GPa), exhibiting better compatibility with the bone when
compared to cp-Ti [10,11].

In addition to the characteristics mentioned above, tantalum also has a potential
characteristic to protect tissue against infections, mainly bacterial. One of the reasons for the
inhibition of biofilms is believed to be related to tantalum’s ability to osseointegrate [12–14].
Osteoblasts integrate and proliferate on the surface of the material, thus preventing the
access of bacteria and other microorganisms with the potential for infection. Another
reason related to the inhibition of bacteria can be associated with the surface chemistry
and surface energy of tantalum, which makes it impossible for pathogenic microorganisms
to approach [14–18]. Still, some authors believe that the low microbial adhesion on the
tantalum surface is a consequence of its high wettability and high surface energy [18,19].

Unfortunately, there are challenges related to the osseointegration process using metal-
lic alloys. Therefore the surface characteristics of the metal must be modified. A commonly
applied surface modification technique is surface coating using bioactive films, which
promotes bone formation through cellular proliferation and integration with implanted
material [20,21]. Moreover, the coating process optimizes the surface characteristics by
increasing the contact area and mitigating biofilm formation, thus favoring the forma-
tion of tissue at the interface of the bone-implant and improving the implant’s long-term
stability [22,23].

The development of bioactive properties on the implant surface is associated with
several materials. Recent applications include the use of piezoelectric ceramics as the
(Ba,Ca)(Zr,Ti)O3 on Ti6Al4V alloys [24]. Polymers associated with hydroxyapatite such as
PTFE were also used to coat MgMnCe alloys used for resorbable implants [25]. PLLA films
also were used to coat 316 stainless steel substrates to stimulate the bioactivity of the host
bone tissue [26]. Polymeric materials with piezoelectric properties, such as PVDF and its
copolymer P(VDF-TrFE), were studied with the purpose of coating metallic surfaces because
they can provide electrostimulation in the bone and favor osteogenesis [27,28]. These
polymers are easy to manufacture, possess great flexibility, low weight, and are considered
nontoxic [29]. However, BaTiO3 is applied on a large scale due to its biocompatibility and
ability to adhere to bone tissue, maintain a charged surface, and provide bone cell adhesion
and proliferation. In addition, this ceramic material presents higher piezoelectricity than
PVDF [30,31]. In this context, the combination of BaTiO3 with a copolymer creates a
composite P(VDF-TrFE)/BaTiO3, which has electrical characteristics that promote bone
regeneration [27,32–34]. Considering these benefits and possible solutions, the purpose
of the present study was to develop a low-cost methodology to coat Ti-30Ta alloys using
P(VDF-TrFE)/BaTiO3 films by employing a spray coating technique at room temperature.
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The goal was to achieve a homogeneous deposition and good adhesion between the film
and the substrate, in order to improve the biofunctionality of this alloy with the biological
tissue. According to previous works related to the evaluation of biocompatibility of P(VDF-
TrFE)BaTiO3 membranes developed by the research group led by Professor Gimenes, the
surface of P(VDF-TrFE)BaTiO3 was shown to be osteogenic. Supported by published
findings [28,34], we assume that Ti-30Ta coated with P(VDF-TrFE)/BaTiO3 film can provide
an osteogenic surface.

2. Experimental Procedure

This work was divided into four topics for better comprehension: (I) the surface
modifications needed to coat the Ti-30Ta alloy with a suitable adhesion, (II) studies of the
film’s properties, (III) the surface properties of the final product, and (IV) biological assays
to assess their tissue compatibility.

2.1. Sample Preparation

Ti-30Ta samples were obtained from a combination of Ti (99%) to Ta (99%) through
the melting process in an argon atmosphere. The product was re-melted ten times and
held in the molten state for 4 min, approximately. After this process, the ingots were
subjected to vacuum at 1100 ◦C for 86.4 ks. The alloy was then cold-worked using a rotary
swaging process at 100 rpm in a CNC lathe (Centur 30S, ROMY, Brazil), as reported by
Capellato et al. [35]. The Ti-30Ta was then cut in discs of 2 mm thickness and 13 mm diam-
eter; cp-Ti samples were supplied from the Mechanical Institute of the Federal University
of Itajubá and were adopted as a control group. The cp-Ti and Ti-30Ta samples were
divided into two distinct groups according to their surface treatment: (I) polish surface
treatment—achieved using silicon carbide sandpaper (#1200) in a metallographic sample
griding and polishing machine for 30 s; and (II) acid etching surface treatment—achieved
using Kroll reagent (5 mL of HNO3 + 3 mL of HF + 100 mL of H2O). The samples were
immersed in a reagent solution for 1 min and then washed using distilled water. All
samples of both groups were cleaned in an ultrasonic bath with distilled water + acetone
for 30 min. After these processes, the samples were dried in an oven at 37 ◦C.

2.2. Characterization of the Ti-30Ta and cp-Ti Substrates after the Surface Treatments

The wettability of the samples was evaluated by the contact angle method to estimate
the surface hydrophilicity after the polish and acid etching treatments. The surface wet-
tability was analyzed by a sessile Easy Drop Shape Analyzer (Krüss Scientific, Hamburg,
Germany). The volume of the drop was 10 µL of deionized water, the contact angle was
acquired at three different positions over the sample surface and the mean value was
provided after five measurements at room temperature.

Surface energy was calculated using the Fowkes equation, as seen in Equation (1) [36,37]:

((1 + cos θ)/2) =
√

γd
s × γd

l +
√

γ
p
s × γ

p
l (1)

which θ represents the contact angle between the liquid and the surface, γl is the surface
tension of the liquid, γd

l is related to the dispersive components of the liquid and γ
p
l

correspond to the polar component of the liquid. The component γd
s is associated with

surface solid parameters, γ
p
s is the polar component of the solid and γs is the total energy

surface of the solid.
The values of γl , γd

l and γ
p
l are given by the literature. The values of γd

s and γ
p
s were

determined using a system of linear equations (Equations (2) and (3)). For this analysis, it
was necessary to use two different liquids to determine the total surface energy. For this
reason, the contact angle was measured with deionized water and ethylene glycol, and
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the system of linear equations was solved. The surface tension parameters of water and
ethylene glycol are described in Table 1, according to Xu et al. [37].√

γd
s + a

√
γ

p
s = b(1 + cos θ1), (2)√

γd
s + c

√
γ

p
s = d(1 + cos θ2), (3)

where a, b, c, and d are the relative coefficients of the liquids and θ1 represents the contact
angle for the distilled water and θ2 represents the contact angle for the ethylene glycol,
shown in Table 2.

Table 1. Surface tension parameters of water and ethylene glycol.

Surface Tension (mN/m)

Liquid γd
l γ

p
l γl

Water 21.8 51 72.8
Ethylene Glycol 29 19 47.7

Table 2. Contact angle measured for surface energy calculus.

Contact Angle (θ) [◦]

Samples
Water Ethylene Glycol

Polish Acid Etching Polish Acid Etching

cp-Ti 66.1 60.1 73.8 69.3
Ti-30Ta 61.2 63.3 68.8 65.4

According to Żenkiewicz [38] the values for a, b, c, and d can be described by:

a =

√√√√γ
p
l1

γd
l1

b =
γl1

2
√

γd
l1

c =

√√√√γ
p
l2

γd
l2

d =
γl2

2
√

γd
l2

Finally, the polar and dispersive components of the liquid can be obtained, and the
total surface energy can be calculated by Equation (4).

γs = γ
p
s + γd

s (4)

The surface roughness (Ra) of the samples was measured using a Surface Roughness
Tester (Mitutoyo Corporation, Kawasaki, Japan). Five measurements of each surface treat-
ment were carried out, and the mean value was obtained. To confirm the measurements,
the roughness was also studied using the Phenom ProX SEM (Thermo Fisher Scientific,
Waltham, MA, USA) with simulation in AFM and the image was treated using the Scanning
Probe Image Processor (Mountains SPIP, Lyngby, Denmark) software.

