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Abstract: In this work, Ti-22Al-23Nb-0.8Mo-0.3Si-0.4C-0.1B-0.2Y (at. %) alloy powder was used to
fabricate the Ti2AlNb-based alloy samples using Laser powder bed fusion (L-PBF) Additive Manu-
facturing with a high-temperature substrate preheating. L-PBF process parameters, including laser
power, scan speed, hatching distance, and preheating temperature, allowing for obtaining fully dense
(99.9% relative density) crack-free samples, were determined. The effects of substrate preheating
temperature during the L-PBF process on microstructure, phase composition, and properties of the ob-
tained Ti2AlNb-based alloy were investigated using X-ray diffraction, scanning electron microscopy,
electron backscatter diffraction analysis, and microhardness testing. The results obtained for the
material with C, B, and Y microalloying were compared to the Ti2AlNb-based alloy fabricated by
L-PBF from the powder not alloyed with C, B, and Y. The results revealed that the microalloying
reduced the number of solidification cracks; however, no significant microstructural changes were
observed, and high-temperature substrate preheating was still necessary to suppress cold cracking
of the alloy. The microstructure of the alloy varied from fully-β/B2, B2 + O, to fully-O depending
on the preheating temperature. Effects of hot isostatic pressing and heat treatment conditions on
microstructure and mechanical properties were investigated.

Keywords: additive manufacturing; powder bed fusion; titanium aluminides; microalloying;
microstructure; Ti-22Al-25Nb

1. Introduction

Advanced titanium intermetallic alloys based on titanium aluminides are of great
interest to aviation, aerospace, and automotive industries due to their high specific strength,
heat resistance, and the potential to replace heavy Ni-based superalloys [1,2]. Orthorhombic
Ti2AlNb-based (O-phase) alloys have shown great potential for their high-temperature
application due to improved ductility compared to Ti3Al- and TiAl-based alloys [3–5].

Traditional ways of producing Ti2AlNb-based alloys involving casting and thermo-
mechanical processing involve multiple labor-consuming stages significantly increasing
the cost of intermetallic parts [6,7]. Moreover, poor machinability and brittleness of or-
thorhombic alloys limit the geometrical complexity of the final product. Powder metallurgy
methods, such as hot isostatic pressing (HIP) or spark plasma sintering, have been demon-
strated to be of possible use to fabricate Ti2AlNb-alloy components [8,9]. However, these
methods have severe limitations in terms of geometry complexity, adequate cost, and
decent level of mechanical properties [10].

Welding of intermetallic titanium alloys using laser or electron beam welding remains
challenging due to their proneness to cracking [11,12]. Controlling the cooling rate during
the welding process or applying post-weld heat treatment are typical ways to prevent cold
cracking of titanium aluminide alloys during the welding.
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Additive Manufacturing (AM) is a promising method for producing metal parts with
a high degree of geometrical complexity and high level of mechanical properties [13].
Selective Laser Melting (SLM), also known as laser powder bed fusion (L-PBF), is a widely
used AM technique to fabricate parts from metal alloys powders using laser beam as an
energy source [14,15].

The susceptibility to cracking, brittleness, and limited weldability of titanium alu-
minide alloys make it hard to produce defect-free intermetallic parts using the L-PBF
process [16,17]. In the previous research [18], the authors showed that preheating the
substrate above 600 ◦C during the L-PBF process is necessary to obtain crack-free Ti2AlNb-
based Ti-24Al-25Nb-1Zr-1.4V-0.6Mo-0.3Si (at. %) alloy. While high-temperature substrate
preheating allowed to successfully suppress cold cracking of the alloy and achieve good
room- and high-temperature strength values after subsequent HIP treatment [19], the alloy
exhibited poor plasticity, which might be attributed to the non-optimal microstructure and
oxygen pickup during the L-PBF process.

One of the possible ways to improve the properties and AM processability of titanium
aluminide alloys is to tailor the chemical composition of the feedstock powder [20].

Ti-22Al-25Nb (at. %) alloy is considered a base orthorhombic alloy and is one of the
most investigated Ti2AlNb-based alloys [21]. Additional alloying elements are usually
added to improve properties of the alloy. For example, a combination of Mo and Si is added
to improve creep strength and oxidation resistance of the material [22–24]. The addition of
several atomic percent of other β-stabilizing elements, such as V, Hf, Ta, and W, is often
used to increase the β/B2 phase-field resulting in improved workability of the alloy but an
increased density [25,26].

