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Abstract: Non-deformable inclusions are detrimental to the surface quality and mechanical properties
of stainless-steel plates. Plant trials were conducted to investigate the effect of different ferrosilicon
alloys and calcium treatment during argon oxygen decarburization (AOD) and ladle furnace (LF)
refining on inclusions in Si-killed 304 stainless steel. The inclusions were examined by scanning
electron microscope with energy dispersive spectrometer. The results show that both the contents
of soluble aluminum in molten steel and Al2O3 in slag increase with the increase of aluminum
content in FeSi alloy. The content of soluble aluminum in liquid steel could be limited to lower than
0.004% when using ultra-purity FeSi alloy. When the calcium wire addition is 2 m/t, inclusions are
located in the low-melting-temperature region, and the inclusion rating of hot rolled plates is mainly
C-class. Industrial application shows that, by decreasing the soluble aluminum content in liquid steel,
decreasing the MgO and Al2O3 in slag in AOD, and applying low basicity refining slag as well as
calcium treatment, the inclusions are low melting point silicates. The inclusion rating of hot rolled
plates is mainly fine C-type with a small amount of class-A, and surface polishing qualification rate is
increased from 17.8% to more than 88.7%.

Keywords: inclusions; stainless steel; slag; calcium treatment; LF refining

1. Introduction

Non-metallic inclusions with high-melting points and strength, such as Al2O3 and
MgAl2O4, are detrimental to the surface quality and mechanical properties of stainless steel.
The detriments of non-metallic inclusions to the steel properties have been summarized in
the review articles by Park et al. [1] for stainless steel. Great efforts have been put forward
to minimize the number of inclusions by decreasing the oxygen content in steel during
the steelmaking process. Many researchers have investigated the evolution of inclusions
and their affecting factors during steelmaking processing of stainless steel [2–7]. The low-
melting temperature inclusions had a desirable chemical composition for plastic behavior
in subsequent processing and service operations. Therefore, targeting oxide inclusion
compositions with low-melting temperature is an important aspect of inclusion control in
stainless steel [8–10].

Slag composition is one of most important factors in determining the compositions of
oxide inclusions in stainless steel [11–14]. Kim et al. [15] studied the effect of tundish flux
on compositional changes in non-metallic inclusions in stainless steel, and found that the
aluminum originating from the slag modifies the preexisting Mn-silicate inclusions into
alumina-rich inclusions in the steel. The study by the present authors [16] shows that the
MgO and Al2O3 content of inclusions in slab increase by 14.4% and 9.1% respectively with
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increasing slag basicity from 1.5 to 2.6 in LF refining process, and there are no MgO·Al2O3
spinel inclusions in continuous casting slab when slag basicity is less than 1.9 in LF refining.
Al2O3 and MgAl2O4 spinel inclusions are frequently observed in stainless steel. Calcium
treatment is an effective way to modify compositions of oxide inclusions to low-melting-
temperature state [17–20]. Du et al. [19] reported that most of the inclusions in 316 L Si-killed
stainless steel without calcium treatment were MnS and MnO-Al2O3-MgO-TiOx inclusions,
whereas the inclusions were mainly spherical CaO-SiO2-MgO-Al2O3-MnS inclusions in
calcium-treated 316 Si-killed stainless steel. Wang et al. [21] found that calcium treatment
was necessary to modify the ferrosilicon deoxidation product into low melting temperature
inclusions in the low-Al region (from 40 to 100 ppm) using CaO-SiO2-Al2O3 slag, and
calcium addition has a “liquid window” where adding calcium can accelerate inclusion
modification. Wang et al. [22] stated that the MnO-SiO2-Al2O3-based inclusions were
difficult to change into CaO-SiO2-Al2O3-based inclusions, because the dissolved Ca in
liquid steel was not high enough.

The addition of ferroalloys could result in a supply of additional inclusions in the
steel [23,24]. The effect of ferrosilicon additions on the composition of inclusions has been
studied by several researchers [25–29]. Park and Kang [25] reported that the addition
of FeSi with a higher Al content induced an increase in Al2O3 content in the inclusions
and promoted formation of spinel inclusions. Wijk and Brabie [26] studied the influ-
ence of FeSi75 alloy additions on the inclusions, and found that silica inclusions were
formed after the addition of a high-purity FeSi75 alloy (0.004 mass pct Al, 0.006 mass% Ca,
0.016 mass% O). Mizuno et al. [27] reported that the presence of 1.7 mass% Ca in FeSi
alloys prevented the formation of spinel inclusions. Li et al. [28] reported that the high
Al (1.6 mass pct) containing FeSi alloy leads to a significantly increased Al2O3 content in
Al2O3–SiO2–MnO inclusions and to the formation of pure Al2O3 inclusions in stainless
steel. Recent work by Wang et al. [29] shows that MnCr2O4 spinel inclusions originating
from the FeCr alloys transformed into Ti2O3-Cr2O3-based liquid inclusions and Ti2O3-rich
solid inclusions due to the reactions between MnCr2O4 and TiN inclusions or dissolved Ti
in liquid steel. Therefore, it is quietly necessary to determine the impurities in ferroalloys
to meet the increasing demand for strict inclusion control.