2.3. P(VDF-TrFE)/BaTiO3 Preparation

Commercial BaTiO3 (Sigma Aldrich, St. Louis, MO, USA) powder was sintered in a
MUFLA oven SSFM (7Lab, Rio de Janeiro, Brazil) for 4 h at 1380 ◦C, avoiding the contami-
nation induced by BaCO3 formation. The synthesis of the composite was realized using
1.5 g of P(VDF-TrFE) (Arkema Piezotech, Lyon, France) dispersed in 10 mL of dimethyl-
formamide (DMF) (Sigma Aldrich, St. Louis, MO, USA) at room temperature (25 ◦C). The
P(VDF-TrFE) + DMF solution was solubilized with a magnetic stirrer, and after copolymer
dissolution, 0.5448 g of BaTiO3 was added to the solution. P(VDF-TrFE) + BaTiO3 + DMF
was mixed for 6 min using a high-power ultrasound tool VCX 750 (Sonic and Materials,
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Newtown, CT, USA) under refrigeration in ice/water. This procedure has been performed
to ensure that powder agglomerates would be better homogenized.

2.4. Characterization of the P(VDF-TrFE)/BaTiO3 Film
Thermal and Structural Evaluation

The samples used for these analyses were obtained by spraying the P(VDF-TrFE)/
BaTiO3 solution on distilled water until a thin membrane was formed. Using this process,
the DMF is forced to migrate to water and the precipitation of the solution occurs forming
a solid film.

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were
employed in order to evaluate the mass variation of P(VDF-TrFE)/BaTiO3 film and its
thermal phase transitions, respectively. The TGA was performed by a Shimadzu TGA-50
(Shimadzu do Brasil Ltd., Barueri, Brazil) tool, in the temperature range of 25–1000 ◦C
with a heating rate of 10 ◦C/min. The DSC technique was accomplished in a Shimadzu
DSC 60 Plus (Shimadzu do Brasil Ltd., Barueri, Brazil) tool at 25–250 ◦C, a heating rate of
10 ◦C/min, and N2 as a purge gas at 50 mL/min.

The degree of crystallinity of the copolymer depends on the heat treatments involved
to process it. The analysis of the crystallinity of both the copolymer and the membrane is im-
portant to evaluate the β phase of the material and study its influence on film piezoelectric
properties. The degree of crystallinity (∆Xc ) was calculated using Equation (5) [39]:

∆Xc =

(
∆Hm

∆H100

)
× 100%, (5)

where ∆Hm is the melting enthalpy of the copolymer obtained in the DSC analysis, and
∆H100 corresponds to the melting enthalpy of the copolymer which presents 100% crys-
tallinity. The crystallinity for the composite can be calculated using Equation (6) [40]:

∆Xc =

(
∆H

∆Hm
(

1 − ϕ
100
))× 100%, (6)

where ∆H is the P(VDF-TrFE) melting enthalpy obtained in the DSC analysis, ∆Hm is the
melting enthalpy of the composite and ϕ corresponds to the weight (% wt) of the ceramic
material on the composite.

Fourier transform infrared spectroscopy (FTIR) was employed to identify the confor-
mation and structural phases of P(VDF-TrFE) and the possible changes in the structural
phases of the copolymer after BaTiO3 incorporation. FTIR measurement was carried out
in a Perkin Elmer Spectrum 100 FT-IR Spectrometer (Perkin Elmer do Brasil, São Paulo,
Brazil), in the range of 1500–800 cm−1, resolution at 4 cm−1, and 32 scans.

To determine the crystalline phases of the P(VDF-TrFE)/BaTiO3 film, the X-ray diffrac-
tion XRD technique was applied. In addition, the XRD analysis allowed evaluation of
the possible microstructural changes coming from the combination of the ceramic and
polymeric powder on P(VDF-TrFE)/BaTiO3 synthesis. XRD also evaluated if there were
new phase formations after the coating process as well. XRD data were acquired using
an X’Pert Pro Scanning Diffractometer (Malvern Panalytical, São Paulo, Brazil), Cu X-ray
tube, and kα filter. Scans were made over 10◦–90◦ in 2θ and steps of 0.01◦ over 0.5 s for
P(VDF-TrFE)/BaTiO3 film and for Ti-30Ta/P(VDF-TrFE)/BaTiO3.

2.5. P(VDF-TrFE)/BaTiO3 Deposition on Ti-30Ta and cp-Ti Substrates

The deposition of P(VDF-TrFE)/BaTiO3/DMF solution on the substrate surface was
executed employing the spray coating method, using a commercial airbrush 5 mm gun con-
nected to a compressed-gas supply pressure working at 20 kgf/cm2. P(VDF-TrFE)/BaTiO3/
DMF deposition was performed at a pattern distance from 30 mm of the Ti-30Ta and cp-Ti
substrates, which were heated to 150 ◦C and maintained at this temperature during the
coating process. At the same time, distilled water was simultaneously sprayed via aerosol
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dispersion and, consequently, a precipitation of the solution was formed on the substrate.
After the coating process, the coated samples were dried in an oven at 100 ◦C for 12 h under
vacuum (15 mmHg). The deposition process can be seen in Figure 1.
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solubilization; (b) dispersion and disaggregation of BaTiO3 particles in solution; (c) spray coating
process; (d) samples dried in a vacuum oven; (e) final product obtained.

Film thickness was controlled by the deposition time associated with the homogeneity
of the solution on the substrate. Several measurements of the thickness were performed
using a digital micrometer to compare the thickness among the samples during the coating
process and thus establish a standard coating time after the deposition of the film. The
spraying time was adapted until a fluid layer of P(VDF-TrFE)/BaTiO3 was obtained free
from agglomerations; this was standardized to 60 s to achieve the thickness of a range
of 10–20 µm. The dispersion flow rate was regulated according to the homogeneous
distribution of the solution for the whole surface and the non-formation of crinkles onto
the substrate.

2.6. Characterization of the Coated Ti-30Ta and cp-Ti Substrates
2.6.1. Adhesion Film on Substrate: Scratch Test

The adhesion between the coating and the substrate was evaluated by the scratch test,
according to ASTM D7027-05E1 [41]. The device employed for this analysis was described
in previous works [42,43]. For this test, a Rockwell C indenter was used and scratches of
3 mm in length were made. Normal load cell varied linearly from 0 N to 30 N. The scratch
speed was 10 mm·min−1. Five measurements were taken, and an average value for the
adhesion strength was calculated. The images of the scratches were obtained using an
optical microscope BX51WI (Olympus Scientific Solutions, Tokyo, Japan).
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2.6.2. Wettability, Surface Energy, and Roughness of the Coated Substrates

The surface wettability, surface energy, and roughness measurements were also ob-
tained as previously described in Section 2.2 of this work. For the wettability assay, the
absorption of the liquid on the surface of the coated substrate was analyzed by measuring
the contact angle with a frequency of 20 min within a 60 min time window.

2.7. Biological Assays of the Coated Substrates
2.7.1. Biofilm Formation

Biofilm formation in coated and non-coated samples was realized using Staphylococcus
aureus (ATCC 6538) and Staphylococcus epidermidis (ATCC 12228) strains, which are present
in the bone mineralization stage for orthopedic and dental implants [44].

The strains were inoculated in Brain Heart Infusion Broth (BHI) for 24 h in an incubator
at 37 ◦C. After the incubation period, the solution obtained was streaked in a Petri dish
with agar and returned to the incubator for 24 h for biofilm formation. An aliquot of the
bacterial colony was added in a 0.9% NaCl solution until the liquid medium concentration
on the McFarland 0.5 scale (1.5 × 108 cells mL−1).

The samples were grouped into the control group, represented by the non-coated Ti-
30Ta samples with polished surface treatment and the test group, represented by the Ti-30Ta
coated samples. The test group was sterilized in UV for 30 min and the control group was
polished with silicon carbide sandpaper (#1200), which provides a favorable environment
for bacteria growth. After this process, the control samples were also sterilized in UV
for 30 min. The samples were put in 12-well culture dishes with BHI and the McFarland
suspension and placed in the incubator for 48 h at 37 ◦C. After this process, the samples
were washed in phosphate-buffered saline (PBS) for 10 min and sonicated in a vortex for
3 min to remove any non-adherent biofilm on the sample surface. The resulting solution
was diluted in 0.9% NaCl solution (pure, 10−2, 10−4, 10−6, and 10−8). Thus, a droplet of
each dilution was inoculated in a Petri dish with agar and, finally, the plates were placed in
the incubator for 24 h at 37 ◦C. From this process, the colonies grown on the surface samples
were verified using Equation (7) and the colonies-forming unit (CFU) was calculated [45].