The titanium aluminide alloys are currently used in many studies of AM process-
ability research [18,27,28], which were originally developed for conventional processes
such as casting and hot working. This results in issues concerning solidification cracking,
impurities pickup, grain boundaries embrittlement, and texture and negatively affects
the AM processability and mechanical properties of the alloys. Thus, a Ti2AlNb-based
alloy with a tailored chemical composition has been proposed in the current work to use
in the L-PBF process with high-temperature substrate preheating. Based on the experi-
mental results and literature data on titanium aluminide alloys design, the addition of
several alloying elements to the base Ti-22Al-25Nb composition has been proposed and
experimentally evaluated.

As mentioned earlier, Mo and Si are usually added simultaneously to enhance the
oxidation resistance and creep strength [22] of the Ti-22Al-25Nb alloy by lowering the
diffusion rate, introducing silicides, and forming beneficial protective oxides [29]. Alloying
titanium aluminides with small amounts of Si and C results in improved tensile strength
and creep resistance and leads to higher operating temperatures [20]. Microalloying with Si
and C can result in solid solution strengthening or precipitation strengthening by forming
secondary silicides and carbides, which would decrease dislocation mobility and stabilize
microstructure at elevated temperatures [20,30].

Boron is added in small amounts to introduce boride precipitates during the crystalliza-
tion that further act as nucleation sites and result in refined primary β-phase grains [20,30]
and thus an enhanced ductility [31]. As shown in [32] for the Ti-22Al-20Nb-2W alloy, the
addition of 0.2 (at. %) of B improved the alloy’s room temperature ductility as well as
creep behavior.

Another promising way of improving the mechanical properties of titanium alloys
is adding small amounts of rare-earth elements [33–37]. Ti-based and titanium aluminide
alloys are usually alloyed with rare-earth elements, such as Y and Gd [33,34,38]. Sc, Ce,
and Er are used less frequently [36]. Rare-earth elements form refractory compounds with
oxygen and nitrogen that promote grain refinement, and slow diffusion processes, and
result in an improved microstructural thermal stability. Microalloying titanium alloys with
rare-earth elements is also an effective way of scavenging oxygen at grain boundaries in tita-
nium alloys, which results in enhanced ductility. For example, an addition of 0.4–0.8 (at. %)
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Er to Ti-22Al-25Nb alloy resulted in a refined microstructure due to the formation of Er2O3
oxides and Al3Er precipitates acting as heterogeneous nuclei [36]. Microalloying of Ti-
22.5Al-23.5Nb alloy with 0.1 (at. %) Gd improved both room- and high-temperature tensile
strength and ductility [33]. Addition of Y to Ti-22Al-25Nb alloy improved its grain size
stability at elevated temperature [37], while a small amount of Y to Ti-47Al alloy led to
grain refinement and improved tensile properties [38]. Y is a reasonable choice among
the rare-earth elements to mitigate the oxygen content as it has a high oxygen scavenging
capability and relatively low cost [39,40].

Based on this knowledge, the study presents a Ti2AlNb-alloy with a tailored chem-
ical composition microalloyed with carbon, boron, and yttrium. The resultant alloy had
the following composition (in at. %): Ti-22Al-23Nb-0.8Mo-0.3Si-0.4C-0.1B-0.2Y. Gas at-
omized powder of this alloy was used in the L-PBF process to fabricate the samples for
microstructural analysis and mechanical properties evaluation. The results were compared
to the Ti2AlNb-based alloy obtained by the L-PBF using the atomized powder with the
composition originally developed for conventional processing by hot working [41,42].

2. Materials and Methods
2.1. Feedstock Powder

Ti-22Al-23Nb-0.8Mo-0.3Si-0.4C-0.1B-0.2Y alloy spherical powder obtained by electrode
induction gas atomization (EIGA) method with a mean particle size d50 = 33 µm was used in
the L-PBF process. Before the atomization process, the alloy was microalloyed with carbon,
boron, and yttrium and will be further referred to as Ti2AlNb-CYB powder. The resultant
chemical composition of the powder after gas atomization is presented in Table 1. As can be
seen in Figure 1, the particles mostly have a spherical shape and dendritic microstructure
typical for gas atomized powders. The X-ray diffraction (XRD) results (Figure 1c) showed
that the Ti2AlNb-CYB powder consists of a single phase corresponding to the β/B2 phase.
This is in agreement with the previously reported results for Ti-22Al-25Nb alloys [10,43].
Precipitation of the secondary phase is inhibited during the atomization process due to
high cooling rates typical for gas atomization.
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(b) their cross-section. The XRD pattern of the powder (c).
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Table 1. Chemical composition of the Ti2AlNb-CYB powder (in at. %).