To avoid hard alumina and MgAl2O4 spinel inclusions resulting from Al deoxidation,
Mn-Si deoxidation is used in stainless steel steelmaking. The present study was conducted
with the aim to reveal the effects of ferrosilicon alloy with different aluminum contents
and calcium treatment on inclusions in 304 stainless steel based on industrial-scale trials.
In order to clarify the evolution of inclusions in Si-killed stainless steel, industrial sam-
ples were taken during the industrial argon oxygen decarburization and ladle refining of
304 stainless steel.

2. Experimental
2.1. Plaint Trials

The plant trials were conducted in the production route of 160 t (EAF)→ 180 t (AOD)
→ ladle furnace (LF)→ continuous casting (CC) for producing 304 stainless steel. FeSi
alloys differ in their aluminum contents owing to their different manufacturing routes.
Different grades of FeSi alloys are selected for individual AOD process, i.e., ordinary
ferrosilicon, low-Al ferrosilicon, and ultra-purity ferrosilicon alloys. The chemical composi-
tions of ferrosilicon alloys are shown in Table 1. Three AOD plant trials were conducted.
Different grades of FeSi alloys were added at the reduction stage of AOD refining process.
The addition amount of FeSi alloys is 22.6 kg/t, 26.8 kg/t and 25.3 kg/t, respectively. Steel
and slag samples were taken at the final stage of AOD refining. In addition, steel samples
were taken from casting slab and hot rolled plate.
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Table 1. Chemical compositions of ferrosilicon alloys (mass%).

Si Al Ca Mn S P Fe

ordinary FeSi alloy 74.63 2.5 0.505 0.11 0.003 0.017 Bal.
low-Al FeSi alloy 74.91 0.8 0.286 0.15 0.002 0.022 Bal.

ultra-purity FeSi alloy 77.43 0.2 0.028 0.10 0.002 0.013 Bal.

Calcium treatment was employed aiming to increase the CaO content in oxide inclu-
sions, eventually bringing the compositions of inclusions in low melting point range. In
order to study the effect of calcium addition amount on inclusions, Si-Ca wires (70 mass%
Si–30 mass% Ca) were added before the end of LF refining. In the case of calcium treatment
plant trials, the ultra-purity FeSi alloy is used at the reduction stage of AOD refining process
and the slag with basicity of 1.5 is used in LF refining.

The main manufacturing steps, and steel and slag sampling are presented in Figure 1.
Steel and slag samples were taken at the arrival, before calcium addition, and final stage of
LF refining. In addition, steel samples were taken from casting slab and hot rolled plate.
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Figure 1. Schematic layout of the steelmaking process and sampling occasions.

2.2. Chemical Analysis and Microscopic Observation

The steel samples were prepared for chemical analysis. The aluminum content of
steel samples was measured by inductively coupled plasma atomic emission spectroscopy
(ICP-AES). The total oxygen and sulfur contents in the steel were measured by the in-
ert gas fusion-infrared absorptiometry and the combustion-infrared absorption method,
respectively. The nitrogen content was determined by the inert gas fusion-thermal con-
ductivity method. The chemical composition of refining slag was analyzed using an X-ray
fluorescence spectrometer (XRF).

The cross sections of the steel samples were prepared for metallographic analysis by
progressive grinding using SiC paper and polishing with 3 and 1 µm diamond paste. The
polished surfaces were observed by an automatic scanning electron microscopy (SEM) with
energy-dispersive X-ray spectroscopy (EDS) named ASPEX automatic scanning electron
microscope (FEI, Hillsboro, OR, USA). The Chinese standard GB/T 10561-2005 was used to
grade the inclusions in the hot plate samples.

3. Results and Discussion
3.1. Effect of Different Grades of FeSi Addition at Reduction Stage of AOD on Inclusions

The chemical composition of liquid steel in trials is shown in Table 2. It can be seen
from the Table 2 that the aluminum content in oxidation stage of AOD is lower than
30 ppm. The content of Al reduced by AOD is 63 ppm with ordinary FeSi alloy, and the
corresponding Al content is 41 ppm when low-Al FeSi alloy is used, while the content of
Al is 32 ppm using ultra-purity FeSi alloy. In addition, Al content tends to decrease in LF
refining process.
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Table 2. Chemical composition of liquid steel (mass%).

Stage C Si Mn P S Cr Ni Al N

Ordinary FeSi alloy
AOD oxidation stage 0.144 0.00 0.13 0.031 0.0880 17.83 7.83 0.0026 0.086

AOD final stage 0.045 0.66 1.14 0.033 0.0016 18.18 7.98 0.0063 0.046
LF final stage 0.046 0.65 1.15 0.033 0.0012 18.00 7.96 0.0057 0.047

low-Al FeSi alloy
AOD oxidation stage 0.142 0.00 0.12 0.030 0.0813 17.52 8.09 0.0026 0.102

AOD final stage 0.044 0.55 1.15 0.032 0.0024 18.01 8.01 0.0041 0.042
LF final stage 0.043 0.53 1.14 0.032 0.0019 18.20 7.98 0.0037 0.042

ultra-purity FeSi alloy
AOD oxidation stage 0.112 0.00 0.11 0.028 0.1125 17.50 7.89 0.0025 0.094

AOD final stage 0.044 0.49 1.11 0.030 0.0037 18.12 7.88 0.0032 0.039
LF final stage 0.045 0.48 1.11 0.030 0.0017 18.09 7.98 0.0032 0.041

The chemical composition of slag at different stages is given in Table 3. As can be
seen, the basicity of slag is controlled between 2.0–2.2 during AOD tapping, and the Al2O3
content in slag can reach more than 3.0% using ordinary FeSi alloy, while the Al2O3 content
is no more than 2.0% when low-Al FeSi alloy and ultra pure FeSi alloy are used. The basicity
of slag is controlled between 2.4 and 2.6 after LF slag adjustment, and it tends to increase
during LF treatment.

