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Abstract: Fe–Si intermetallics–Al2O3 composites were fabricated by thermite-assisted combustion
synthesis. Combustion reactions were conducted with powder compacts composed of Fe2O3, Al,
Fe, and Si. The starting stoichiometry of powder mixtures had an atomic Fe/Si proportion ranging
from Fe-20% to Fe-70.5% Si to explore the variation of silicide phases formed with Si percentage.
Combustion in the mode of self-propagating high-temperature synthesis (SHS) was achieved and
the activation energy of the SHS reaction was deduced. It was found that the increase of Si content
decreased the combustion temperature and combustion wave velocity. Three silicide compounds,
Fe3Si, FeSi, and α-FeSi2, along with Al2O3 were identified by XRD in the final products. Fe3Si was
formed as the single-phase silicide from the reactions with Si percentage from Fe-20% to Fe-30%
Si. FeSi dominated the silicide compounds in the reactions with atomic Si content between Fe-45%
and Fe-55% Si. As the Si percentage increased to Fe-66.7% Si and Fe-70.5% Si, α-FeSi2 became the
major phase. The microstructure of the composite product showed that dispersed granular or nearly
spherical iron silicides were embedded in Al2O3, which was dense and continuous. Most of the
silicide grains were around 3–5 µm and the atomic ratio of silicide particles from the EDS analysis
confirmed the presence of Fe3Si, FeSi, and FeSi2.

Keywords: iron silicides–Al2O3 composites; SHS; Fe/Si proportion; Fe3Si; FeSi; FeSi2

1. Introduction

Transition metal silicides have been considered as the potential structural materials
for high-temperature applications due to their excellent high-temperature mechanical prop-
erties, good oxidation resistance, creep resistance, and thermal stability [1–3]. Particular
attention has been paid to Fe–Si intermetallic compounds, as they possess magnetic, elec-
tronic, optical, mechanical, and catalytic properties on account of different crystal structures
and phase compositions [4–7]. Fe–Si silicides with various compositions have been synthe-
sized and characterized, such as thermodynamically stable Fe3Si, FeSi, and β-FeSi2 and
metastable Fe2Si, Fe5Si3, and α-FeSi2 [8–12]. According to the Fe–Si phase diagram [13],
Fe3Si exists in a wide stoichiometric range from 10 to 29.8 at.% Si but the homogeneity
range of FeSi is very narrow. Both phases coexist between 25 and 50 at.% Si. The disilicide
FeSi2 of β phase is a line compound at 66.7 at.% Si and is stable at room temperature, while
α-phase FeSi2 forms within 70–73.5 at.% Si at temperatures above 937 ◦C [13].

Among the various fabrication methods for preparing transition metal silicides in a
monolithic or composite form, self-propagating high-temperature synthesis (SHS) has the
characteristics of simplicity, low energy requirement, short processing time, and high-purity
products [14–16]. Furthermore, the high temperature gradient combined with rapid cooling
makes the SHS reaction possible to produce metastable phases and unique structures.
Unlike silicide compounds associated with molybdenum [17] and the transition metals of
groups IVb and Vb [18,19], iron silicides cannot be produced by direct combustion of Fe and
Si powders in the SHS mode due to weak reaction exothermicity. Consequently, mechanical
and chemical activation on combustion synthesis has been considered as an alternative to
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resolve this issue. For example, Gras et al. [20] employed mechanically activated Fe and
Si powders, which were treated by high-energy ball milling, to produce FeSi and β-FeSi2
through self-sustaining combustion synthesis. KNO3 was adopted as a reaction promoter
to chemically stimulate the combustion between Fe and Si powders on the synthesis of FeSi
and α-FeSi2 [21]. On the other hand, mechanical alloying was utilized to fabricate FeSi–
and Fe3Si–Al2O3 composites from the SiO2/Al/Fe and Fe3O4/Al/Si powder mixtures,
respectively [22,23]. The addition of a hard secondary phase, such as Al2O3, was shown to
improve mechanical properties of iron silicides [22]. Moreover, Fe3Si–Al2O3 composites
exhibited good ferromagnetic behavior with hysteresis loops [23]. With the use of the SHS
metallurgy method, FeSi–Al2O3 composites with a molar ratio of FeSi/Al2O3 ranging from
1.2 to 4.5 were recently produced from combining the reduction of Fe2O3 and SiO2 by Al
with elemental Fe–Si reactions [24].