Element Ti Al Nb Mo Si Y B C O, wt. % N, wt. %

Method ICP-OES C/S analyzer O/N/H analyzer

Content Bal. 22.6 23.32 0.83 0.31 0.55 0.12 0.20 0.082 0.016

For comparison of microstructures and mechanical properties, a similar titanium
orthorhombic alloy powder with Ti-24Al-25Nb-1Zr-1.4V-0.6Mo-0.3Si (at. %) nominal
composition and without boron, yttrium, and carbon microalloying was used to fabricate
the samples using the L-PBF process. This powder was used in the previous research [18] to
evaluate optimal L-PBF parameters with high-temperature substrate preheating allowing
for obtaining crack-free fully-dense samples. The powder was produced by the same
supplier as the Ti2AlNb-CYB powder; however, no microalloying was used. The powder
without microalloying will be further referred to as Ti2AlNb-noCYB powder. A detailed
characterization of the Ti2AlNb-noCYB powder can be found in [18].

2.2. Laser Powder-Bed Fusion

A L-PBF AconityMIDI (Aconity3D GmbH, Herzogenrath, Germany) system was
used to manufacture the intermetallic alloy samples for further investigations. Cubic
10 × 10 × 10 mm3 samples were produced for microstructural investigation as well as
defect analysis (Figure 2a). The L-PBF system is equipped with an inductive preheating
module allowing for preheating the substrate up to 1200 ◦C. The Ti-6Al-4V alloy substrate
was used in the study, and it was preheated to the specific temperature before starting
the laser processing [19]. The L-PBF process was carried out under a protective argon
atmosphere to prevent the material from oxidation.
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Figure 2. The samples fabricated by L-PBF for (a) microstructural characterization and (b) tensile tests.

Based on the preliminary results obtained for the Ti2AlNb-noCYB powder, several
sets of L-PBF process parameters with varied substrate preheating temperature, scanning
speed (SS), and hatching distance (HD) were chosen for manufacturing of the samples (see
Table 2). Laser powder (LP) and layer thickness (L) were fixed. The volume energy density
(VED) (Equation (1)) varied from 49 to 93 J/mm3. The platform preheating temperature
(TPH) was 300, 700, and 850 ◦C:

VED =
LP

SS·HD·L,
[

J
mm3

]
(1)
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Table 2. The process parameters used for manufacturing of the samples.

# LP, W SS, mm/s HD, mm L, mm VED, J/mm3 TPH, ◦C

1 140 500 100 30 93

300, 700, 850

2 140 600 100 30 78
3 140 700 100 30 67
4 140 800 100 30 58
5 140 900 100 30 52
6 140 600 120 30 65
7 140 700 120 30 56
8 140 800 120 30 49

Horizontal cylindrical samples (12 mm diameter and 63 mm length) with solid supports (Figure 2b) were fabricated
for the tensile tests. After the fabrication process, the samples were machined to achieve a dog-bone shape with
20 mm gauge length and 4 mm diameter by ISO 6892-1. Three samples per point were tested.

2.3. Characterization

Relative density of the fabricated specimens was evaluated using a metallographic
method by taking optical images of the polished samples’ surfaces and processing the
images using ImageJ 1.53 software by calculating the area of pores relative to the whole area.

Mira 3 (TESCAN, Brno, Czech Republic) scanning electron microscope (SEM) in
backscattered electrons (BSE) mode was utilized to study the microstructure using polished
sections of the specimens. An electron backscatter diffraction (EBSD) module with a step
size of 0.5 µm was used to analyze phase features.

A Bruker D8 Advance X-ray diffraction (XRD) meter (Bruker, Bremen, Germany) with
Cu-Kα (λ = 1.5418 Å) irradiation was used to analyze phase composition of the samples.

A LECO TC-500 analyzer was used to evaluate oxygen and nitrogen content in the
samples by the inert-gas fusion-infrared method.

Phase transformation temperatures were analyzed using a 404 Pegasus Netzch (Selb,
Germany) differential scanning calorimetry (DSC) analyzer.