Table 3. Chemical composition of refining slag during the test (mass%).

Stage CaO SiO2 Al2O3 MgO MnO FeO Cr2O3 S CaF2
R

(CaO/SiO2)

Ordinary FeSi alloy AOD final stage 58.5 27 3.2 8.1 0.19 0.65 0.11 0.22 5.1 2.17
LF final stage 58.4 24.6 2.9 7 0.18 0.29 0.09 0.34 5.2 2.37

low-Al FeSi alloy AOD final stage 55.6 27.0 2.0 9.7 0.21 0.51 0.16 0.15 5.7 2.06
LF final stage 62.4 25.1 1.6 5.9 0.20 0.31 0.11 0.26 8.0 2.49

ultra-purity FeSi alloy AOD final stage 60.7 28.0 1.7 7.8 0.24 0.90 0.34 0.76 5.2 2.17
LF final stage 63.4 25.7 1.5 8.5 0.19 0.53 0.03 0.32 6.5 2.46

3.1.1. Content Changes of Al in Molten Steel and Al2O3 in Slag

Figure 2 shows the influence of different ferrosilicon alloy types on Al content in liquid
steel, yield of aluminum and Al2O3 in slag. The yield of aluminum is calculated as follows:

Yield of aluminum =

(
[Al] f − [Al]i

)
× 1000

[Al]alloy ×malloy

where [Al]i is the Al content in liquid steel before ferrosilicon addition.
[Al] f is the Al content in liquid steel after ferrosilicon addition.
[Al]alloy is the Al content in ferrosilicon.
malloy is the ferrosilicon addition amount per ton of liquid steel.
It can be observed that the Al content in molten steel after AOD tapping with or-

dinary FeSi alloy, low-Al FeSi alloy and ultra-pure FeSi alloy is 57 ppm, 37 ppm and
32 ppm respectively, and the corresponding yield of aluminum is 6.5%, 7.9% and 14%
respectively, indicating that most of the aluminum entering liquid steel in ferrosilicon alloy
participates in deoxidation and enters into slag as inclusions. The Al2O3 content of the slag
corresponding to three ferrosilicon alloys is 3.2 mass%, 2.0 mass% and 1.7 mass%, respectively.



Metals 2022, 12, 1338 5 of 21Metals 2022, 12, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 2. Comparison of Al content in molten steel and Al2O3 content in slag when using different 
ferrosilicon alloys. 

3.1.2. Effect of Ferrosilicon Alloy Types on Inclusion Types 
Figures 3–5 show the morphology and EDS spectra of typical inclusions correspond-

ing to three ferrosilicon alloys during AOD tapping. As can be seen, the peak value of Al 
is similar to that of Ca and Si in inclusion energy spectrum when ordinary FeSi alloy is 
used. The peak value of Al decreases significantly using low-Al FeSi alloy and ultra-pure 
FeSi alloy. 

 
Figure 3. SEM images and EDS results of inclusions in the samples taken at AOD tapping when 
using ordinary FeSi alloy. 

57

37
32

6.5 7.9

14

3.2 2 1.7
0

10

20

30

40

50

60

70

Ultra-purity FeSi alloyLow-Al FeSi alloy

So
lu

bl
e 

Al
 c

on
te

nt
 in

 li
qu

id
 s

te
el

, p
pm

Grade of FeSi alloy

 soluble Al content in liquid steel, ppm
 yield of Al, %
 Al2O3content in slag, mass%

Ordinary FeSi alloy
0

10

20

30

40

50

60

70

yi
el

d 
of

 A
l, 

%
Al

2O
3 c

on
te

nt
 in

 s
la

g,
 m

as
s%

Figure 2. Comparison of Al content in molten steel and Al2O3 content in slag when using different
ferrosilicon alloys.

3.1.2. Effect of Ferrosilicon Alloy Types on Inclusion Types

Figures 3–5 show the morphology and EDS spectra of typical inclusions corresponding
to three ferrosilicon alloys during AOD tapping. As can be seen, the peak value of Al is similar
to that of Ca and Si in inclusion energy spectrum when ordinary FeSi alloy is used. The peak
value of Al decreases significantly using low-Al FeSi alloy and ultra-pure FeSi alloy.
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Figure 3. SEM images and EDS results of inclusions in the samples taken at AOD tapping when
using ordinary FeSi alloy.
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Figure 5. SEM images and EDS results of inclusions in the samples taken at AOD tapping when
using ultra-purity FeSi alloy.