In addition to the SHS metallurgy, the sol-gel method and hot roll-bonding technique
have been considered as the promising process for the fabrication of particles and com-
posites. For example, Najafi et al. [25] synthesized zirconium carbide nanopowders by
the sol-gel method in the alcoholic system, within which zirconium propoxide and phe-
nolic resin were used as precursors of Zr and carbon, respectively. Functionally graded
aluminum matrix Al6061/SiCp composite laminates were fabricated by successive hot
roll-bonding, which utilized two composite layers as outer strips and a layer of Al1050 as
interlayer [26].

This study aims to investigate the different phases of Fe–Si intermetallics formed
within a wide stoichiometric range from Fe-20 to Fe-70.5 at.% Si by thermite-assisted
combustion synthesis in the SHS mode. By taking advantage of the highly exothermic
thermite reaction of Fe2O3 with Al, the formation of in situ Fe–Si intermetallics/Al2O3
composites was conducted with reactant powder compacts consisting of Fe2O3, Al, Fe,
and Si. Effects of the Si percentage on the reaction exothermicity, combustion temperature,
flame-front propagation velocity, and phase composition and microstructure of the iron
silicides/Al2O3 composites were explored. Moreover, the activation energy of the SHS
reaction was determined from combustion wave kinetics.

2. Materials and Methods

The starting materials adopted by this study comprised Fe (Alfa Aesar Co., Ward Hill,
MA, USA, <45 µm, 99.5%), Si (Strem Chemicals, Newburyport, MA, USA, <45 µm, 99.5%),
Al (Showa Chemical, Tokyo, Japan, <45 µm, 99.9%), and Fe2O3 (Alfa Aesar Co., <45 µm,
99.5%). Based on the atomic proportions between Fe and Si in the reactant mixtures, two
combustion systems expressed as Reactions (1) and (2) were considered.

Fe2O3 + 2Al + 2.5Fe + aSi→ mFe3Si + nFeSi + Al2O3 (1)

Fe2O3 + 2Al + 2.5Fe + bSi→ pFeSi + qFeSi2 + Al2O3 (2)

Reactant mixtures were composed of thermite reagents of Fe2O3 + 2Al and metallic Fe
and Si powders. Reaction (1) was formulated with the Si percentage from Fe-20% to Fe-45%
Si, within which Fe3Si and FeSi was considered as silicide compounds to be produced.
Reaction (2) was designed for Fe/Si stoichiometry from Fe-50% to Fe-70.5% Si and the
resulting silicides of Reaction (2) could be FeSi and FeSi2.

With respect to different Si percentages denoted by x of Fe-x% Si, Tables 1 and 2 list
the values of stoichiometric coefficients, including a, m, and n, of Reaction (1) and b, p, and
q of Reaction (2). These values were calculated based on the conservation of atomic species,
except for two off-stoichiometric conditions. One is Reaction (1) of Fe-20% Si in Table 1,
which represents an under-stoichiometric condition (i.e., a Si-lean composition) to produce
Fe3Si because Fe3Si exists in a wide homogeneity range from 10 to 29.8 at.% Si. The other is
Reaction (2) of Fe-70.5% Si in Table 2 for the production of FeSi2. This case was intended
for FeSi2 of the α phase since α-FeSi2 is an over-stoichiometric (i.e., Si-rich) disilicide and is
present within a region of 70–73.5 at.% Si.
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Table 1. Stoichiometric coefficients (a, m, and n) and adiabatic temperatures (Tad) of Reactions (1)
under different Si percentages (x) in terms of Fe-x%Si.