CFU
(

mL−1
)
=

n colonies
sample dilution × inoculated volume

(7)

2.7.2. Hemolysis Assay

According to ASTM F756-17, the hemolysis assay is considered a cytotoxicity test
in vitro, which evaluates the biocompatibility of the material when in contact with blood
cells. If the material presents non-hemocompatible properties, destructive changes occur in
the cell through the disruption of the cell membrane, leading to the release of hemoglobin.
A material can be classified as hemolytic or not using Table 3 [46].

Table 3. Defined rates for hemolysis occurrence.

Hemolytic Index * Hemolytic Grade

0–2 Non-hemolytic
2–5 Slightly hemolytic
>5 Hemolytic

* according to the negative control.

For this test, the samples were sterilized in UV for 30 min and then placed in Falcon
tubes with 10 mL of 0.9% saline solution at 37 ◦C for 30 min to simulate a favorable
environment for the red blood cells. The blood used for this procedure was collected from
a healthy patient using a vacuum method.

The positive group (+), which represents 100% of hemolysis, was prepared by adding
0.2 mL of blood to 10 mL of distilled water. The control group (−), which represents 0%
of hemolysis, was prepared by adding 0.2 mL of blood to 10 mL of 0.9% sodium chloride.
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The collected blood was diluted in 5 mL of saline solution and an aliquot was incubated at
37 ◦C for 1 h. Posteriorly, the aliquot was centrifuged for 5 min at 2500× g in a centrifuge
(Fisher Scientific, Pittsburgh, PA, USA). The absorbance of the supernatant was read in a
spectrophotometer at a wavelength of 540 nm (Femto Industries, São Paulo, Brazil). After
obtaining the absorbance of samples from both groups and the test samples, the hemolysis
rate (%) could be calculated according to Equation (8) [47]:

R =
(A − Cn)(
Cp − Cn

) × 100, (8)

where A is the absorbance of the sample, Cn is the absorbance of the negative control and
Cp is the absorbance of the positive control.

2.8. SEM Analysis

The surface treatments, such as the coating morphology and the biofilm growth, were
performed using the Phenom ProX SEM (Thermo Fisher Scientific, Waltham, MA, USA).
As there was a risk of the film rupturing during the segmentation of the sample, it was
decided to analyze the cross-section of the coated sample through the interface between
the coating and the substrate at the edge of the sample.

To analyze the biofilm distribution on the surface through SEM, the samples were
immersed in a solution with glutaraldehyde 2% for fixation of the bacteria on the surface.
After this process, the samples were rinsed with phosphate buffer saline. Then, the dehy-
dration of the biofilm occurred in graded acetone with concentrations of 30%, 50%, 70%,
90%, and 100% for a 10-minute-bath per concentration. The samples were dried in an oven
for 24 h and were finally coated with gold sputtering using a vacuum metallizer IC 60
(Shimadzu do Brasil Ltd., Barueri, Brazil) for 3 min with an electrical current of 6 mA.

2.9. Statistical Analysis

Statistical analysis was achieved using a two-way analysis of variance (ANOVA)
and the T-Student test to evaluate the influence of the surface treatment on roughness,
wettability, surface energy, adhesion strength, and the biological assays. The data were
analyzed by GraphPad Prism 7, and all tests were conducted at a significance level of 0.05.

3. Results and Discussion
3.1. Characterization of the Ti-30Ta and cp-Ti Substrates after the Surface Treatments

The nature of the film and the substrate surface refers directly to the adhesive strength
in the coating process, as well as how it was cured. From the moment that two different
materials are arranged in intimate contact, a new interface is formed and the interaction
between these materials will determine the bond strength between the surfaces [48]. The ad-
hesion of thin films on metallic substrates occurs when the surface presents pores, scratches,
voids, and cracks, which allows for film penetration and, consequently, a mechanical
fixation at the interface of these materials [49].

A crucial parameter for coated surfaces is the bond strength of the film on the substrate.
If an adhesive failure occurs, other film properties, such as biocompatibility and biofunc-
tionality, will be lost due to particle release from the film in the biological environment [50].
For this reason, the coated surface must resist mechanical forces such as scratches, impacts,
tensile/bending forces, and withstand the conditions imposed by the environment. There-
fore, the surface characteristics before the coating process were assessed concerning the
surface properties, such as topography, surface energy, roughness, and wettability in order
to investigate their influence on the adhesion of the film to the substrate.

The topography of the treated samples before the coating process can be seen in
Figure 2. In Figure 2a, the polished surface of the cp-Ti presents grooves throughout the
surface. It is also possible to see the formation of valleys and peaks throughout the sample.
The sample in Figure 2b represents the micrograph of the cp-Ti sample with acid etching
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surface treatment, and grain boundaries can be seen (in light gray) separating regions with
different crystallographic orientations (α and β phases of titanium), revealed due to the
effect of the Kroll’s reagent. In addition, the presence of wrinkles was observed surrounding
the whole surface. The arrangement of the elements that characterize a rough profile on
the surface of the sample can be considered homogenous. However, there are some regions
with a higher concentration of microcavities. This roughness pattern is responsible for
characterizing the surface as isotropic, without preferential orientations of formed wrinkles.
Figure 2c refers to the micrograph of Ti-30Ta alloy with inherent surface irregularities
from the polishing process, with thin cracks aligned parallel in the transversal direction,
characterizing a preferential orientation. Finally, the Ti-30Ta sample is present in Figure 2d,
which represents the surface treated with acid etching. It is observed that there are grooves
and micropores distributed throughout the sample. The difference in morphology of the
cp-Ti and Ti-30Ta after the acid etching using Kroll’s reagent can be explained by the
dioxide layer on the cp-Ti surface, which is one of the most difficult materials to corrode.
Kroll’s reagent is the most efficient etchant employed on titanium alloys and can reveal
the microstructure of these materials due to the presence of hydrofluoric acid and nitric
acid, considered powerful oxidizing agents. Related to the Ti-30Ta surface, the reagent
promoted a more eroded and corroded surface when compared to the cp-Ti due to the
tantalum dissolving in hydrofluoric acid, where the passive layer of tantalum oxide is
attacked strongly by this acid, leading to an increase in the surface oxidation.
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The advantage of abrasive surface treatments is related to the fact that the deposited
film penetrates the irregularities formed, increasing the adhesion strength at the interface
of the coating material and the substrate [48]. For this reason, surface treatments performed
on the samples standardized the surface roughness to analyze the best surface treatment ob-
tained in this work when associated with the adhesive strength of the P(VDF-TrFE)/BaTiO3
coating film.
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Obtained roughness data before the surface treatment are shown in Table 4. The study
of the rough surface of metallic substrates before the coating process can be found in the
works of Biasetto and Elsayed [51], Geng et al. [52], Zhou et al. [53], Guo et al. [54], and
Cordeiro et al. [55], which possess Ra (arithmetical mean of surface roughness) values very
similar to the values described for cp-Ti substrates presented in this work (Ra = 0.15 µm).
Analyzing the results, there was no significant difference between the roughness for polish
or acid etching treatment.

Table 4. Non-coated cp-Ti and Ti-30Ta surface roughness.

Roughness Ra (µm)

Samples Polish Acid Etching

cp-Ti 0.150 ± 0.05 0.260 ± 0.08
Ti-30Ta 0.158 ± 0.03 0.206 ± 0.05

According to ASTM C1624-05 [56], the roughness value for thin films formed by
ceramic materials, with thickness ≤ 30 µm, must present Ra < 0.5 µm. This range of values
maintains the patterns defined by the ASTM standard, which guarantees the film adhesion
on the substrate. As seen in Table 4, the values found for the surface roughness of all samples
(0.1–0.25 µm) are in accordance with the standard, since the value for the film thickness of
this work was ≈20 µm for all substrates. Choi et al. [48] have found in their studies that the
relation between the surface roughness and the coating adhesion on a substrate refers to
the increase in surface area. In other words, the surface roughness influences the interface
between the substrate and the deposited film, improving the adhesion strength between
both of them. Besides, the adhesion strength on rough surfaces may be adequate due to the
high surface energy of atoms present on the scratched surface [57].

Figure 3 represents the contact angle measurements. According to the results, both
substrates have absorptive characteristics, since the contact angle formed on the surface
samples remains smaller than 90◦, characterizing the surface of the samples as hydrophilic.
The hydrophilicity or hydrophobicity is an intrinsic feature of wettability, which is a
property associated with the surface energy of a material. Surfaces with high free energy
are characterized by their hydrophilic nature, and the higher the surface energy of a material,
the greater its ability to interact chemically with the liquid used [58]. The wettability of a
surface can determine the success of the adhesion of the thin film to various substrates on
account of the interface tension of the film in the liquid state and the surface energy of the
substrate in a solid state. The adhesion strength between the two surfaces is determined by
the interactive nature of both materials, which are dependent on wettability. The tension
between the film and substrate interface determines the fixation of the coating on a solid
surface, which means that hydrophilic surfaces provide better adhesion [19,48].