The composition distribution of inclusion in the samples taken at AOD tapping when
using three ferrosilicon alloys on CaO-SiO2-Al2O3-5 mass% MgO phase diagram is shown
in Figure 6. In the analysis process, the composition of Cr, Mn and Fe in inclusions is not
considered. In the phase diagram, the MgO content is 5 mass%. It can be observed from
Figure 6 that the Al2O3 content in the inclusion can reach 40 mass% when ordinary FeSi
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alloy is used, the Al2O3 content with low-Al FeSi alloy can reach more than 20 mass%, and
the Al2O3 content using ultra-pure FeSi alloy is about 15%, indicating that the Al2O3 content
in the inclusion increases with the increase of Al content in ferrosilicon alloy. Therefore, it
can be determined that the type of ferrosilicon alloys has a significant influence on the type
of inclusions.
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3.1.3. Inclusion Control of Hot Rolled Plate

In order to further determine the influence of ferrosilicon alloy types on the morphol-
ogy of inclusions, the Chinese standard GB/T 10561-2005 was used to grade the inclusions
in the hot plate samples of the test furnaces. The number of samples was 12, and the rating
results are shown in Table 4.

Table 4. Rating results of inclusion in hot rolled plate corresponding to different ferrosilicon alloys.

A-Type B-Type C-Type D-Type

ordinary FeSi alloy 0 0.5~1.0 0.5 1.0
low-Al FeSi alloy 0 0.5 0.5~1.0 0.5

ultra-purity FeSi alloy 0 0.5 0.5~1.0 0.5

As can be seen from the table, the inclusions in hot rolled coil are basically the same,
and the B-type, C-type and D-type inclusions are predominant. The rating of C-type
inclusions has a certain increase trend with low-Al FeSi alloy and ultra-pure FeSi alloy.

Figures 7–9 show the morphology and EDS spectra of typical inclusions in hot rolled
coil corresponding to the test furnaces. As illustrated in Figures 7 and 8, magnesia-alumina
spinel inclusions were found in the furnaces with ordinary FeSi alloy and low-Al FeSi
alloy. No magnesia-alumina spinel inclusions were found in the trial when using ultra-
pure FeSi alloy, as shown in Figure 9. However, the MgO and Al2O3 contents in silicate
inclusions increased, indicating that the type of inclusions changed greatly from AOD to
finished products. The slag alkalinity increased by about 0.2 during the process from AOD
tapping to LF refining. With the increase of slag alkalinity, the MgO and Al2O3 contents
in inclusions continued to increase, and magnesia-alumina spinel inclusions precipitated
during solidification.
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alloy during AOD reduction.

The results of AOD using different ferrosilicon alloys show that using ultra-purity FeSi
alloy can reduce the aluminum content in molten steel, magnesia-alumina spinel inclusions
and the MgO and Al2O3 contents in compound magnesia-alumina spinel. In order to
reduce Al2O3 content in inclusion, ultra-purity FeSi alloy was used in subsequent tests.

3.2. Effect of Calcium Treatment on Inclusions

When ultra-purity FeSi alloy is used in AOD and the slag with basicity of 1.5 is used
in LF, the content of MgO and Al2O3 in the inclusions is low, SiO2 content is increased, and
c-type inclusions in hot rolled plate are increased. Therefore, calcium treatment is added in
the test before the end of LF to reduce the content of SiO2 in the inclusions and inhibit the
temperature drop of molten steel in the continuous casting process. The increase of MgO
and Al2O3 content in the inclusions eventually makes the inclusions enter the silicate range
with low melting point.

At the beginning of LF refining, silica sand is added to control the basicity of refining
slag at 1.5–1.6. 10 min before LF weak stirring, the silicon calcium wires of 1 m/t, 2 m/t and
3 m/t were respectively fed according to the scheme design. Table 5 shows the chemical
composition of finished steel products of furnace steel.

Table 5. Composition of finished steel sample in the tests where different amounts of CaSi wires
addition (mass%).

Heats Scheme C Si Mn S Cr Ni Al Ca

A1600472 1 m/t 0.02 0.40 1.11 0.0038 18.3 8.10 0.0032 <0.0005
A2602732 2 m/t 0.035 0.47 1.20 0.0022 18.3 8.15 0.0038 0.0015
A2600937 3 m/t 0.027 0.4 1.16 0.0019 18.2 8.13 0.0035 0.0026
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Table 6 shows the chemical composition of the slag at end of LF refining in the case
of three different amounts of CaSi wires addition in LF refining. It can be seen from the
Table 6 that the basicity of LF final slag is basically consistent with the designed basicity.

Table 6. Chemical composition of slag at end of LF refining (mass%).

Heats Scheme CaO SiO2 Al2O3 MgO MnO Cr2O3 T.Fe R (CaO/SiO2)

A1600472 1 m/t 51.3 32.9 2.5 9.5 0.93 0.76 0.37 1.56
A2602732 2 m/t 53.7 33.5 2.3 7.6 0.7 0.57 0.27 1.60
A2600937 3 m/t 53.0 34.8 2.7 7.9 0.84 0.69 0.30 1.52

The inclusions in 304 stainless steel are mainly composed of SiO2, Al2O3, MgO and
CaO. Therefore, Cr, Mn and Ti are not considered in the statistics of inclusion composition.
Table 7 shows the average inclusions in each process in the test process.

