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Abstract: The temporal evolution of microhardness and Al3(Er,Zr/Hf) precipitates are investigated in
Al-Er-Zr/Hf alloys during annealing at 450 ◦C and 500 ◦C. The microhardness of the alloys decreases
continuously with the prolonged annealing time due to the coarsening of the precipitates. Different
weakening amplitudes are observed because of the disparity of the precipitate coarsening rate that is
related to the disparity in their intrinsic diffusivities of Er, Zr, and Hf solute atoms in an Al matrix.
The addition of Hf element is beneficial to enhancing the coarsening resistance, thus improving
the thermal stability of the alloys. Introducing such elements to improve the thermal stability of
precipitates can provide a new idea or choice for the development of heat-resistant aluminum alloys.
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1. Introduction

Aluminum alloys are widely applied in many industrial fields that require light-weight
structural materials with adequate strength. However, their strength sharply deteriorates at
elevated temperatures, which limits their application. For instance, the tensile strength of
7075 alloy at 200 ◦C and 300 ◦C is only about 30% and 10% of that at room temperature [1].
Intensive research has found that the rapid decline in mechanical properties is mainly due
to a coarsening of the precipitates contributing to the alloy strength [2,3]. Therefore, the
thermal stability of the strengthening precipitates in alloys at an elevated temperature is
the key factor in the design and development of heat-resistant aluminum alloys.

Introducing coherent precipitates such as the L12-structured intermetallics in alu-
minum alloys through microalloying can effectively improve the thermal stability of alloys.
In Al-Sc alloys, the Al3Sc precipitates are extremely stable at 300 ◦C and will not grow
significantly even after hundreds of hours of thermal exposure [2]. Adding trace Ti, Zr, Hf,
or other elements with slower diffusion rates in Al-Sc alloys can form nanoscale spheroidal
L12-structured Al3(Sc,M) precipitates [4–14]. These precipitates have a complex core–shell
structure, which possesses excellent thermal stability. In addition, it is reported that the ad-
ditions of Y, Sm, Hf, Er, and Gd enhance the thermal stability of the Al3(Sc,Zr) dispersoids,
maintain the hardness or tensile properties after annealing at 250~370 ◦C with a hold of up
to 100 h, and can eliminate the negative effects of Fe and silicon impurities [13–15].

The precipitation strengthening in dilute Al-Er-Zr, Al-Er-Hf, and Al-Er-Zr-Hf alloys
has been investigated in our previous research work [15–17]. In this article, the temporal
evolution of microhardness and the Al3(Er,Zr/Hf) precipitates’ characteristics in Al-Er-
Zr/Hf alloys are investigated during annealing at 450 ◦C and 500 ◦C in order to provide a
new idea for the design of heat-resistant aluminum alloys.
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2. Material and Methods

The composition of Al-0.04Er-0.08Zr, Al-0.04Er-0.18Hf, and Al-0.04Er-0.08Zr-
0.1Hf (at. %) alloys was prepared by ingot metallurgy; the size of the ingot was
about 30 × 90 × 150 mm3. The castings were homogenized at 640 ◦C for 24 h and water-
quenched, followed by isothermal annealing at 350 ◦C to a peak hardness state. After
that, the peak hardness samples were annealed at 450 ◦C for 100 h and subsequently an-
nealed at 500 ◦C for 100 h. The samples were water-quenched after each heating step. The
precipitation hardening effect during elevated temperature annealing was monitored by
Vickers microhardness.

Vickers microhardness measurements were carried out on polished samples using
a HXD-1000TM/LCD hardness tester with a load of 200 g and a dwell time of 10 s. The
microstructural evolution of as-homogenized samples was characterized using FEI Quanta
650 FEG scanning electron microscope (SEM), and the precipitation evolution was inves-
tigated using a JEOL 2100 with an operating voltage of 200 kV. The size (diameter) of
precipitates under each condition was analyzed using Image-Pro Plus software.