Table 5 shows the surface energy of cp-Ti and Ti-30Ta samples calculated before the
coating process. Analyzing the data, there was a statistically significant difference in the
surface energy for the polish treatment group when compared to the acid etching treatment
group (p < 0.05). These results indicated that the surface energy suffers changes related
to the preparation of the substrate’s surface. The surface energy of polished substrates
presented values higher than substrates with acid etching treatment, suggesting that the
polished surface is better than acid etching treatment.
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Table 5. Surface energy of the non-coated cp-Ti and Ti-30Ta samples.

Surface Energy γs (mN/m)

Samples Polish Acid Etching

cp-Ti 51.73 ± 2.33 48.17 ± 1.87
Ti-30Ta 57.33 ± 1.35 48.49 ± 4.71

The relation between the surface energy and adhesion strength is given through the
attraction and repulsion forces, which have polar and dispersive components. When
the polar components are higher than the dispersive ones, a greater adhesion strength
occurs between the film and substrate. This implies that the surface energy is directionally
connected to surface adhesiveness and surfaces with high free energy promote a better
interaction with the deposited film [18].

3.2. Evaluation of the P(VDF-TrFE)/BaTiO3 Film

The thermal behavior of the P(VDF-TrFE)/BaTiO3 films can be seen in Figure 4.
The TGA profile curve obtained in this work is very similar to the P(VDF-TrFE) curve,
as seen in previous works [59,60]. In the range from 25 ◦C to 160 ◦C, the TGA curve
showed no significant mass losses. This event indicates that the solvent used in the
composite synthesis was dried entirely since there are no peaks on the DTG curve between
140–160 ◦C, which refers to DMF evaporation. At 450–550 ◦C there was a weight loss of the
composite, where around 67.5% of its mass was decomposed. The remaining weight of the
compound is considered residual mass, which can be attributed to the addition of BaTiO3
and residues from the copolymer process, as seen in Simões et al. (2010) [61]. Analyzing the
derivative thermogravimetric curve (DTG) it is possible to identify events that are not seen
by analyzing only the thermogram curve. The reaction reaches its maximum rate at 450 ◦C,
and at 550 ◦C it is possible to observe a second lower intensity peak, indicating another
weight loss process of the composite. The first DTG peak is assigned to the degradation of
vinylidene fluoride, while the second peak is related to the degradation of trifluorethylene,
since the mass loss (67.5%) at 450 ◦C is higher than the mass loss (≈33%) at 550 ◦C, reflecting
the molar composition of the copolymer—VDF 80 mol% and TrFE 20% mol.
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By DSC analysis, the nature of the energy involved in endothermic and exothermic
processes that occurred during the controlled temperature rise could be assessed. During
the drying of the composite onto the metallic Ti-30Ta substrate the temperature employed
will exert an influence on PVDF-TrFE chain orientation; further, the annealing at tempera-
tures above the Curie temperature (Tc) induces crystalline formation, and it will generate a
higher piezoelectric effect on the film. The correct temperature for drying and annealing
the film can be better determined after an investigation of the transition temperatures
obtained by DSC. Figure 5 shows an endothermic peak at 88.46 ◦C, which corresponds to
the Curie temperature (Tc1) of the P(VDF-TrFE) copolymer. At 137.5 ◦C occurs a second
phase transition (Tc2), being similar to the copolymer catalog. Another two endothermic
peaks occur at 125.6 ◦C, corresponding to the Curie transition of BaTiO3, and at 146.23 ◦C,
which corresponds to the melting transition (Tm) of the copolymer. In the cooling stage,
two exothermic peaks are observed at 132.4 ◦C and 78.9 ◦C. These peaks represent the
crystallization temperature of the copolymer, represented by Ts. The thermal behavior of
the P(VDF-TrFE)/BaTiO3 film can be compared to the literature, as seen in Genchi et al.
(2016), Vacche et al. (2014) and Vacche et al. (2012) [60,62,63], where similar transition
temperatures were found as in this study.

The crystallinity of the composite was analyzed according to the data obtained by
thermal events. In this way, it was possible to study the changes in the crystallinity after
BaTiO3 addition, as seen in Table 6.

Table 6. Curie temperature (Tc), melting temperature (Tm), crystallization enthalpy (∆Hc), melting
enthalpy (∆Hm), and material crystallinity (∆Xc).

Components Tc (◦C) Tm (◦C) ∆Hc (J·g−1) ∆Hm (J·g−1) ∆Xc (%)

P(VDF-TrFE) 112.5 146.5 7.59 16.32 36.26
P(VDF-TrFE)/BaTiO3 137.5 146.2 6.48 22.07 49.04



Metals 2022, 12, 1409 13 of 28Metals 2022, 12, x FOR PEER REVIEW 13 of 29 
 

 

 
Figure 5. DSC thermogram of P(VDF-TrFE)/BaTiO3 film at 50 °C to 180 °C. 

The crystallinity of the composite was analyzed according to the data obtained by 
thermal events. In this way, it was possible to study the changes in the crystallinity after 
BaTiO3 addition, as seen in Table 6. 

Table 6. Curie temperature (Tc), melting temperature (Tm), crystallization enthalpy (∆Hc), melting 
enthalpy (∆Hm), and material crystallinity (∆Xc). 

Components 𝑻𝒄 (°C) 𝑻𝒎(°C) ∆𝑯𝒄 (J∙g−1) ∆𝑯𝒎(J∙g−1) ∆𝑿𝒄 (%) 
P(VDF-TrFE) 112.5 146.5 7.59 16.32 36.26 

P(VDF-TrFE)/BaTiO3 137.5 146.2 6.48 22.07 49.04 

The crystallinity of the copolymer is in agreement with the literature, as observed in 
Nunes-Pereira et al. [64]. Genchi et al. [60] discussed the melting enthalpy of the material, 
which had an increase from 22 J∙g−1 to 28 J∙g−1, thus raising the crystallinity of the copoly-
mer when BaTiO3 particles were incorporated. However, Vacche et al. [63], reported in 
their research that the addition of BaTiO3 did not change the degree of crystallinity of the 
polymer after its recrystallization. These authors confirmed that at a certain volume of 
ceramic particles added to the polymer matrix, the crystallinity of the polymer also does 
not change significantly. In the present study, it can be observed that the addition of ce-
ramic material particles into the polymer matrix increased the crystallinity of the copoly-
mer by 15%, thus confirming the studies of Genchi et al. [60]. The enthalpy of fusion in-
creased approximately from 16 to 22%, meaning that the energy absorbed in the fusion of 
the compound is higher when related to the fusion energy of the copolymer. 

The spectra obtained through the FTIR technique were assigned to the crystalline 
phases of the P(VDF-TrFE)/BaTiO3 film. The composite, being a copolymer and ceramic, 
has a characteristic vibration mode for each phase, which is discriminated through the 
absorption bands of atomic vibrations. For this reason, the study of the phases of the com-
posite before and after the addition of BaTiO3 is relevant. Figure 6 shows the FTIR spectra 
of P(VDF-TrFE) in powder form compared with the FTIR spectra of P(VDF-TrFE)/BaTiO3. 
Intense absorption bands are exhibited at 840 cm−1, 1282 cm−1, and 1400 cm−1, characteristic 
of the ferroelectric β phase of P(VDF-TrFE). The peaks from 1072 cm−1–1176 cm−1 are com-
mon to the α, β, and γ phases. The peaks at 840 and 878 cm−1 are associated with a –C–F 

Figure 5. DSC thermogram of P(VDF-TrFE)/BaTiO3 film at 50 ◦C to 180 ◦C.

The crystallinity of the copolymer is in agreement with the literature, as observed
in Nunes-Pereira et al. [64]. Genchi et al. [60] discussed the melting enthalpy of the
material, which had an increase from 22 J·g−1 to 28 J·g−1, thus raising the crystallinity of the
copolymer when BaTiO3 particles were incorporated. However, Vacche et al. [63], reported
in their research that the addition of BaTiO3 did not change the degree of crystallinity of
the polymer after its recrystallization. These authors confirmed that at a certain volume
of ceramic particles added to the polymer matrix, the crystallinity of the polymer also
does not change significantly. In the present study, it can be observed that the addition
of ceramic material particles into the polymer matrix increased the crystallinity of the
copolymer by 15%, thus confirming the studies of Genchi et al. [60]. The enthalpy of fusion
increased approximately from 16 to 22%, meaning that the energy absorbed in the fusion of
the compound is higher when related to the fusion energy of the copolymer.