Table 7. Average compositions of inclusions at each stage of tests with different Si-Ca wires
addition (mass%).

Testing Program Process MgO Al2O3 SiO2 CaO

1 m/t

beginning of LF 21.2 42.1 28.5 8.1
before calcium addition 3.1 14.2 79 3.7

End of LF 1.5 12.8 72.2 13.0
casting slab 2.8 16.1 66.6 14.5

2 m/t

beginning of LF 18.7 36.3 35.5 9.5
before calcium addition 2.9 13.2 79.6 4.3

End of LF 0.8 11.2 60.1 27.9
casting slab 0.4 12.7 56.8 30.1

3 m/t

beginning of LF 22.3 39.6 26.2 11.9
before calcium addition 3.7 13.5 79.7 3.1

end of LF 0.2 9.6 45.9 44.3
casting slab 0.4 10.3 40.6 48.7

The size of the inclusions ranged from 5–10 µm, 10–15 µm, 15–20 µm and
20–30 µm. ASPEX automatic analysis results showed that when the size of the inclusions
was ≥30 µm, there was a large amount of F element in the composition of the inclusions.
It could be determined that these inclusions were originated from slag entrapment in the
liquid steel. Therefore, the inclusion with diameter ≥30 µm was removed from inclusion
composition, number, and size statistics. The number and size of inclusions in each process
of the test furnace are shown in Table 8. It can be seen that the inclusions are mainly in the
range of 5–10 µm, and the inclusions larger than 15 µm take up only a small amount.

3.2.1. Effect of Calcium Content on Inclusion Composition

When the basicity of the refining slag system is 1.5–1.6, the content of dissolved
oxygen in the molten steel is high. Therefore, the calcium in the feed Si-Ca wires reacts
with dissolved oxygen preferentially, and the remaining calcium will react with the silicate
inclusions formed. The reactions are shown as follows:

[Ca] + [O] = (CaO) (1)

2[Ca] + (SiO2) = 2(CaO) + [Si] (2)

3[Ca] + (Al2O3) = 3(CaO) + 2[Al] (3)

[Ca] + (MgO) = (CaO) + [Mg] (4)
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Table 8. Number and size distribution of inclusions in each process (#/mm2).

Testing Program Process 5–10 µm 10–15 µm 15–20 µm 20–30 µm Total Number

1 m/t

beginning of LF 1.68 0.30 0.18 0.18 2.34
before calcium

addition 0.48 0.59 0.06 0.06 0.39

end of LF 0.94 0.15 0.07 0.07 1.23
casting slab 2.78 0.57 0.14 0.14 3.63

2 m/t

beginning of LF 1.47 0.47 0.13 0.20 2.27
before calcium

addition 0.57 0.63 0.13 0.13 0.9

end of LF 1.32 0.20 0.07 0.15 1.59
casting slab 2.73 0.37 0.07 0.12 3.17

3 m/t

beginning of LF 1.15 0.31 0.04 0.07 1.57
before calcium

addition 0.70 0.82 0.10 0.06 1.02

end of LF 1.61 0.41 0.16 0.13 2.31
casting slab 2.97 0.37 0.01 0.05 3.4

Figure 10 shows the influence of calcium treatment amount on the content of MgO
and Al2O3 in the inclusions.
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With the addition of Si-Ca wire at the later stage of LF refining, the content of calcium
in molten steel increases, while the content of MgO in the inclusions further decreases
from about 7% to about 2%. With the increase of Si-Ca wire addition, the content of MgO
decreases. After the addition of Si-Ca line, the content of Al2O3 in the inclusion also
decreased from 16% to 10%. With the increase of Si-Ca line addition, the amount of Al2O3
content decreased also tended to decrease.

It can be seen from Figure 10 that from end of LF to casting, MgO and Al2O3 contents
in inclusion increase. With the increase of feed calcium silicon line, the less its content
increased, mainly with the calcium content in the LF refining process of further reducing
and the reducing of the molten steel temperature, residual Mg and Al in molten steel
continue to react with inclusions, make its content increase.

Figure 11 shows the changes of CaO and SiO2 contents in the inclusions at different
stages of the refining process with different Si-Ca wires addition amount. It can be seen
from Figure 10 that the SiO2 content in the inclusions increases significantly from 30% to
about 80% before calcium addition. This is because the activity of SiO2 in slag increase
after silica sand addition, which is unfavorable to deoxidation by Si in Si-Mn-killed steel
according to reaction [O] + [Si] = (SiO2). In addition, the reaction between silica sand
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particles that flowed into liquid steel and the inclusions in liquid steel are a possible route
for the increase in the SiO2 content in the inclusion. The change of CaO content in the
inclusions was not obvious with the decrease of basicity of LF refining slag.
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As can be seen from Figure 11a, after feeding Si-Ca wire in the LF refining process,
the content of SiO2 in the inclusions decreases with the significant increase of calcium
content in the molten steel. With the increase of feeding wire amount, the content of SiO2
in the inclusions decreases when end of LF, indicating that the calcium fed into the molten
steel mainly reacts with SiO2 in the inclusions. On the contrary, the content of CaO in
the inclusion increases with the increase of wire feeding amount. When the wire feeding
amount is 3 m/t, the content of CaO in the inclusion can reach more than 50%.