3. Results and Discussion
3.1. Microhardness Evolution during Annealing

The Vickers microhardness evolution of Al-0.04Er-0.08Zr, Al-0.04Er-0.18Hf, and Al-
0.04Er-0.1Hf-0.08Zr alloys during isothermal annealing at 350 ◦C is shown in Figure 1a,
which is from our previous research work [15–17]. In this experiment, the initial hardness
of peak hardness samples was 57.6 ± 0.7 HV, 66.0 ± 1.3 HV, and 65.9 ± 1.4 HV for Al-
Er-Zr, Al-Er-Hf, and Al-Er-Zr-Hf alloy, respectively. The microhardness evolution of the
peak hardness samples during annealing at 450 ◦C is displayed in Figure 1b. It can be
seen that, with the extension of annealing time, the microhardness of the alloys decreases
continuously, but the decreasing amplitudes are different. After annealing at 450 ◦C for
100 h, the microhardness decreases by about 18.2 HV from 57.6 ± 0.7 HV to 39.4 ± 0.8 HV
for the Al-Er-Zr alloy and by about 18.4 HV from 66.0 ± 1.4 HV to 47.6 ± 1.0 HV for the
Al-Er-Zr-Hf alloy, respectively. The Al-Er-Hf alloy exhibits better thermal stability with
only about a 12.9 HV decline in microhardness, from 66.0 ± 1.3 HV to 53.0 ± 1.0 HV.
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Figure 1. Microhardness evolution vs. exposure time: (a) at 350 ◦C (Reprinted/adapted with
permission from Ref. [17]. 2015, Elsevier. ©); (b) at 450 ◦C after annealing at 350 ◦C to the peak
hardness state, and (c) at 500 ◦C after annealing at 450 ◦C for 100 h.
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Under further annealing at 500 ◦C, the microhardness of the samples decreases sig-
nificantly during the first 50 h and becomes stables after that, as shown in Figure 1c. The
microhardness of the Al-Er-Zr alloy annealed for 100 h decreases to 29.9 ± 0.8 HV, which
is close to the microhardness of the as-homogenized state [15]. However, the microhard-
ness of the Hf-containing alloys, Al-Er-Zr-Hf and Al-Er-Hf, remains 36.0 ± 0.9 HV and
40.2 ± 1.4 HV, respectively, which is significantly higher than that of the Al-Er-Zr alloy.
This indicates that the addition of Hf element is beneficial for enhancing the thermal
stability of the alloys.

3.2. Microstructural Evolution during Annealing

The as-homogenized and peak hardness state of the Al-Er-Hf alloy was selected for
microstructure analysis due to the relatively high composition. Some residual lamellar
eutectic structures were located on the grain boundaries in the as-homogenized alloy,
as shown in Figure 2a. A round-shaped eutectic structure (AlErHf ternary), whose size
was approximately 1 µm, can be seen in Figure 2c. A high number density of homoge-
neously distributed, nearly spherical precipitates can be seen in Figure 2d, which are the
micrographs of the Al-Er-Hf alloy isothermally annealed to peak hardness.

Metals 2022, 12, 1242 3 of 8 
 

 

Under further annealing at 500 °C, the microhardness of the samples decreases sig-
nificantly during the first 50 h and becomes stables after that, as shown in Figure 1c. The 
microhardness of the Al-Er-Zr alloy annealed for 100 h decreases to 29.9 ± 0.8 HV, which 
is close to the microhardness of the as-homogenized state [15]. However, the microhard-
ness of the Hf-containing alloys, Al-Er-Zr-Hf and Al-Er-Hf, remains 36.0 ± 0.9 HV and 40.2 
± 1.4 HV, respectively, which is significantly higher than that of the Al-Er-Zr alloy. This 
indicates that the addition of Hf element is beneficial for enhancing the thermal stability 
of the alloys. 