The spectra obtained through the FTIR technique were assigned to the crystalline
phases of the P(VDF-TrFE)/BaTiO3 film. The composite, being a copolymer and ceramic,
has a characteristic vibration mode for each phase, which is discriminated through the
absorption bands of atomic vibrations. For this reason, the study of the phases of the com-
posite before and after the addition of BaTiO3 is relevant. Figure 6 shows the FTIR spectra
of P(VDF-TrFE) in powder form compared with the FTIR spectra of P(VDF-TrFE)/BaTiO3.
Intense absorption bands are exhibited at 840 cm−1, 1282 cm−1, and 1400 cm−1, character-
istic of the ferroelectric β phase of P(VDF-TrFE). The peaks from 1072 cm−1–1176 cm−1

are common to the α, β, and γ phases. The peaks at 840 and 878 cm−1 are associated with
a –C–F symmetric stretch and –CF2 bond in-plane rocking deformation, respectively. The
peak at 1282 cm−1 represents the –CF2 asymmetric stretch, C–C bond symmetric stretch
and CCC scissoring vibration. Finally, the peak at 1400 cm−1 is associated with the –CH2
wagging frequency and –C–C– asymmetric stretch [27,65–67]. These peaks suffered an
intense increase after the incorporation of BaTiO3 in the polymeric matrix, which reflects
in the piezoelectricity of the material, as seen in Qi et al. (2013) [66]. According to these
authors, the increase in the crystallinity of the copolymer after BaTiO3 addition can be
explained by the chemical bonding between them. The BaTiO3 content increases due to the
oxygen vacancies in the composite matrix, which have positive charges. The fluorine atoms
of the polymer, which have negative charges, fill the oxygen vacancies. Consequently, the
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interface and the space charges are decreased, allowing the electric dipoles to move and
rotate easily, increasing the dielectric constant of the composite.
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1500 to 800 cm−1.

Analyzing the diffractogram in Figure 7a is possible to verify that P(VDF-TrFE)
presents crystalline behavior. The P(VDF-TrFE) spectra show a broad peak at 19.9◦, which
corresponds to the reflection of crystalline planes (110) and (200) of the orthorhombic phase
of the copolymer. This phase has a similar crystalline structure to the β-ferroelectric phase
of PVDF, also confirmed by the FTIR analysis [68]. Furthermore, a small peak is observed
at 17.1◦ corresponding to the α phase of P(VDF-TrFE). The copolymer semi-crystalline
phase is noted at 18.7◦, which is represented by the inflection point in the diffractogram,
as observed in Genchi et al. [60]. Figure 7b shows the BaTiO3 diffractogram. The lattice
parameter data obtained show that the unit cell of BaTiO3 is tetragonal of the crystalline
system P4 mm, as observed in the crystallographic sheet PDF-2 05-0626. Complement-
ing the analysis, these results confirm that there are no BaCO3 impurities in the ceramic
powder [68,69]. Ti-30Ta spectrum can be seen in Figure 7c, which corresponds to the crystal-
lographic sheet PDF-2 01-089-5009. The spectrum confirms the presence of the characteristic
peaks of the hexagonal metastable phase α”. These results can be confirmed in previous
studies [70–72]. Finally, the spectrum of the composite formed from the Ti-30Ta alloy coated
with P(VDF-TrFE)/BaTiO3 film can be seen in Figure 7d. Analyzing the diffractogram,
seen are associated peaks with the phases of all materials. The diffracted peak in the
angular region that corresponds to 20◦ represents the P(VDF-TrFE) copolymer peak. Peaks
viewed at 30–35◦ correspond to the BaTiO3 tetragonal phase. The α” phase of the alloy is
represented by peaks found at 40◦. These peaks suffered a considerable decrease in their
relative intensity when compared to the Ti-30Ta alloy diffractogram. This decrease may
be related to the P(VDF-TrFE)/BaTiO3 coating, which interfered in the diffraction of the
corresponding plane. Moreover, there were no significant phase changes attributed to the
coating process.
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3.3. Study of the Deposition Process: Influence of the Temperature on Film Adhesion

To study the temperature influence on the quality of substrate coating, the samples
were subjected to three different temperatures during all coating processes for the polish
surface treatment, such as the samples with the acid etching treatment. At room tem-
perature, it was found that the film did not adhere to the substrate surface, as seen in
Figure 8a. At 100 ◦C, there was adhesion of the film on the substrate. However, after a
time interval, the deposited film could be removed from the substrate, indicating poor
adherence, as Figure 8b shows. Figure 8c shows the substrate heated at 150 ◦C, where the
deposited film remained fixed on the surface samples. Furthermore, no defects, wrinkles,
or heterogeneities were observed on the coated films. The adhesion of the film can be
explained by the increase in temperature, which influences the atoms of the film to interact
with the substrate atoms, creating an atomic bonding stronger when compared to the
substrate at room temperature [73]. Besides, the rough substrate presents higher thermal
resistance after the heating process, increasing the thermal interaction of the substrate with
the droplets [74].
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It is worth pointing out that the film stability is adequate when the material is sub-
jected at temperatures above 150 ◦C, which is when P(VDF-TrFE) melting occurs, and at
temperatures above 450 ◦C where thermal degradation of the copolymer occurs, as de-
scribed previously in this study. Thus, the characteristics of the material have not changed
due to the thermal treatment of the substrate during the coating process. The temperature
rise on the substrate during the coating process also resulted in immediate evaporation
of the DMF used in the composite synthesis, which has a boiling point of 153 ◦C. This
fact can be considered an influential factor in film adhesion due to the solidification of the
P(VDF-TrFE)/BaTiO3 film during the coating process.

The dispersion of the BaTiO3 particles in the polymeric matrix used to coat the Ti-
30Ta substrate can be observed in Figure 9. The ceramic particles, represented by white
agglomerations, are evenly distributed in the P(VDF-TrFE) film, represented by the dark
area in the SEM image. Additionally, the dispersion of the particles in the matrix is
homogeneous, confirming that the copolymer and the ceramic have compatible interfaces,
as seen in previous studies [15,29,32,57].
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The use of the spray as a coating technique forces the solvent to migrate to the water
droplets deposited in parallel to the composite, causing the precipitation of the P(VDF-
TrFE)/BaTiO3 on the substrate. For this reason, the composite homogeneity is guaranteed,
since the solvent output increases the composite viscosity, stabilizing the BaTiO3 particles.

3.4. Evaluation of the Coated Ti-30Ta Alloy with the P(VDF-TrFE)/BaTiO3 Film
3.4.1. Scratch Test

Scratch testing provides information about different modes of film failure through
the use of a nanoindenter, which moves linearly across the coated sample. The normal
force (N) suffers a gradual increase until the first failure occurs. The load that causes this
failure is called critical load (Lc), and it is considered the main parameter in the evaluation
of coating adhesion on the substrate [43,56].

Figure 10a,b represents the behavior of the coating of cp-Ti with polish and acid
etching treatment, respectively, and Figure 10c,d represents the behavior of the coating of
Ti-30Ta with polish and acid etching treatment when a progressive load is applied. Lc1
is the first critical load, characterized by the appearance of initial cracks on the substrate.
Increasing the load it is possible to observe a region with a groove followed by small cracks,
represented by Lc2. This type of failure is described as a cohesive failure, which is caused
by the traction imposed by the indenter as it stresses the thin and fragile film deposited
on a ductile substrate [75]. From Lc3, when the critical load is reached, what occurs is the
substrate exposition and film fragmentation of considerable length, indicating an adhesive
failure. This fragmentation is laterally extended until the end of the scratches made by
the indenter. At this point, it is observed that the film forms a wrinkle, indicating that the
indenter was tightening the coating until the complete removal of the load.
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Figure 10. Optical microscopy of the scratch tracks performed on the coated surface (a) cp-Ti with
polish treatment; (b) cp-Ti with acid etching treatment cp-Ti; (c) Ti-30Ta with polish treatment;
(d) Ti-30Ta with acid etching treatment. Ti-30Ta: Lc1 represents the first delamination of the coating;
Lc2 is the transition region of delamination and Lc3 is the region where the damage is maximum.
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According to Kusakabe et al. [76], the cohesive failure in thin films can be explained
due to compression causing wrinkles and storing energy on the surface. When the energy
released by the indenter is higher than the free interfacial surface energy between the film
and substrate, film delamination and coating failure occur.