It can be seen from Figure 11b, there is an increase slowly in CaO in the inclusions
from the end of LF to the casting slab with the decrease of the temperature of molten steel.
While the content of SiO2 in the inclusion decreases by about 5%.

Figures 12–14 show SEM images and EDS results of inclusions in casting slab in the
case of different Si-Ca wires addition amount in LF. As can be seen from Figures 12–14,
when the amount of Si-Ca wire feeding is 1 m/t, the EDS peak energy spectrum of SiO2 in
some inclusions is still high, and the content of CaO is very low. When the amount of Si-Ca
wire feeding is 3 m/t, the peak energy spectrum of CaO is higher than that of SiO2, and the
melting point of inclusion will increase. The peak values of SiO2 and CaO in the inclusions
reached the best when the calcium wire feeding amount was 2 m/t, and the difference was
not obvious when the calcium wire feeding amount was 1 m/t.

Figure 15 shows the compositions of oxide inclusions in liquid steel at the end of LF
and in the casting slab on CaO-SiO2-MgO-Al2O3 quaternary phase diagram. It can be seen
from the Figure 15 that the melting point of the inclusions is less than or equal to 1300 ◦C
for both the wire feed content of 1 m/t and 2 m/t. However, when the wire feed content is
2 m/t, the melting point of the inclusion is in the center of the low melting point region.
When the wire feed content is 3 m/t, the melting point of the inclusion is about 1400 ◦C,
and the melting point of the inclusion increases.
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3.2.2. Effect of Calcium Content on the Amount and Size of Inclusions

Figure 16 shows the number density of inclusions during LF refining with different
calcium addition amount and in casting slab.



Metals 2022, 12, 1338 15 of 21Metals 2022, 12, x FOR PEER REVIEW 15 of 21 
 

 

  

Figure 16. Number density of inclusions in liquid steel during LF refining and in casting slab when 
different Si-Ca addition amount is used in LF. Note: LF-1, LF-2, and LF-3 represent beginning of LF, 
before calcium addition at LF, and end of LF refining, respectively. (a) 5-10 μm, (b) 10-15 μm, (c) 15-
20 μm, (d) 20-30 μm. 

It can be seen from Figure 16a that after feeding Si-Ca wires into LF, part of calcium 
participates in deoxidation, which reduces the content of dissolved oxygen in molten steel 
and leads to an increase in the number of inclusions with a size of 5–10 μm. In the pouring 
process, as the temperature of the liquid steel decreased, the dissolved oxygen continued 
to react with elements Mg, Al, Si and Ca, forming small-size inclusions. 

It can be seen from Figure 16b that the number of the inclusions with the size of 10–
15 μm increases significantly from the beginning of LF to the stage before Si-Ca addition. 
There is no obvious change in the number of inclusions with the size of 10–15 μm from 
the stage of Si-Ca wires addition to casting slab. 

The results in Figure 16c,d show that there are still the inclusions with the size larger 
than 15 μm in the casting slab, and the number density of inclusions has no obvious 
change from LF refining to casting slab. 

3.2.3. Effect of Calcium Treatment on the Inclusions in Hot Rolled Plate 
Table 9 shows the inclusion ratings in hot rolled coil after feeding different silicon 

calcium line in LF. As can be seen from that, the inclusions are mainly rated as B-type fine 
0.5 and C-type fine 0.5~2.5 and some plastic inclusions have hard particles when the feed-
ing amount of calcium wire is 1 m/t. When the feeding amount of calcium wire is 2 m/t, 
the inclusions show good plasticity, and the rating of inclusions is mainly C-type 1.5~2.5. 
Further increase the feeding amount of calcium wire up to 3 m/t, the rating of inclusion is 
mainly B-type 0.5 and C-type 1.0~2.0. 

  

LF-1 LF-2 LF-3 Casting Slab
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
 

N
um

be
r d

en
si

ty
 o

f i
nc

lu
si

on
s 

w
ith

 th
e 

si
ze

 fr
om

 5
-1

0 
μm

 (#
/m

m
2 )  1m/t

 2m/t
 3m/t

(a)

LF-1 LF-2 LF-3 Casting Slab
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
um

be
r d

en
si

ty
 o

f i
nc

lu
si

on
s 

w
ith

 th
e 

si
ze

 fr
om

 1
0-

15
 μ

m
 (#

/m
m

2 )

 

 1m/t
 2m/t
 3m/t

(b)

LF-1 LF-2 LF-3 Casting Slab
0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
um

be
r d

en
si

ty
 o

f i
nc

lu
si

on
s 

w
ith

 th
e 

si
ze

 fr
om

 1
5-

20
 μ

m
 (#

/m
m

2 )

 

 1m/t
 2m/t
 3m/t

(c)

LF-1 LF-2 LF-3 Casting Slab
0.0

0.1

0.2

0.3

N
um

be
r d

en
si

ty
 o

f i
nc

lu
si

on
s 

w
ith

 th
e 

si
ze

 fr
om

 2
0-

30
 μ

m
 (#

/m
m

2 )

 1m/t
 2m/t
 3m/t

(d)

Figure 16. Number density of inclusions in liquid steel during LF refining and in casting slab when
different Si-Ca addition amount is used in LF. Note: LF-1, LF-2, and LF-3 represent beginning of
LF, before calcium addition at LF, and end of LF refining, respectively. (a) 5–10 µm, (b) 10-15 µm,
(c) 15–20 µm, (d) 20–30 µm.