x, Fe-x% Si a m n Tad (K)

20 1.13 1.13 0 2870
25 1.5 1.5 0 3206
30 1.93 1.29 0.64 3158
35 2.42 1.04 1.38 3110
40 3.0 0.75 2.25 3059
45 3.68 0.41 3.27 3008

Table 2. Stoichiometric coefficients (b, p, and q) and adiabatic temperatures (Tad) of Reactions (2)
under different Si percentages (x) in terms of Fe-x%Si.

x, Fe-x% Si b p q Tad (K)

50 4.5 4.5 0 2960
55 5.5 3.5 1.0 2820
60 6.75 2.25 2.25 2670
65 8.36 0.64 3.86 2504

66.7 9.0 0 4.5 2444
70.5 10.75 0 4.5 2292

The reaction exothermicity of Reactions (1) and (2) was studied by calculating their adi-
abatic combustion temperature (Tad) as a function of x in Fe-x% Si, based on the following
energy balance equation [27] with thermochemical data taken from [28,29].

∆Hr +
∫ Tad

298
∑ njcp

(
Pj
)
dT + ∑

298−Tad

njL
(

Pj
)
= 0 (3)

where ∆Hr is the reaction enthalpy at 298 K, nj is the stoichiometric coefficient, cp and L are
the heat capacity and latent heat, and Pj refers to the product. ∆Hr was calculated from
the heats of formation of the reactants and products. Heats of formation for Fe2O3, Al2O3,
Fe3Si, FeSi, and FeSi2 are −823.4, −1675.7, −73.1, −79.4, and −81.2 kJ/mol, respectively.
Specific heats, cp (in J/mol·K), of the product species as a function of temperature are given
below [28,29].

cp(Al2O3) = 117.49 + 10.38·10−3·T − 3.71·106·T−2 (4)

cp(Fe3Si) = 80.2 + 25.7·10−3·T − 0.2·106·T−2 (5)

cp(FeSi) = 44.6 + 14.72·10−3·T − 0.11·106·T−2 (6)

cp(FeSi2) = 64.2 + 20.6·10−3·T − 0.15·106·T−2 (7)

In this study, the reactant powders were dry mixed in a tumbler ball mill (Quancin Tech.
Co., Tainan, Taiwan), which consisted of a cylinder partially filled with raw materials and
alumina grinding balls rotating about its longitudinal axis. The diameter of the grinding
ball was 2.5 mm. The tumbler mill machine operated at 60 rpm and the milling time was
4 h. The purpose of this ball milling process was to disperse the agglomerated particles and
to achieve the good mixing of the reactant powders. The action of ball milling in this study
did not affect the size and shape of the particles. Well-mixed powders were uniaxially
compressed to form cylindrical test specimens with 7 mm in diameter, 8.5 mm in height,
and a relative density of 55%.

The SHS experiment was conducted in a windowed combustion chamber filled with
high-purity (99.99%) argon at 0.2 MPa. The ignition was accomplished by a heated tungsten
coil with a voltage of 60 V and a current of 1.5 A. The propagation rate of combustion
wave (Vf) was measured by recording the whole combustion event with a color CCD
camera at 30 frames per second. The exposure time of each recorded image was set at
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0.1 ms. To facilitate the accurate measurement of instantaneous locations of the combustion
front, a beam splitter (Rolyn Optics; Covina, CA, USA), with a mirror characteristic of 75%
transmission and 25% reflection, was used to optically superimpose a scale onto the image
of the test sample. The combustion temperature was measured by an R-type (Pt/Pt-13%Rh)
fine-wire thermocouple (Omega Engineering Inc.; Norwalk, CT, USA) with a bead size of
125 µm. The details of the experimental setup were reported elsewhere [30].