HIP was conducted at 1160 ◦C, 160 MPa pressure, and 3 h holding time.
Heat treatment was carried out using a vacuum furnace and a muffle furnace under

the following conditions:

(1) vacuum solution annealing (SA) the samples at 1015 ◦C for 1.5 h followed by furnace
cooling (FC);

(2) vacuum SA the samples at 1015 ◦C for 1.5 h followed by FC to room temperature and
subsequent aging at 800 ◦C for 6 h followed by FC;

(3) SA at 1015 ◦C for 1.5 h followed by water cooling (WC);
(4) SA at 1015 for 1.5 h followed by WC and subsequent aging at 800 ◦C for 6 h followed

by FC.

Tensile tests were carried out using a Z100 testing machine (Zwick/Roell, Ulm, Ger-
many). The tensile direction was perpendicular to the BD. Three tensile coupons per point
were used to evaluate average values.

3. Results and Discussion
3.1. L-PBF Processability

Figures 3 and 4 show the effects of substrate preheating temperature during the L-PBF
process on crack susceptibility and relative density of the samples. As can be seen in
Figure 3a, using a low substrate preheating temperature of 300 ◦C resulted in severe crack-
ing of the samples. The cracks formed from the side surfaces and are mostly transverse with
a length up to several millimeters. High thermal stresses during the L-PBF process coupled
with the brittleness of the Ti2AlNb-alloys led to cracking of the sample indicating that
300 ◦C preheating temperature was not sufficient to reduce the thermal stresses. Similar
results were obtained for the samples fabricated using the Ti2AlNb-noCYB powder [18],
suggesting that the microalloying of Ti2AlNb-alloy could not prevent the severe cracking
during the L-PBF at low substrate preheating temperatures. When the preheating tem-
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perature was increased to 700 ◦C, mostly crack-free samples were obtained (Figure 3b).
However, some small occasional surface cracks still could be found in the case of 700 ◦C
preheating temperature. Further increasing the preheating temperature to 850 ◦C prevented
the cracking as can be seen in Figure 3c and allowed to obtain crack-free Ti2AlNb-alloy
samples. Thus, the samples fabricated using 700 ◦C and 850 ◦C preheating temperatures
were further used for porosity evaluation. Cold cracking of titanium aluminide alloys has
been observed for various welding techniques [41,44–46]. For example, laser beam welding
of Ti2AlNb-based joints resulted in the formation of transverse cracks due to high residual
stresses; however, preheating the joints above the brittle-to-ductile transition temperature
reduced the cooling rate after welding and eliminated the crack formation [41].
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As shown in Figure 4, the fully-dense samples with a relative density of 99.9 ± 0.1%
were fabricated using VED of 49 J/mm3 and 850 ◦C preheating temperature. Applying high
VED values resulted in an increased porosity due to the formation of spherical pores. This
effect was specifically visible in the case of a higher preheating temperature. For example,
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98.6 ± 0.1% relative density was achieved using 93 J/mm3 VED at 850 ◦C preheating
temperature, while applying the same VED at 700 ◦C preheating resulted in 99.5 ± 0.1%
relative density. This can be attributed to local overheating of the meltpool during the
L-PBF process and partial evaporation of the alloy, which would result in the formation of
spherical gas pores [47,48].

As shown in Figure 5a, when the Ti2AlNb-noCYB powder was used to fabricate
the samples at 700 ◦C preheating temperature, some microcracks could be found in the
samples. These microcracks have a length of approximately 50 µm and are located at the
prior β/B2-phase grain boundaries and parallel to the building direction. In contrast, no
microcracks were observed in the case of the Ti2AlNb-CYB powder (Figure 5b) for the
samples produced using the same preheating temperature. During the L-PBF of Ti2AlNb-
alloys at high preheating temperatures, brittle intermetallic O-phase (Ti2AlNb) precipitates
at the β/B2 grain boundaries [18]. Precipitation of the O-phase at the prior β/B2 grain
boundaries has also been observed for conventionally produced Ti2AlNb-based alloys
during heat treatment with the O-phase rim’s thickness increasing with the temperature
and/or holding time [49–51]. Prior β/B2 grain boundaries can act as nucleation sites for
the O-phase promoting the formation of the grain boundary O-phase rim. Moreover, even
though the L-PBF process is carried out under an inert atmosphere, some oxygen pickup
by the alloy is still possible due to high temperatures. It is also known that the diffusion of
oxygen at the phase boundary is faster as a result of the presence of phase/grain boundary
energy [52]. This results in increased oxygen content in the grain boundary O-phase leading
to its further embrittlement. Under the residual stresses during the L-PBF process, crack
formation of the material occurs.
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Ti2AlNb-noCYB powder.