3.2. Microstructural Evolution during Annealing 
The as-homogenized and peak hardness state of the Al-Er-Hf alloy was selected for 

microstructure analysis due to the relatively high composition. Some residual lamellar 
eutectic structures were located on the grain boundaries in the as-homogenized alloy, as 
shown in Figure 2a. A round-shaped eutectic structure (AlErHf ternary), whose size was 
approximately 1 μm, can be seen in Figure 2c. A high number density of homogeneously 
distributed, nearly spherical precipitates can be seen in Figure 2d, which are the micro-
graphs of the Al-Er-Hf alloy isothermally annealed to peak hardness. 

 
Figure 2. Micrographs of Al-Er-Hf alloy: (a–c) SEM micrographs of as-homogenized alloy; (d) dark-
field TEM micrographs of precipitates of the peak aging alloy. 

Generally, the strengthening effect of the alloy is related to the precipitates’ charac-
teristics, such as size and volume fraction. In order to explore the difference between the 
precipitates in the three alloys, the TEM micrographs of precipitates, i.e., the Al3(Er,Zr), 
Al3(Er,Hf), and Al3(Er,Zr,Hf) particles, which are identified by energy dispersive X-ray 
spectrometry (EDX), are presented in Figure 3. It can be found that all precipitates were 
spherical under the different annealing conditions. According to the selected area electron 
diffraction (SAED) pattern of precipitates (Figure 3c), it can be concluded that these pre-
cipitates have an L12 crystal structure. However, the number density of precipitates obvi-
ously decreases with the coarsening of the precipitate after 500 °C annealing, especially in 
the Al-Er-Zr alloy. 

Figure 2. Micrographs of Al-Er-Hf alloy: (a–c) SEM micrographs of as-homogenized alloy; (d) dark-
field TEM micrographs of precipitates of the peak aging alloy.

Generally, the strengthening effect of the alloy is related to the precipitates’ charac-
teristics, such as size and volume fraction. In order to explore the difference between the
precipitates in the three alloys, the TEM micrographs of precipitates, i.e., the Al3(Er,Zr),
Al3(Er,Hf), and Al3(Er,Zr,Hf) particles, which are identified by energy dispersive X-ray
spectrometry (EDX), are presented in Figure 3. It can be found that all precipitates were
spherical under the different annealing conditions. According to the selected area electron
diffraction (SAED) pattern of precipitates (Figure 3c), it can be concluded that these precipi-
tates have an L12 crystal structure. However, the number density of precipitates obviously
decreases with the coarsening of the precipitate after 500 ◦C annealing, especially in the
Al-Er-Zr alloy.
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The detailed precipitate size and number density for the three alloys during different
annealing stages are listed in Table 1. For all alloys, the precipitate size gradually increases
with the annealing time for a given temperature. As listed in the table, although the
precipitate diameters for the Al-Er-Zr, Al-Er-Hf, and Al-Er-Zr-Hf alloys at a peak hardness
state are similar (about 3.6 ± 0.1 nm, 3.9 ± 0.2 nm, and 3.4 ± 0.1 nm, respectively), the
coarsening rate of Al3(Er,Zr) particles in the Al-Er-Zr alloy is faster than that of Al3(Er,Hf)
and Al3(Er,Zr,Hf) particles in the Hf-containing alloys. The average diameter of precipitates
in Al-Er-Zr, Al-Er-Hf, and Al-Er-Zr-Hf alloys increases to 11.2 ± 1.6 nm, 8.1 ± 0.2 nm,
and 8.7 ± 0.2 nm after annealing at 450 ◦C for 100 h, and grows further to 42.9 ± 2.6 nm,
19.4 ± 0.3 nm, and 20.8 ± 1.1 nm after annealing at 500 ◦C for 100 h, respectively. Hardness
is directly related to volume fraction and particle size. In our case, the Orowan bypass
mechanism should be responsible for the particle-induced strengthening, the strength
is directly proportional to volume fraction and inversely proportional to particle size,
and the volume fraction is proportional to the number density of particles. With the
increase in annealing temperature and time, the number density of precipitates decreases
and the particle size increases; therefore, the coarsening of the precipitates will weaken
the strengthening effect of alloys and directly result in the continuous dropping of the
corresponding microhardness.
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Table 1. The average diameter and number density of precipitates after various annealing.