The phase constituents of the synthesized products were analyzed by an X-ray diffrac-
tometer (Bruker D2 Phaser; Billerica, MA, USA) with CuKα radiation. Scanning electron
microscopy (SEM) analysis was performed (Hitachi S3000H; Tokyo, Japan) with energy
dispersive spectroscopy (EDS) to examine the microstructure and elemental composition on
the fracture surface of the final product. The open porosity of the product was determined
by the Archimedes method. Vickers hardness (Hv) measurements were conducted with
1.0 kg load for selected samples.

The activation energy (Ea) of the SHS reaction was deduced from the temperature
dependence of combustion wave velocity. The combustion wave velocity derived from an
energy equation with a heat source can be expressed as [31,32]

Vf
2 =

2λ

ρQ
RTc

2

Ea
ko exp(−Ea/RTc) (8)

where λ is the thermal conductivity, ρ the density, R the gas constant, Q the heat of reaction,
Tc the combustion front temperature, and ko the Arrhenius rate constant. According to
Equation (8), Ea can be obtained from the slope of a best-fitted linear line correlating
ln(Vf/Tc)2 with 1/Tc.

3. Results and Discussion
3.1. Combustion Exothermicity and Combustion Wave Kinetics

The calculated values of Tad are presented in Table 1 and indicate that Tad of Reaction
(1) decreases with increasing Si percentage except for the off-stoichiometric case of Fe-20%
Si. For Reaction (1), the decrease of Tad was mainly attributed to the increase of the numbers
of mole of iron silicides (m + n) formed in the products. Since the formation of iron silicides
is less exothermic than aluminothermic reduction of Fe2O3, the overall exothermicity of
combustion synthesis tends to decrease as the amount of silicide compounds increases.
The exception was due to a smaller amount of Fe3Si (m = 1.13) produced from the Si-lean
sample of Fe-20% Si when compared to that (m = 1.5) associated with the stoichiometric
condition of Fe-25% Si.

On the other hand, the numbers of mole of iron silicides (p + q = 4.5) synthesized from
Reaction (2) are constant. As shown in Table 2, the increase of Si content leads to an increase
in FeSi2 but a decrease in FeSi. Although both FeSi and FeSi2 have comparable enthalpies
of formation, the heat capacity of FeSi2 is much larger than that of FeSi. This suggested
lower formation exothermicity for FeSi2 and explained the decrease of Tad with increasing
Si percentage for Reaction (2).

Figure 1a,b illustrates two combustion sequences recorded from Reaction (1) of Fe-25%
Si and Fe-40% Si, and Figure 1c,d is associated with Reaction (2) of Fe-50% Si and Fe-66.7%
Si. It is evident that for all reactions a distinct combustion front formed upon ignition and
propagated along the powder compact in a self-sustaining manner. A comparison unfolded
that the sample of Figure 1a exhibits stronger combustion luminosity, the flame spreading
time is shorter, and the final product is partially melted. The burned sample of Figure 1b
essentially retained its original shape.
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Figure 1. SHS combustion wave propagation sequences recorded from test samples of (a) Fe-25% Si,
(b) Fe-40% Si, (c) Fe-50% Si, and (d) Fe-66.7% Si.

In Figure 1c,d, however, the combustion glow gradually fades away as the flame
front progresses, the propagation time becomes longer, and the products are stretched out.
These observations reflect vigorous combustion for Reaction (1) of Fe-25% Si. The partial
melting of the burned sample of Reaction (1) with Fe-25% Si could be mainly attributable
to the combustion temperature exceeding the melting point of Fe3Si of about 1210 ◦C [13].
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The elongated products obtained from Reaction (2) of Fe-50% Si and Fe-66.7% Si were
due partly to the combustion temperature below the melting points of FeSi and FeSi2 at
1410 and 1220 ◦C, respectively [13] and in part were interpreted as the combined result of
the green compact porosity, small pores evolved from Kirkendall effect, and density change
between the reactants and products [15].