At the same time, the addition of rare earth elements either as a powder modificator or
an alloying element has been shown to be beneficial in eliminating cracks during the L-PBF
of various alloys [53–55]. Yttrium can act as an effective oxygen scavenger during both gas
atomization and L-PBF processes resulting in reduced oxygen content in the alloy. As can
be seen in Table 3, the microalloying of the powder significantly reduced the oxygen content
in both the initial powder and the fabricated alloy. It can be noted that, while the oxygen in
the sample produced by the L-PBF process increased in the case of Ti2AlNb-noCYB powder,
using the Ti2AlNb-CYB powder resulted in almost the same oxygen level in the fabricated
alloy, which is notably lower compared to the alloy without microalloying. It is known that
an oxygen level of 1000–2000 ppm has a detrimental effect on the processability of titanium
aluminide alloys. In addition, yttrium oxides generated during the processing of the alloy
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can have a pinning effect on the grain boundaries preventing grain coarsening and improve
ductility [55,56]. Additionally, introduction of yttrium can result in the formation of nano-
sized oxides inside the β, O grains. These oxides might act as pinning centers for the defects
and impede dislocation movement enhancing strength and ductility of the material [57].
As can also be seen from Table 3, the N content of the L-PBF alloys decreases compared to
the as-atomized powders. This might be attributed to partial nitrogen evaporation during
the laser melting in argon atmosphere as discussed in [58–60].

Table 3. Oxygen and nitrogen content in the initial powders and fabricated samples.

Sample O, wt. % N, wt. %

Ti2AlNb-noCYB powder 0.137 0.020
Ti2AlNb-CYB powder 0.082 0.016

Ti2AlNb-noCYB (L-PBF) 0.200 0.003
Ti2AlNb-CYB (L-PBF) 0.085 0.002

Thus, the presence of yttrium in the Ti2AlNb-CYB powder as a microalloying ele-
ment improved the processability of the alloy by L-PBF with high-temperature substrate
preheating and eliminated grain boundary microcracks.

3.2. Microstructure and Phase Composition

Figure 6 shows microstructures of the samples fabricated from the Ti2AlNb-CYB pow-
der using different substrate preheating temperatures. Using a relatively low preheating
temperature of 300 ◦C resulted in a single-phase β/B2 microstructure (Figure 6a) suggest-
ing that precipitation of secondary phases was suppressed due to high cooling rates during
the L-PBF process and the preheating temperature of 300 ◦C was not enough to promote the
precipitation of Ti2AlNb O-phase. The XRD results shown in Figure 6 confirmed that the
samples fabricated using 300 ◦C preheating temperature consists only of the β/B2 phase.
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Crescent-shaped melt pool boundaries typical for the L-PBF process could be seen in
the BSE-SEM image (Figure 6a) showing a melt pool width of approximately 100–120 µm,
which is slightly bigger than the laser spot size. The preheating temperature of 700 ◦C
resulted in an almost fully-O microstructure in accordance with BSE-SEM images (Figure 6b)
and the XRD results (Figure 7). Small amounts of residual β-phase could form near melt
pool boundaries similar to the Ti2AlNb-based alloy fabricated from the Ti2AlNb-noCYB
powder at 700 ◦C preheating temperature [18].
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The BSE image of the sample also shows that there are dark bands near some melt pool
boundaries indicating that there are some chemical inhomogeneities in the produced alloy.
According to the EDS-mapping results shown in Figure 8, these dark bands correspond to
Nb-lean and Ti-rich areas. These micro-inhomogeneities could result from solidification
segregation during the L-PBF process. According to the Ti-22Al-xNb phase diagram [61],
a decrease in Nb content might result in the formation of α2 (Ti3Al) phase and reduced
B2-phase content. However, due to the small size and fraction of these areas, the XRD
results did not show the peaks corresponding to the α2 phase. At the same time, as can
be seen from Figure 6, an increased preheating temperature led to a more homogeneous
microstructure due to an increased diffusion rate at higher temperatures.