It can be seen from Figure 16a that after feeding Si-Ca wires into LF, part of calcium
participates in deoxidation, which reduces the content of dissolved oxygen in molten steel
and leads to an increase in the number of inclusions with a size of 5–10 µm. In the pouring
process, as the temperature of the liquid steel decreased, the dissolved oxygen continued to
react with elements Mg, Al, Si and Ca, forming small-size inclusions.

It can be seen from Figure 16b that the number of the inclusions with the size of
10–15 µm increases significantly from the beginning of LF to the stage before Si-Ca addition.
There is no obvious change in the number of inclusions with the size of 10–15 µm from the
stage of Si-Ca wires addition to casting slab.

The results in Figure 16c,d show that there are still the inclusions with the size larger
than 15 µm in the casting slab, and the number density of inclusions has no obvious change
from LF refining to casting slab.

3.2.3. Effect of Calcium Treatment on the Inclusions in Hot Rolled Plate

Table 9 shows the inclusion ratings in hot rolled coil after feeding different silicon
calcium line in LF. As can be seen from that, the inclusions are mainly rated as B-type
fine 0.5 and C-type fine 0.5~2.5 and some plastic inclusions have hard particles when the
feeding amount of calcium wire is 1 m/t. When the feeding amount of calcium wire is
2 m/t, the inclusions show good plasticity, and the rating of inclusions is mainly C-type
1.5~2.5. Further increase the feeding amount of calcium wire up to 3 m/t, the rating of
inclusion is mainly B-type 0.5 and C-type 1.0~2.0.
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Table 9. Rating of the inclusion in hot rolled plate. (GB/T 10561-2005).

Calcium Treatment A-Type B-Type C-Type D-Type

1 m/t 0.5 0 1.0~2.5 0.5
2 m/t 0 0 1.0~2.5 0.5
3 m/t 0 0.5 1.0~2.5 0.5

The experimental results of feeding Si-Ca wires in LF refining process show that,

(1) After feeding Si-Ca wires in LF refining process, where utilize the low basicity of slag,
the contents of SiO2, Al2O3 and CaO in the inclusions are reduced in varying degrees.
When the feeding amount of calcium wire is 2 m/t, the content of CaO of inclusions
in the casting billet is around 25%, and the melting point of inclusions enter the region
of low melting point.

(2) The number of small-sized and medium-sized inclusions is increased after feeding Si-Ca
wires, indicating that calcium participated in deoxidization after entering molten steel,
but have no impact on the number and size of large inclusions in the casting slab.

(3) The rating of inclusions is mainly C-type in the hot rolled coil, after calcium treatment.
However, a small amount of B-type inclusions will still remain, when the feeding
amount of calcium is too large or insufficient. The optimal feeding amount is 2 m/t.

3.3. Industrial Application of Inclusion Control Technology in 304 Stainless Steel Production
3.3.1. Scheme of Plant Trials

The main reason for the defects after polishing of 304 stainless steel hot-rolled coil
used in the clock industry is the presence of hard inclusions in the matrix. In order to meet
the polishing performance, the melting points of inclusions should be low enough. The
optimization scheme under industrial production is put forward, as seen in Table 10.

Table 10. Process optimization scheme for low-melting-point silicate inclusions control.

Original Process Optimized Process Aim of Optimization

AOD using ordinary FeSi alloy using ultra-purity FeSi
alloy

reducing soluble Al in
liquid steel

LF without calcium addition calcium addition 2 m/t
before weak stirring

modify high-melting-
temperature
inclusions

3.3.2. Industrial Production Process

The production process control is as follows.

(1) AOD process

In order to further reduce the Al content in liquid steel after AOD reduction, the
ordinary FeSi alloy is replaced by ultra-purity Fe-Si alloy during AOD reduction. And, to
further reduce the MgO content in slag after AOD reduction, the amount of light-burned
dolomite was reduced from 4500 kg to 2500 kg during AOD melting.

Due to the addition of silica in the slag adjustment process of LF, the basicity of slag
will be reduced properly. The sulfur in slag will return to liquid steel, resulting in the
content of sulfur in liquid steel exceeding 50 ppm, as the basicity of slag decreases. In order
to prevent the high sulfur in steel product, changing slag technology (‘two-stage basicity
control’) was used at the reduction stage during AOD steelmaking, and the basicity of
AOD after steel is controlled at the range of 2.0–2.2. The content of sulfur in liquid steel is
ensured to be no more than 0.002% after double slag process in AOD.

The plant data at the end of AOD is summarized for 19 heats. After the tapping, the
content of soluble Al in liquid steel is reduced from 0.0045% before process optimization of
AOD to 0.0035%. Figure 17 shows the distribution of soluble Al content in steel after the
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process optimization of AOD process. The content of sulfur is reduced from 0.005 mass%
to 0.0020 mass%, as shown in Table 11.
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Table 11. The liquid steel composition before and after the process optimization (mass%).