The variations of flame-front propagation velocity (Vf) and combustion front tempera-
ture (Tc) with Si content of Fe-x% Si for Reactions (1) and (2) are shown in Figure 2. As the
Si proportion increased from Fe-25% to Fe-70.5% Si, it was noticed that Vf decreased from
3.1 to 0.8 mm/s and Tc declined from 1950 to 1367 K. The combustion wave propagation
rate of the SHS process is mostly governed by the layer-by-layer heat transfer from the
reaction zone to unburned region and therefore is subject to the combustion front tempera-
ture. This clarifies the consistency between combustion wave velocity and reaction front
temperature. Moreover, the trend variation of Tc agrees reasonably with that of Tad. In
particular, Figure 2 indicates that Tc of Reaction (1) with Fe-20% Si of about 1890 K is lower
than that of 1950 K reached by Reaction (1) with Fe-25% Si, confirming the lower reaction
exothermicity of this under-stoichiometric sample.
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Figure 2. Variations of flame-front velocity (Vf) and combustion temperature (Tc) with Si percentage
of Fe-x% Si of sample compacts.

According to combustion wave kinetics, the activation energies (Ea) of Reactions (1) and (2)
were determined on the basis of the correlation between ln(Vf/Tc)2 and 1/Tc. Two sets
of experimental data with their best-fitted linear lines are plotted in Figure 3. From the
slopes of straight lines, the values of Ea equal to 171.3 and 106.4 kJ/mol were deduced
for Reactions (1) and (2), respectively. The activation energy represents a kinetic barrier
that depends on the reaction mechanism and transport phenomena. The possible reaction
pathways of Reactions (1) and (2) were initiated by the aluminothermic reduction of Fe2O3.
In addition to the kinetic aspect, the reduction of Fe2O3 by Al was thermodynamically
favorable and acted as the major heat-releasing step to sustain the SHS process. Differ-
ent silicide phases formed from SHS reactions could be responsible for a larger Ea for
Reaction (1) than Reaction (2).
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3.2. Phase Composition and Microstructure of Synthesized Products

Figure 4 presents XRD patterns of the products of Reaction (1) with Fe-20%, Fe-30%,
and Fe-40% Si. As revealed in Figure 4, Fe3Si is the only silicide formed from Reaction (1)
with Fe-20% and Fe-30% Si. This agrees with the homogeneity range of Fe3Si in the phase
diagram. In the product of Reaction (1) with Fe-40% Si, silicide compounds comprising
the three different phases of Fe3Si, FeSi, and FeSi2 were identified with Fe3Si and FeSi
being two primary phases. This reflects the fact that Fe3Si and FeSi are co-existent under
stoichiometry from Fe-30% to Fe-50% Si. In addition to silicide compounds, Figure 4 points
out the formation of Al2O3 from the aluminothermic reduction of Fe2O3 and the presence
of a small quantity of aluminum silicate that was formed through the dissolution of Si into
Al2O3 during the SHS process [33].
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Figure 4. XRD patterns of SHS products of Reaction (1) with Si percentages of Fe-20% Si, Fe-30% Si,
and Fe-40% Si.
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Three XRD spectra depicted in Figure 5 show the phase compositions of the products
of Reaction (2) with Fe-50%, Fe-60%, and Fe-66.7% Si. In addition to Al2O3, two silicide
compounds, FeSi and FeSi2, were detected in Figure 5. FeSi was the major silicide and
FeSi2 the minor under stoichiometry of Fe-50% Si. It was evident that FeSi2 substantially
increased in the case of Fe-60% Si and became predominant over FeSi for a further increase
in Si to Fe-66.7% Si. It should be noted that the FeSi2 produced in this study is α-phase dis-
ilicide. The formation of metastable α-FeSi2 was ascribed to the SHS process characterized
by a unique temperature gradient starting with a sudden temperature rise over 1360 K and
followed immediately by a rapid cooling process. Because of the presence of FeSi, a trivial
amount of remnant Si was found in the final product of the reaction with Fe-66.7% Si.
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Figure 5. XRD patterns of SHS products of Reaction (2) with Si percentages of Fe-50% Si, Fe-60% Si,
and Fe-66.7% Si.