Further increasing the preheating temperature in the B2 + O region to 850 ◦C, which is
closer to the single B2 phase region, resulted in an increased β/B2 phase volume fraction
and the formation of B2 + O microstructure as can be seen in Figure 6c. The estimated
volume fraction of the O-phase in the case of 850 ◦C preheating temperature was approxi-
mately 50%. The solidification of the alloy during the L-PBF process takes place through
the B2/β region with the formation of primary B2/β grains. The subsequent holding
of the alloy at the preheating temperature coupled with additional local heating by the
laser exposure promoted the participation of the acicular O-phase inside the B2/β grains
as well as the rim O-phase along the grain boundaries due to its continuous precipita-
tion. According to the DSC results shown in Figure 9, the 850 ◦C preheating temperature
corresponds to the B2 + O region. Additional possible heating of the material into the
α2 + B2 + O or α2 + B2 region during the laser exposure did not promote the formation of
α2 phase due to the long time required for its formation. It can also be noted that, according
to the DSC results for the alloy obtained from the Ti2AlNb-CYB powder, no significant
changes in phase transformation temperatures were observed compared to alloy without
microalloying. In general, the microstructure morphologies and phase compositions of the
samples obtained from the Ti2AlNb-CYB powder are similar to the alloys fabricated using
the Ti2AlNb-noCYB powder at the corresponding preheating temperatures [18].



Metals 2022, 12, 1304 10 of 17Metals 2022, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. EDS maps of the sample produced from the Ti2AlNb-CYB powder at 300 °C substrate 
preheating temperature: (a) BSE-SEM image, distribution of (b) Al, (c) Ti, and (d) Nb. 

 
Figure 9. DSC curve of the sample fabricated from the Ti2AlNb-CYB powder. 

Figure 10 shows the inverse pole figure (IPF) maps of the as-fabricated alloys using 
the microalloyed powder and the powder without additions of carbon, yttrium, or boron. 
It can be seen that both alloys have columnar β/B2 grains along the BD. The alloy obtained 
from the Ti2AlNb-CYB powder (Figure 10a) features refined β/B2 grains compared to the 
alloy without microalloying (average grain size of 31 µm and 48 µm for Ti2AlNb-CYB and 
Ti2AlNb-noCYB, respectively). 

Figure 8. EDS maps of the sample produced from the Ti2AlNb-CYB powder at 300 ◦C substrate
preheating temperature: (a) BSE-SEM image, distribution of (b) Al, (c) Ti, and (d) Nb.

Metals 2022, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. EDS maps of the sample produced from the Ti2AlNb-CYB powder at 300 °C substrate 
preheating temperature: (a) BSE-SEM image, distribution of (b) Al, (c) Ti, and (d) Nb. 

 
Figure 9. DSC curve of the sample fabricated from the Ti2AlNb-CYB powder. 

Figure 10 shows the inverse pole figure (IPF) maps of the as-fabricated alloys using 
the microalloyed powder and the powder without additions of carbon, yttrium, or boron. 
It can be seen that both alloys have columnar β/B2 grains along the BD. The alloy obtained 
from the Ti2AlNb-CYB powder (Figure 10a) features refined β/B2 grains compared to the 
alloy without microalloying (average grain size of 31 µm and 48 µm for Ti2AlNb-CYB and 
Ti2AlNb-noCYB, respectively). 

Figure 9. DSC curve of the sample fabricated from the Ti2AlNb-CYB powder.

Figure 10 shows the inverse pole figure (IPF) maps of the as-fabricated alloys using
the microalloyed powder and the powder without additions of carbon, yttrium, or boron.
It can be seen that both alloys have columnar β/B2 grains along the BD. The alloy obtained
from the Ti2AlNb-CYB powder (Figure 10a) features refined β/B2 grains compared to the
alloy without microalloying (average grain size of 31 µm and 48 µm for Ti2AlNb-CYB and
Ti2AlNb-noCYB, respectively).
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Grain refinement by the addition of rare-earth elements has been known as an effective
method to reduce the cracking of additively manufactured alloys [34,54,56,62]. Firstly, the
addition of rare-earth elements is associated with the reduction of oxygen content at the
grain boundaries enhancing the ductility of the alloy. Secondly, grain refinement leads to a
larger grain boundary area per unit volume reducing the accumulation of thermal stresses
as demonstrated in [62]. As a result, the microalloying of the Ti2AlNb-based alloy powder
resulted in a reduced possibility of cracking formation during the L-PBF process.

3.3. Heat Treatment and Hot Isostatic Pressing Effects on Microstructure

The Ti2AlNb-alloy samples fabricated by L-PBF using 850 ◦C preheating temperature
were used to investigate the effects of heat treatment and HIP on the microstructure of
the alloy.