C Si Mn P S Cr Ni Al N

before process
optimization 0.035 0.45 1.1 0.035 0.0050 18.1 8.1 0.0061 0.055

after process
optimization 0.035 0.45 1.1 0.035 0.0020 18.1 8.1 0.0035 0.055

Table 12 shows the change in slag composition at the end of AOD before and af-
ter process optimization. According to the table, the contents of Al2O3 and MgO in
slag decrease from 2.53 mass% and 9.6 mass% before process optimization to 1.43% and
6.8%, respectively.

Table 12. Chemical composition of the slag before and after the process optimization (mass%).

CaO SiO2 Al2O3 MgO MnO FeO Cr2O3 CaF2 R

before process
optimization 60.9 25.5 2.53 9.6 0.11 0.26 0.21 4.5 2.39

after process
optimization 59.7 24.8 1.43 6.8 0.15 0.33 0.19 5.1 2.41

(2) LF process

LF mainly deal with the accuracy in controlling slag basicity after slag adjustment.
In this case, a facility for measuring thickness of slag is set in the process of slag picking
station at the end of AOD, and the amount of silica sand added into LF can be determined
by accurately measuring slag thickness. According to the large-scale production, the slag
thickness of slag is generally controlled at 100–150 mm and the target is 120 mm at the
begging of LF. 400 kg silica sand is added at the begging of LF, and after 10 min of power
and slag melting, appropriate amount of silica sand is added to adjust lightly according to
slag condition.

In order to ensure the effect of calcium treatment in LF process, the content of alu-
minum in the calcium alloy used in calcium treatment was analyzed. The results show that
the content of aluminum in the Si-Ca wire alloy is 1.8%, and the content of aluminum in
the pure calcium line is less than or equal to 0.1%. Consequently, the pure calcium line is
used in LF process.
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According to Stokes’ theory, in order to make the inclusions fully float during the LF
treatment process, time for the weak stirring and holding period in LF treatment were
optimized and both of them are extended by more than 10 min, the number of large
inclusions in the casting slab is significantly reduced by extending the time. Figure 18
shows the comparison of the size of the inclusions in the casting slab before and after
extending the weak stirring and holding period for 10 min, it can be seen from Figure 18
that there are no inclusions larger than 20 µm in casting slab after prolonging the time.
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3.3.3. Effectiveness Analysis of Industrial Application

Hard inclusions in 304 stainless steel have been eliminated, and excellent deformability
of inclusions by the application of the optimized AOD and LF process was achieved.
Melting point of inclusions are lower than 1300 ◦C, and the inclusion rating of hot rolled
plates is mainly C-fine-type 1.5~2.5 class, in which the typical chemical composition is
61.8% SiO2-13.4% CaO-15.2% Al2O3-MgO 9.6%. The results of optimized AOD and LF
process are as follows:

(1) Cleanliness control of the casting slab

The composition distribution of inclusions in the casting slab before and after optimiz-
ing the process is placed in the phase diagram, as shown in Figure 19. It can be seen that all
the inclusions in the billet are located in low-melting-temperature region after optimizing
the AOD-LF process.

(2) Quality analysis of hot rolled plates after polishing

The rating results of inclusions in hot rolled plates before and after the implementation
of the process is shown in Table 13. It can be seen from the table that the inclusion rating of
hot rolled plates after implementing the process is mainly fine C-type 1.5~2.5, with fewer
A-type inclusions, the deformability of inclusions is fine, and the thickness of inclusions
is 1 µm.

Table 13. Rating results of inclusions in hot rolled plates before and after the implementation of the
process on phase diagram.

Process A-Type B-Type C-Type D-Type

hot-rolled
plates (5 mm)

Original process / 1.0 0.5~1.0 0.5
Experiment process 1.0 / C1.0~2.5 0.5
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LF slag basicity is low in this process, leading to high sulfur content in the product, the
content of sulfur in partial heat is above 0.004%. Therefore, in addition to silicate inclusions,
a small number of MnS inclusions are found in hot rolled plates. Figure 20 shows the
typical morphology and energy spectrum of MnS inclusions.
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Figure 20. Typical MnS inclusions in hot rolled plates.

4. Conclusions

(1) With the increase of aluminum content in FeSi alloy, the contents of soluble aluminum
in molten steel and Al2O3 in slag increase. When using ordinary FeSi alloy, the content
of soluble aluminum in molten steel becomes higher than 0.005 mass%. The content
of soluble aluminum in liquid steel could be limited to lower than 0.004 mass% when
using ultra-purity FeSi alloy at the reduction stage of AOD.

(2) The contents of SiO2, Al2O3 and CaO in inclusions decrease after Si-Ca wire addition.
When the addition of Si-Ca wire is 2 m/t, inclusions are located in low-melting-
temperature region, the inclusion rating of hot rolled plates is mainly C-type inclusion.

(3) Industrial application results show that after decreasing the content of soluble alu-
minum in molten steel and calcium treatment in LF refining, inclusions in 304 stainless
steel could be controlled as low melting point silicate, the inclusion rating of hot rolled
plates is mainly C-type with a small amount of A-type inclusions, surface polishing
qualification rate increases from 17.8% to more than 88.7%.
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