The yield percentage of different silicide phases (Fe3Si, FeSi, and FeSi2) in the product
was estimated by a semi-quantitative analysis based on the integrated intensity values of
their highest XRD peaks, including Fe3Si (220) at 2θ = 45.337◦, FeSi (210) at 2θ = 45.062◦,
and FeSi2 (102) at 2θ = 49.098◦. The yield percentage of silicide phases as a function of Si
percentage is plotted in Figure 6. For Reaction (1), Fe3Si was the only silicide produced
from the samples with Si content from Fe-20% to Fe-30% Si. Iron silicides generated from
the sample of Fe-35% Si contained 83% Fe3Si and 17% FeSi. Three silicide compounds
were present in the products of samples with Fe-40% and Fe-45% Si and the proportions of
Fe3Si/FeSi/FeSi2 were near to 60.0/45.3/4.7 and 26.7/67.3/6.0, respectively. It is evident
for Reaction (1) that the dominant silicide shifted from Fe3Si to FeSi as the Si percentage
increased from Fe-20% to Fe-45% Si.
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As also indicated in Figure 6, the resulting silicides of Reaction (2) with Fe-50% and Fe-
55% Si were dominated by FeSi with a yield percentage up to 92.9% and 84.5%, respectively,
and FeSi2 was the minor phase. With the increase of Si, comparable amounts of FeSi and
FeSi2 were produced from the reactions of Fe-60% and Fe-65% Si. Finally, FeSi2 became
the governing phase with high yield percentages of 79.1% and 87.4% in the products of
samples with Fe-66.7% and Fe-70.5% Si, respectively. For Reaction (2) with Si from Fe-50%
and Fe-70.5% Si, the change in dominant silicide from FeSi to FeSi2 was observed.

Figure 7a–c illustrates the SEM images and EDS spectra of the fracture surfaces of
products synthesized from the samples with Si percentages of Fe-25% Si, Fe-50% Si, and
Fe-70.5% Si, respectively. As can be seen in the SEM image of Figure 7a, the morphology
exhibits granular particles distributing over a dense and continuous substrate and the
particle size ranges approximately from 2 to 10 µm. According to the EDS analysis, those
particles were identified as iron silicide and the dense substrate was made up of aluminum
oxide. The atomic ratio of Fe:Si based on the EDS spectrum of Figure 7a is 74.3:25.7, which
is very close to 3:1 and proves the formation of Fe3Si from the sample of Fe-25% Si. The
dense matrix of Figure 7a is composed of Al and O elements with an atomic ratio of
Al:O = 42.5:57.5, which matches reasonably with the stoichiometry of Al2O3.

Nearly spherical particles with a broad size range from submicron to about 10 µm
were observed in the SEM image of Figure 7b. The ratio of Fe:Si obtained from the EDS
spectrum was about 47.7:52.3. This suggested the phase of FeSi and agreed reasonably with
the starting Fe/Si stoichiometry of Fe-50% Si. The EDS spectrum associated with the dense
substrate of Figure 7b indicates that constituent elements are Al and O. The composition of
the matrix was confirmed to be Al2O3 by the atomic ratio of Al:O = 37.9:62.1 deduced from
the EDS analysis.