The critical load obtained for the polish treatment and acid etching treatment samples
is shown in Table 7. The results demonstrate that the critical load associated with the
surface treatment of the samples was divergent. For the polished cp-Ti samples, the
value found was the lowest, showing poor adhesion compared with the acid etching
samples. For the polished Ti-30Ta alloy, Lc was significantly higher. Thereby, it can be
concluded that the film presents better adhesion on Ti-30Ta with the polished surface
(≈9.5 MPa), since a considerable load was necessary to remove the P(VDF-TrFE)/BaTiO3
coating when compare to the cp-Ti samples. Although the roughness for the two types of
surface treatments present similar values, the morphology of the rough surface is divergent,
as shown in Figure 2. As the polished surface presents a surface with peaks and valleys,
the total surface area was increased, which can improve the initial adhesion strength due
to the film penetrating the grooves, promoting mechanical interlocking. Besides, these
results were expected in terms of the surface energy and wettability described previously
(57.33 ± 1.35 mN/m and ≈ 2◦, respectively), corroborating the idea that the higher the
surface energy and hydrophilicity of the sample surface, the greater the film adhesion
on substrate.

Table 7. Critical load Lc obtained via scratch test.

Critical Load LC (MPa)

Samples Polish Acid Etching

cp-Ti 5.23 ± 0.3 6.57 ± 0.9
Ti-30Ta 9.56 ± 0.8 8.36 ± 0.4

Comparing these values to the literature, it can be concluded that besides the coat-
ing process, the morphology, composition, and crystallinity of the film all influence the
adhesion strength. Coatings obtained by plasma spraying presented an adhesion strength
of 2–23 Mpa [74]. Coating techniques using electrochemical deposition showed values
in a range of 5–15 Mpa [77]. The painting method used for coating Ti substrates with
hydroxyapatite presented an adhesion strength of 15–19 Mpa [78]. Some studies reported
values on the order of 30–40 Mpa when sanding blasting was used as surface pre-treatment
to improve adhesion strength [79].

3.4.2. Sectional Study of the Coated Substrate

The interface cross-section between the cp-Ti substrate and film is shown in Figure 11a,
where the adhesion seems to occur by the sprinkles of the film on the surface, and in
Figure 11b where it can be seen that a fraction of the film peeled off from the surface,
indicating weak adhesion of the film on the acid-etched substrate. Figure 11c,d represents
a positive result of the Ti-30Ta with both polishing and acid etching treatment coated with
P(VDF-TrFE)/BaTiO3 films. First, the layer of the film deposited on the substrate can
be observed and a free-solidification of the composite during the deposition, indicating
physical adhesion. This layer is fundamental for the development of the adhesion force,
considering the contact between the surface and the coating [80].
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3.4.3. Surface Characterization of the Film onto Substrate
Surface Energy

The surface properties of an implant, such as the topography and surface energy,
improve its wettability characteristics, which influence the osseointegration process due
to the interaction of the implant surface and the biological environment [81]. According
to Feng et al. [82], the cells behave better when they are in contact with high surface
energy, characterized by a rough surface. Besides, cell adhesion on the implant surface is
considered excellent when the surface energy of the coating is considered higher than the
surface energy of the cell [83].

Table 8 shows the surface energy calculated after the coating process. Analyzing
the data, the surface energy for both coated samples is very close due to the contact
angle measured relative to the surface of P(VDF-TrFE)/BaTiO3 film, which is the same for
both samples and has the same microstructural and surface characteristics, regardless of
the substrate.
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Table 8. Surface energy of the coated cp-Ti and Ti-3-Ta samples.

Surface Energy (mN/m)

Sample γs

Ti-30Ta/P(VDF-TrFE)/BaTiO3 41.27
cp-Ti/P(VDF-TrFE)/BaTiO3 40.13

Redey et al. [84] observed that osteoclasts adhesion related to the surface energy on
different surfaces. It was found that for materials with a surface energy of 48 mN/m and
58 mN/m there was a higher adherence of cells when compared to the surface with the
energy of 9 mN/m. Feng et al. presented good results for osteoblast adhesion on surfaces
of 35 mN/m. These surface properties are essential for biomaterials used in dental and
orthopedic implants due to the fact that these materials can mimic the natural architecture
of the bone, for example.

Surface Wettability

Surface wettability is considered the first and most critical property of an implant
material considering the initial stage of the biological recovery as a result of an implanted
biomaterial. This characteristic allows the control of the protein adsorption, which reflects
directly on the implant surface cell anchorage [85]. The wettability of the coated samples is
reported in Table 9.

Table 9. Wettability of the cp-Ti and Ti-30Ta coated samples.

Contact Angle θ (◦)

Samples Polish Acid Etching

cp-Ti/P(VDF-TrFE)/BaTiO3 78.9 ± 5.8 80.3 ± 5.9
Ti-30Ta/P(VDF-TrFE)/BaTiO3 82.9 ± 5.3 85.1 ± 4.2

Analyzing the data, it is observed that both cp-Ti and Ti-30Ta samples presented close
contact angles when compared to each other, demonstrating that the type of surface treat-
ment prior to the coating process and the difference in the materials used as a substrate did
not interfere with the wettability characteristics of the P(VDF-TrFE)/BaTiO3 coating. Re-
garding the nature of the coating material, it was found that the film surface has hydrophilic
characteristics, with values less than 90◦. It is important to note that the copolymer has a
hydrophobic nature due to the electronegativity of the fluorine atoms. The decrease in the
contact angle of the P(VDF-TrFE)/BaTiO3 obtained compared to P(VDF-TrFE) (>90◦) can
be attributed to the addition of the ceramic in the polymeric matrix, where the C-O and
C=O functional groups of the surface of BaTiO3 interact with the dipoles of PVDF, forming
an electroactive β-phase [86]. Additionally, the contact angle measurements showed a
low standard deviation when compared with the nominal contact angles observed for the
coated samples. These findings suggest the presence of homogeneous films coated on
Ti-30Ta substrate.

The wettability of the coated samples through the behavior of deionized water can be
seen in Figure 12, where there was a decrease in the contact angle of approximately 15◦

for each time interval measured. Besides the hydrophilicity, the water spreading can also
be attributed to the surface morphology, as the irregular granules with a rough surface of
BaTiO3 dispersed in the polymeric matrix.
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Furthermore, when a biomaterial is implanted into the human body, the fast protein
adsorption acts to connect the external surface with the biological environment, translating
the material surface properties and, consequently, influencing cellular differentiation and
proliferation. According to Silva-Bermudez and Rodil [50] and Gittens et al. [87], a hy-
drophilic surface promotes protein adsorption, and a hydrophobic surface, which has low
surface energy, inhibits the cellular attachment sites, resulting in poor adhesion of cells [88].

Surface Roughness

The presence of roughness on the surface of implants affects the implant-bone connec-
tion, promoting an initial stabilization so that bone cells can attach and grow on the implant
surface. Thus, the topography with a greater surface area can promote enhanced protein
interaction [81]. This property also influences the protein adsorption, as well as induces
the conformation and orientation adopted by proteins upon adsorption [89]. However,
it has been proved that these surface properties also can influence bacterial adherence to
the implants [90]. The roughness of the film deposited on cp-Ti and Ti-30Ta substrates
is represented in Table 10, where the obtained data indicate that there is no significant
difference between both samples.

Table 10. Roughness of the P(VDF-TrFE)/BaTiO3 deposited on cp-Ti and Ti-30Ta substrates.

Roughness (µm)

Samples Ra

Ti-30Ta/P(VDF-TrFE)/BaTiO3 0.254 ± 0.3
cp-Ti/P(VDF-TrFE)/BaTiO3 0.240 ± 0.5

4. Biological Assays
4.1. Evaluation of Biofilm Formation

The presence of pathogenic microorganisms, and the development of biofilms around
an implant, are the main causes of body responses, such as infections and inflammation of
the recovering tissue [91]. When the material is implanted, the body stimulates a series of
biological events, including the interaction between bacteria and host cells, that intend to
colonize the implant surface. The bacterial structure has functional groups on its surface,
which implies interactions between the bacteria and the ions present on the surface of the
implant, damaging the healthy cells of the tissue [92,93]. For this reason, treatment with
antibiotics for a long period is required, as well as several surgical procedures, possibly
leading to the most serious consequence, the removal of the implant [94].
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Biofilm formation occurs when the biological environment offers favorable condi-
tions for the multiplication of bacteria in the implant and adjacent tissue. In particular,
bacterial strains surrounding implants have high resistance to antibiotics, such as the Gram-
positive Staphylococcus aureus and Staphylococcus epidermidis, since these types of bacteria
have a higher incidence when related to infections associated with implantable medical
devices [44,95,96].