Figure 11 shows the microstructure of the Ti2AlNb alloy samples after HIP. For both
Ti2AlNb-CYB and Ti2AlNb-noCYB alloys, HIP resulted in dual-phase B2 + O microstruc-
ture consisting of equiaxed prior B2 grains and fine lamellar O phase precipitates within
the B2 grains. B2 grain boundaries are characterized by the presence of rim O phase in
case of both alloys. The main difference between the microstructures of the alloys after
HIP is a considerably smaller grain size in the case of the Ti2AlNb-CYB alloy (110 ± 40 µm
and 70 ± 50 µm for Ti2AlNb-noCYB and Ti2AlNb-CYB alloys, respectively). Thus, microal-
loying resulted in reduced grain size after HIP. This can be attributed to the formation
of submicron and nanosized secondary precipitates in the case of the microalloyed sam-
ple which prohibits grain growth during HIP or heat treatment. It should also be noted
that, after HIP, the residual porosity in the sample was mostly eliminated and only a few
occasional micropores could be found by the microscopic evaluation.

Figure 12 shows the microstructures of the Ti2AlNb-CYB alloy after various heat
treatments. After SA followed by FC without preceding HIP (Figure 12a), the microstructure
of the alloy consisted of B2 and O phases similar to the as-fabricated condition. However,
the annealing resulted in an increased B2 phase content due to the decomposition of the O
phase and, correspondingly, a decreased O phase fraction. Specifically, SA followed by FC
resulted in a decreased O phase fraction from approximately 50% to 40%. At the same time,
the acicular O phase precipitates inside the B2 grains and grain boundary rim O phase
visibly increased in thickness after annealing and aging heat treatment. Additionally, the
subsequent aging (Figure 12b) resulted in an increased O phase fraction to approximately
50% compared to the annealed condition. While the annealing temperature of 1015 ◦C
corresponds to the α2 + B2 + O phase region according to the DSC results, the α2 phase
precipitates were not identified in the annealing alloy. This might be explained by a
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relatively short annealing time, while the precipitation of the α2 phase as a result of B2
phase decomposition requires long holding times due to the slow diffusivity of Nb in
titanium orthorhombic alloys [63].
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HIPing of the alloy prior to SA (FC) resulted in a decreased number of acicular O phase
precipitates within the primary B2 grains (Figure 12c) compared to the annealed non-HIPed
alloy. At the same time, the grain boundary O phase transformed from continuous to
discontinuous precipitates. The HIP temperature of 1160 ◦C corresponds to the B2 phase
field, while the SA temperature is 1020 ◦C corresponding to the α2 + B2 + O phase field.
This leads to a partial dissolution of O phase grain boundary precipitates during HIP
resulting in a discontinuous grain boundary O phase.

After SA followed by WC (Figure 12e), the fraction of the O phase was significantly
reduced due to a rapid cooling preventing precipitation and growth of secondary phase
precipitates. The subsequent aging allowed for achieving fine nano-sized secondary acicular
precipitates of O phase along with coarse primary O phase (Figure 12f).

3.4. Mechanical Properties

Table 4 shows the microhardness values for the Ti2AlNb-alloys fabricated by the L-PBF
process under various conditions. The preheating temperature of 700 ◦C resulted in the
highest microhardness for both alloys since it corresponds to the highest fraction of the
intermetallic O-phase. Preheating temperature effects on the microhardness are identical
for both powders. In general, the samples produced using Ti2AlNb-CYB and Ti2AlNb-
noCYB powders exhibited similar microhardness values in the corresponding conditions;
however, the Ti2AlNb-noCYB alloy showed slightly higher microhardness. This might be
attributed to a higher oxygen content for the sample fabricated from the powder without
microalloying.

Table 5 shows the results of tensile tests for the L-PBF fabricated samples after var-
ious post-processing. In the as-fabricated condition, the Ti2AlNb-alloy samples showed
low tensile strength (TS) values at room and elevated temperatures as well as brittle de-
formation with low elongation at break (EL) values. Low mechanical properties in the
as-fabricated condition might be attributed to the presence of residual defects acting as
stress concentrators as well as brittle intermetallic O phase grain boundary precipitates.
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Table 4. Microhardness of the samples fabricated using Ti2AlNb-CYB and Ti2AlNb-noCYB powders
by L-PBF process with different preheating temperatures (TPH) and post-processing.

Powder Ti2AlNb-CYB

Condition 300 ◦C TPH,
as-is

700 ◦C TPH,
as-is

850 ◦C TPH,
as-is

850 ◦C TPH,
annealed (FC) 850 ◦C TPH, HIPed

Microhardness, HV0.5 365 ± 10 492 ± 10 405 ± 10 370 ± 10 350 ± 5

Powder Ti2AlNb-noCYB

Condition 300 ◦C TPH,
as-is

700 ◦C TPH,
as-is

850 ◦C TPH,
as-is

850 ◦C TPH,
annealed (FC) 850 ◦C TPH, HIPed

Microhardness, HV0.5 380 ± 10 505 ± 15 425 ± 15 385 ± 10 360 ± 10

Table 5. Tensile mechanical properties of Ti2AlNb-based alloys.