In Figure 7c, the SEM photo shows that many granular particles partially embedded
in the dense substrate can be seen, most of them have a size of around 3 µm, and some
pores are formed in the Al2O3 substrate. The EDS spectrum provided the atomic ratio of
Fe:Si equal to 31.3:68.7, which is slightly Si-rich in comparison to the atomic composition of
FeSi2. This could be due to the fact that the silicide formed from the sample of Fe-70.5% Si
is α-FeSi2, which is a Si-rich disilicide. Similarly, the EDS spectrum of Figure 7c shows that
Al and O are two major constituent elements for the substrate and the atomic proportion of
Al:O = 42.1:57.9 is in good agreement with that of Al2O3.
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SEM images presented in Figure 8a–c are associated with the final composites pro-
duced from samples of Fe-20%, Fe-55%, and Fe-66.7% Si, respectively. It is evident that
granular particles revealed in Figure 8a,b are more spherical than those in Figure 8c. The
silicide grains formed were Fe3Si in Figure 8a and mostly FeSi in Figure 8b. Their parti-
cle size ranged from submicron to about 10 µm. The matrix made up of Al2O3 in both
Figure 8a,b is dense and continuous. Figure 8c shows that FeSi2 granules with a size of
2–5 µm are formed over the Al2O3 substrate. Some pores were observed in the matrix due
to volume expansion of the product. A comparison between Figures 7 and 8 pointed out
that similar microscopic structures of the final composites were observed as their initial
compositions had close Fe/Si proportions.
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For the reactions with Si percentage from Fe-20% to Fe-30% Si, their resulting Fe3Si–
Al2O3 composites were produced in a partially melted form so that the porosity of Fe3Si–
Al2O3 composites was relatively low and varied between 17% and 22%. Due to the slight
volume expansion of the final products, the porosity of FeSi–Al2O3 composites synthe-
sized from samples of Fe-50% and Fe-55% Si was around 30%. Higher porosity of about
37–42% was attained for the FeSi2–Al2O3 composites produced from the reaction of
Fe-66.7% and Fe-70.5% Si, because the products were prolonged after combustion. For
selected composites obtained from the reactions with Fe-20%, Fe-50%, and Fe-66.7% Si,
Vickers hardness measurements were conducted. The values of Hv were found to be 12.5,
10.4, and 7.6 GPa for the Fe3Si–, FeSi–, FeSi2–Al2O3 composites, respectively.

4. Conclusions

The formation of Fe–Si intermetallics–Al2O3 composites was investigated using
thermite-assisted combustion synthesis with an emphasis on the relationship between
iron silicide phases formed and initial Fe/Si proportions. Combustion reactions in the
SHS mode were achieved with the powder compacts of the Fe/Si stoichiometry covering
Si percentage from Fe-20% to Fe-70.5% Si. Results showed that the increase of Si con-
tent lowered the reaction exothermicity and decreased the combustion temperature from
1950 to 1367 K and flame-front propagation velocity from 3.1 to 0.8 mm/s. This was mainly
due to the fact that the formation of iron silicide compounds was less exothermic than the
aluminothermic reduction of Fe2O3. Depending on different iron silicides formed from
the SHS reactions, two activation energies of 171.3 and 106.4 kJ/mol were determined. By
means of XRD, three iron silicides, Fe3Si, FeSi, and α-FeSi2, were identified along with
Al2O3 in the final products. Fe3Si was the only or major silicide for the reactions containing
Si between Fe-20% and Fe-40% Si. Specifically, Fe3Si was the only silicide in the products of
Fe-20%, 25%, and 30% Si. The ratio of Fe3Si/FeSi in the product generated from the sample
of Fe-35% Si was 83/17. Three silicide compounds with a proportion of Fe3Si/FeSi/FeSi2
was equal to 60.0/45.3/4.7, when produced from the sample of Fe-40% Si. The reactions of
Fe-45%, Fe-50% and Fe-55% Si produced FeSi as the dominated silicide and the correspond-
ing silicide compositions were Fe3Si/FeSi/FeSi2 = 26.7/67.3/6.0, FeSi/FeSi2 = 92.9/7.1,
and FeSi/FeSi2 = 84.5/15.5. For the reactions of Fe-65%, Fe-66.7%, and Fe-70.5% Si, their
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resulting silicides comprised FeSi and α-FeSi2 and were predominated by α-FeSi2 which
exhibited an increasing yield percentage from 56.7% to 79.1% and to 87.4%. The SEM
images of the product fracture surface revealed that granular or nearly spherical silicides
were distributed over or embedded partially in the dense substrate made up of Al2O3. The
particle size of iron silicide grains varied from submicron to about 10 µm and most of them
were around 3–5 µm. The phases of silicide grains, including Fe3Si, FeSi, and FeSi2, were
also confirmed by the EDS analysis.
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