The bar chart illustrated in Figure 13 represents the comparison between the two types
of bacteria and the adhesive behavior of both, evaluated on P(VDF-TrFE)/BaTiO3 coating
surface and non-coated surface. Statistically, the CFU values (colony-forming unit) for the
S. aureus did not show significant differences. This means that for both surfaces (i.e., coated
and non-coated), the growth of colonies was practically the same, indicating that the P(VDF-
TrFE)/BaTiO3 film did not play a significant role in the formation of biofilms. However,
concerning the S. epidermidis, the coated samples showed a higher colony formation when
compared to S. aureus.
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Figure 13. Comparative bar chart of colony-forming units (CFU) for S. aureus and S. epidermidis
obtained using Student’s t-test. * indicates that the difference between the samples are statistically
significant (p < 0.05) when compared to the non-coated and coated samples for S. epidermidis.

In contrast to the S. aureus, which may be repulsed by the chemical surface properties
of some polymers, the S. epidermidis has a high ability to promote its surface adhesion even
in polymeric coatings, which can be explained by the nonprotein adhesins used by them to
adhere to the coated surface [97,98]. Besides, according to Wu et al. [99], the S. epidermidis
prefers to colonize rough surfaces with high contact areas, characterized by the depressions
and grooves on the surface. Damiati et al. [89] and Lee et al. [100] indicated an ideal value
for surface roughness below 0.2 µm, which bacterial adhesion can be reduced significantly.
Comparing this value with the roughness obtained in this work, which corresponds to
0.254 ± 0.05 µm, the roughness of the film may have influenced the biofilm colonization
since the surface presents a suitable topography for bacterial growth.

Besides, the S. epidermidis is a hydrophobic bacteria and is able to bond to the sur-
face with van der Waals interaction and, according to Cerca et al. [101], the hydrophobic
interactions are stronger than other covalent forces, promoting a strong adhesion on the
surface [102,103]. Considering the results of this study, even though the surface is character-
ized as hydrophilic, the contact angle is still high (θ ≈ 85◦—near the limit of contact angle
for hydrophobic surfaces), which may imply that the material affects the initial adhesion of
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the bacteria. On the other hand, the adhesion of the S. aureus was reduced due to this strain
choosing hydrophilic surfaces, characterized by lower contact angles.

The distribution of the biofilms on the non-coated and coated Ti-30Ta can be seen
in Figure 14. Figure 14a shows that the S. aureus formed agglomerated structures in the
grooves of the polish-treated Ti-30Ta surface. Figure 14b represents the S. aureus biofilm
formation on the coated sample. Besides, the agglomeration can also be seen in the groove
of the coated surface. According to Cuello et al. [104] and Yang et al. [105], S. epidermidis,
P. aeruginosa, and S. aureus choose to adhere to surfaces with a large groove, which implies a
higher contact area. The beads dispersed on the surface can be explained by the drops from
the process of spray coating, and these irregularities can influence the biofilm formation.
S. epidermidis adhesion is seen in Figure 14c,d, which represents the biofilm adhesion on
non-coated Ti-30Ta and coated Ti-30Ta surfaces, respectively.
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Figure 14. Biofilm distribution on the non-coated and coated Ti-30Ta. (a) S. aureus biofilm on Ti-30Ta
polished surface. (b) S. aureus biofilm on Ti-30Ta coated with the piezoelectric film. The beads on
the surface, represented by the yellow arrow, may influence the biofilm formation. (c) S. epidermidis
biofilm formation on Ti-30Ta polished surface. (d) S. epidermidis biofilm growth on the Ti-30Ta coated
sample. In all SEM images, we can observe that the bacteria growth occurs in the grooves, following
a preferential direction.

4.2. Hemocompatibility Test

The rate of hemolysis of the Ti-30Ta alloy and the Ti-30Ta alloy coated with P(VDF-
TrFE)/BaTiO3 film can be seen in Figure 15. The results obtained for both samples are below
the hemolysis rate (<5%) and, statistically, there are no significant differences between
them, thus indicating no hemolytic activity. This test shows that the Ti-30 Ta alloy and
the coated alloy do not present hemolytic activity, thus these surfaces are characterized
as hemocompatible.
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4. İzmir, M.; Ercan, B. Anodization of Titanium Alloys for Orthopedic Applications. Front. Chem. Sci. Eng. 2019, 13, 28–45.
[CrossRef]

5. Chen, W.; Xu, K.; Tao, B.; Dai, L.; Yu, Y.; Mu, C.; Shen, X.; Hu, Y.; He, Y.; Cai, K. Multilayered Coating of Titanium Implants
Promotes Coupled Osteogenesis and Angiogenesis in Vitro and in Vivo. Acta Biomater. 2018, 74, 489–504. [CrossRef]

6. Sidambe, A.T. Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials 2014, 7, 8168–8188. [Cross-
Ref]

7. Hanawa, T. Titanium-Tissue Interface Reaction and Its Control with Surface Treatment. Front. Bioeng. Biotechnol. 2019, 7, 170.
[CrossRef]

8. Capellato, P.; Riedel, N.A.; Williams, J.D.; Machado, J.P.B.; Popat, K.C.; Alves Claro, A.P.R. Surface Modification on Ti-30Ta Alloy
for Biomedical Application. Engineering 2013, 5, 707–713. [CrossRef]

9. Zhou, Y.L.; Niinomi, M.; Akahori, T. Effects of Ta Content on Young’s Modulus and Tensile Properties of Binary Ti-Ta Alloys for
Biomedical Applications. Mater. Sci. Eng. A 2004, 371, 283–290. [CrossRef]

10. Ibrahim, M.K.; Hamzah, E.; Saud, S.N.; Nazim, E.M.; Iqbal, N.; Bahador, A. Effect of Sn Additions on the Microstructure,
Mechanical Properties, Corrosion and Bioactivity Behaviour of Biomedical Ti–Ta Shape Memory Alloys. J. Therm. Anal. Calorim.
2018, 131, 1165–1175. [CrossRef]

11. Chen, Q.; Thouas, G.A. Metallic Implant Biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [CrossRef]
12. Schildhauer, T.A.; Robie, B.; Muhr, G.; Köller, M. Bacterial Adherence to Tantalum versus Commonly Used Orthopedic Metallic

Implant Materials. J. Orthop. Trauma 2006, 20, 476–484. [CrossRef] [PubMed]
13. Zhu, Y.; Gu, Y.; Qiao, S.; Zhou, L.; Shi, J.; Lai, H. Bacterial and Mammalian Cells Adhesion to Tantalum-Decorated Micro-/Nano-

Structured Titanium. J. Biomed. Mater. Res. Part A 2017, 105, 871–878. [CrossRef] [PubMed]
14. Wang, X.; Ning, B.; Pei, X. Tantalum and Its Derivatives in Orthopedic and Dental Implants: Osteogenesis and Antibacterial

Properties. Colloids Surf. B Biointerfaces 2021, 208, 112055. [CrossRef] [PubMed]
15. Alhalawani, A.M.; Mehrvar, C.; Stone, W.; Waldman, S.D.; Towler, M.R. A Novel Tantalum-Containing Bioglass. Part II.

Development of a Bioadhesive for Sternal Fixation and Repair. Mater. Sci. Eng. C 2017, 71, 401–411. [CrossRef] [PubMed]
16. Harrison, P.L.; Harrison, T.; Stockley, I.; Smith, T.J. Does Tantalum Exhibit Any Intrinsic Antimicrobial or Antibiofilm Properties?

Bone Jt. J. 2017, 99, 1153–1156. [CrossRef] [PubMed]
17. Tokarski, A.T.; Novack, T.A.; Parvizi, J. Is Tantalum Protective against Infection in Revision Total Hip Arthroplasty? Bone Jt. J.