Alloy Condition TS (RT), MPa TS (650 ◦C),
MPa EL (RT), % EL (650◦C), %

Ti-22Al-23Nb-0.8Mo-0.3Si-0.4C-
0.1B-0.2Y (at. %) (this

study)

L-PBF 652 647 0.6 3.0
L-PBF + HIP + SA (FC) 1090 801 1.0 4.5
L-PBF + HIP + SA (FC)

+ Aging 1120 875 1.2 3.5

L-PBF + HIP + SA
(WC) 1160 600 3.4 2.1

L-PBF + HIP + SA
(WC) + Aging 1290 772 1.7 3.7

Ti-24Al-25Nb-1Zr-1.4V-0.6Mo-
0.3Si

(at. %) [19]
L-PBF + HIP 1027 860 1.1 5.8

Ti-11Al-40Nb-5(V + Mo + Zr +
Ta + W) + 0.2Si + 0.3Y

(wt. %) [5]
Wrought and annealed 1110 850 (at 700 ◦C) 9.0 5.5 (at 700 ◦C)

Ti-22Al-25Nb (at. %) [64] Spark plasma sintered 1105 797 9.4 12.8

Carrying out HIP allowed for achieving high tensile strength at room temperature and
650 ◦C; however, the elongation values were low compared to the wrought Ti2AlNb-based
alloy. At the same time, heat treatment conditions affected the mechanical properties of the
fabricated alloy. Annealing followed by WC allowed for achieving the highest elongation
due to the discontinuous grain boundary O phase precipitates. Subsequent aging increased
the tensile strength of the alloy up to 1290 MPa. This is 25% higher compared to the alloy
fabricated from the Ti2AlNb-noCYB powder and 16% higher compared to the wrought
Ti2AlNb-alloy with Y microalloying. The alloy produced from the Ti2AlNb-CYB powder
exhibited elongation at a break of 3.4%, which is notably higher compared to the alloy
obtained from the Ti2AlNb-noCYB powder. While the achieved tensile strength is on par
or higher compared to conventionally produced Ti2AlNb alloys, the elongation of the
L-PBF-produced alloy is lower. Thus, further optimization of heat treatment conditions
might be carried out to improve the plasticity of the alloy.

4. Conclusions

In this work, a Ti-22Al-23Nb-0.8Mo-0.3Si-0.4C-0.1B-0.2Y orthorhombic alloy atomized
powder was used to fabricate Ti2AlNb-alloy samples using various L-PBF processing
parameters. The following conclusions have been drawn:

- Addition of microalloying elements such as yttrium, boron, and carbon did not
lower the alloy’s susceptibility to cracking during the L-PBF despite the reduced
oxygen content. High-temperature substrate preheating during the L-PBF process
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with temperatures above 700 ◦C is necessary to prevent the cold cracking of the alloy.
At the same time, the microalloying of the Ti2AlNb-based alloy improved its L-PBF
processability and resulted in a reduced number of grain boundary microcracks.

- It was shown that using VED of 49 J/mm3 and 850 ◦C preheating temperature during
the L-PBF process allowed for fabricating fully dense (relative density of 99.9 ± 0.1%)
crack-free Ti2AlNb-based alloy samples.

- Microstructure of the titanium orthorhombic alloy is highly sensitive to the substrate
preheating temperature used during the L-PBF. A low preheating temperature of
300 ◦C resulted in a single β/B2 phase microstructure. Increasing the preheating
temperature to 700 ◦C led to the formation of a single O phase microstructure with
the highest microhardness. Further increasing the preheating temperature led to a
dual-phase microstructure consisting of B2 + O phases. The microalloying resulted in
a slightly refined β/B2 grain size compared to the reference alloy. At the same time,
no significant changes in microstructures were observed for the microalloyed and
reference powders. Microalloying allowed for achieving a smaller grain size after HIP
is compared to the reference Ti2AlNb-alloy.

- Heat treatment conditions affected the microstructure and mechanical properties of
the fabricated alloy. The highest room temperature tensile strength of 1290 MPa was
achieved after HIP with subsequent annealing followed by water cooling and aging
resulting. Applying HIP post-treatment for the Ti2AlNb alloy obtained by L-PBF is
essential to improve its mechanical properties.
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