2015, 97, 45–49. [CrossRef]
18. Mani, G.; Porter, D.; Grove, K.; Collins, S.; Ornberg, A.; Shulfer, R. A Comprehensive Review of Biological and Materials Properties

of Tantalum and Its Alloys. J. Biomed. Mater. Res. Part A 2022, 110, 1291–1306. [CrossRef]
19. Ching, H.A.; Choudhury, D.; Nine, M.J.; Abu Osman, N.A. Effects of Surface Coating on Reducing Friction and Wear of

Orthopaedic Implants. Sci. Technol. Adv. Mater. 2014, 15, 014402. [CrossRef]
20. Moore, B.; Asadi, E.; Lewis, G. Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants:

A Review. Adv. Mater. Sci. Eng. 2017, 2017, 5812907. [CrossRef]
21. Uwais, Z.A.; Hussein, M.A.; Samad, M.A.; Al-Aqeeli, N. Surface Modification of Metallic Biomaterials for Better Tribological

Properties: A Review. Arab. J. Sci. Eng. 2017, 42, 4493–4512. [CrossRef]
22. Pires, A.L.R.; Bierhalz, A.C.K.; Moraes, Â.M. Biomaterials: Types, Applications, and Market. Quim. Nova 2015, 38, 957–971.

[CrossRef]
23. Kligman, S.; Ren, Z.; Chung, C.H.; Perillo, M.A.; Chang, Y.C.; Koo, H.; Zheng, Z.; Li, C. The Impact of Dental Implant Surface

Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021, 10, 1641. [CrossRef] [PubMed]
24. Poon, K.K.; Schafföner, S.; Einarsrud, M.A.; Glaum, J. Barium Titanate-Based Bilayer Functional Coatings on Ti Alloy Biomedical

Implants. J. Eur. Ceram. Soc. 2021, 41, 2918–2922. [CrossRef]
25. Gnedenkov, S.V.; Sinebryukhov, S.L.; Zavidnaya, A.G.; Egorkin, V.S.; Puz’, A.V.; Mashtalyar, D.V.; Sergienko, V.I.; Yerokhin, A.L.;

Matthews, A. Composite Hydroxyapatite-PTFE Coatings on Mg-Mn-Ce Alloy for Resorbable Implant Applications via a Plasma
Electrolytic Oxidation-Based Route. J. Taiwan Inst. Chem. Eng. 2014, 45, 3104–3109. [CrossRef]

26. Magueta, A.F.; Fernandes, M.H.V.; Hortigüela, M.J.; Otero-Irurueta, G.; Vilarinho, P.M. Poly (L-Lactic Acid) Coatings on 316 SS
Substrates for Biomedical Devices: The Impact of Surface Silanization. Prog. Org. Coatings 2021, 157, 106289. [CrossRef]

27. Bolbasov, E.N.; Popkov, A.V.; Popkov, D.A.; Gorbach, E.N.; Khlusov, I.A.; Golovkin, A.S.; Sinev, A.; Bouznik, V.M.; Tverdokhlebov,
S.I.; Anissimov, Y.G. Osteoinductive Composite Coatings for Flexible Intramedullary Nails. Mater. Sci. Eng. C 2017, 75, 207–220.
[CrossRef]

28. Lopes, H.B.; Santos, T.D.S.; De Oliveira, F.S.; Freitas, G.P.; De Almeida, A.L.; Gimenes, R.; Rosa, A.L.; Beloti, M.M. Poly(Vinylidene-
Trifluoroethylene)/Barium Titanate Composite for in Vivo Support of Bone Formation. J. Biomater. Appl. 2014, 29, 104–112.
[CrossRef]

29. Li, Y.; Liao, C.; Tjong, S.C. Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for
Bone and Neural Tissue Engineering. Nanomaterials 2019, 9, 952. [CrossRef]

http://doi.org/10.1007/s42242-021-00170-3
http://www.ncbi.nlm.nih.gov/pubmed/34721937
http://doi.org/10.1007/s11705-018-1759-y
http://doi.org/10.1016/j.actbio.2018.04.043
http://doi.org/10.3390/ma7128168
http://doi.org/10.3390/ma7128168
http://doi.org/10.3389/fbioe.2019.00170
http://doi.org/10.4236/eng.2013.59084
http://doi.org/10.1016/j.msea.2003.12.011
http://doi.org/10.1007/s10973-017-6636-2
http://doi.org/10.1016/j.mser.2014.10.001
http://doi.org/10.1097/00005131-200608000-00005
http://www.ncbi.nlm.nih.gov/pubmed/16891939
http://doi.org/10.1002/jbm.a.35953
http://www.ncbi.nlm.nih.gov/pubmed/27784134
http://doi.org/10.1016/j.colsurfb.2021.112055
http://www.ncbi.nlm.nih.gov/pubmed/34438295
http://doi.org/10.1016/j.msec.2016.10.024
http://www.ncbi.nlm.nih.gov/pubmed/27987724
http://doi.org/10.1302/0301-620X.99B9.BJJ-2016-1309.R1
http://www.ncbi.nlm.nih.gov/pubmed/28860394
http://doi.org/10.1302/0301-620X.97B1.34236
http://doi.org/10.1002/jbm.a.37373
http://doi.org/10.1088/1468-6996/15/1/014402
http://doi.org/10.1155/2017/5812907
http://doi.org/10.1007/s13369-017-2624-x
http://doi.org/10.5935/0100-4042.20150094
http://doi.org/10.3390/jcm10081641
http://www.ncbi.nlm.nih.gov/pubmed/33921531
http://doi.org/10.1016/j.jeurceramsoc.2020.12.023
http://doi.org/10.1016/j.jtice.2014.03.022
http://doi.org/10.1016/j.porgcoat.2021.106289
http://doi.org/10.1016/j.msec.2017.02.073
http://doi.org/10.1177/0885328213515735
http://doi.org/10.3390/nano9070952


Metals 2022, 12, 1409 26 of 28

30. Gimenes, R.; Zaghete, M.A.; Bertolini, M.; Varela, J.A.; Coelho, L.O.; Silva, N.F., Jr. Composites PVDF-TrFE/BT Used as Bioactive
Membranes for Enhancing Bone Regeneration. In Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices
(EAPAD); Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2004; Volume 5385, pp. 539–547. [CrossRef]

31. Luo, H.; Chen, S.; Liu, L.; Zhou, X.; Ma, C.; Liu, W.; Zhang, D. Core-Shell Nanostructure Design in Polymer Nanocomposite
Capacitors for Energy Storage Applications. ACS Sustain. Chem. Eng. 2019, 7, 3145–3153. [CrossRef]

32. Lopes, H.B.; de Santana Santos, T.; Freitas, G.P.; de Oliveira, F.; Gimenes, R.; Luiz Rosa, A.; Mateus Beloti, M. Gene Expression
Analysis of Bone Tissue Grown on P(VDF-TrFE)/BT Membrane Implanted in Rat Calvarial Defects. J. Oral Maxillofac. Surg. 2013,
71, e88–e89. [CrossRef]

33. Scalize, P.H.; Bombonato-Prado, K.F.; de Sousa, L.G.; Rosa, A.L.; Beloti, M.M.; Semprini, M.; Gimenes, R.; de Almeida, A.L.G.; de
Oliveira, F.S.; Hallak Regalo, S.C.; et al. Poly(Vinylidene Fluoride-Trifluorethylene)/Barium Titanate Membrane Promotes de
Novo Bone Formation and May Modulate Gene Expression in Osteoporotic Rat Model. J. Mater. Sci. Mater. Med. 2016, 27, 180.
[CrossRef] [PubMed]

34. Gimenes, R.; Zaghete, M.A.; Espanhol, M.; Sachs, D.; Silva, M.R.A. Promotion of Bone Repair of Rabbit Tibia Defects Induced by
Scaffolds of P(VDF-TrFE)/BaTiO3 Composites. Bull. Mater. Sci. 2019, 42, 235. [CrossRef]

35. Capellato, P.; Escada, A.L.A.; Popat, K.C.; Claro, A.P.R.A. Interaction between Mesenchymal Stem Cells and Ti-30Ta Alloy after
Surface Treatment. J. Biomed. Mater. Res. Part A 2014, 102, 2147–2156. [CrossRef]

36. Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [CrossRef]
37. Xu, L.; Zhang, K.; Wu, C.; Lei, X.; Ding, J.; Shi, X.; Liu, C. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-

Grained Pure Titanium. Materials 2017, 10, 1446. [CrossRef]
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