Temperature and Time
(◦C and h) Al-Er-Zr Al-Er-Hf Al-Er-Zr-Hf

d/nm Nv/1021 d/nm Nv/1021 d/nm Nv/1021

Peak hardness state 3.6 ± 0.1 27 ± 5.1 3.9 ± 0.2 32.9 ± 6.7 3.4 ± 0.1 43.0 ± 8.8

450

5 4.5 ± 0.8 23 ± 3.2 — —
6 — 4.3 ± 0.1 18.9 ± 1.6 3.6 ± 0.1 24.6 ± 5.0
12 6.1 ± 0.8 18 ± 2.6 — —
48 9.6 ± 1.4 8.1 ± 1.9 6.5 ± 0.1 12.7 ± 1.8 6.5 ± 0.2 10.2 ± 2.1

100 11.2 ± 1.6 3.2 ± 0.8 8.1 ± 0.2 11.5 ± 2.3 8.7 ± 0.2 5.0 ± 2.1

500

5 19.5 ± 1.3 1.9 ± 0.2 — —
6 — 8.5 ± 0.1 5.1 ± 1.0 9.1 ± 0.2 4.7 ± 0.9
12 24.9 ± 1.6 0.7 ± 0.1 8.7 ± 0.2 4.7 ± 0.9 10.0 ± 0.2 3.8 ± 0.8
24 — 12.7 ± 0.3 3.7 ± 0.8 13.2 ± 0.3 3.0 ± 0.6
48 31.5 ± 2.0 0.2 ± 0.1 15.2 ± 0.3 3.5 ± 0.7 17.4 ± 0.3 0.6 ± 0.1

100 42.9 ± 2.6 0.1 ± 0.1 19.4 ± 0.3 2.4 ± 0.5 20.8 ± 1.1 0.6 ± 0.1

3.3. Coarsening Resistance of Precipitates

Lifshitz, Slyozov, and Wagner proposed a classic coarsening model controlled by vol-
ume diffusion (LSW model) that can predict the coarsening kinetics of the alloys. According
to the LSW coarsening model, the average particle size d(t) and coarsening time t should
conform to the following relationship [18,19]:

d(t)− d(t0) = K
(

t
1/3 − t

1/3
0

)
(1)

where K is the coarsening rate, d(t0) is the average particle size at t0, and t0 is any time at
or after the initiation of quasi-stationary state coarsening.

The mean precipitate diameter changes versus the cube-root of the time at a given
temperature can be well linear fitted, as plotted in Figure 4, which indicates that the
precipitates in all alloys have similar coarsening kinetics. The slope of the fitted line can
be considered as the coarsening rate of the precipitates. As anticipated, the coarsening
rate of precipitates is faster at a higher temperature for each alloy. For example, the
coarsening rate of Al3(Er,Zr) particles in the Al-Er-Zr alloy isothermally annealed at 500 ◦C
is 7.26 ± 0.99 nm/h1/3, compared with a much lower value of only 2.40 ± 0.16 nm/h1/3 at
450 ◦C. This is mainly due to the increase in the solute diffusion rate with a temperature
rise, leading to faster precipitate growth and coarsening rate. Furthermore, the addition
of Hf element will further enhance the coarsening resistance of precipitates and improve
the thermal stability of the Hf-containing alloys. The Al3(Er,Hf) particles in the Al-Er-Hf
alloy show a much more outstanding thermal stability than the Al3(Er,Zr,Hf) particles in
the Al-Er-Zr-Hf alloy and the Al3(Er,Zr) particles in the Al-Er-Zr alloy. Compared with
the Al-Er-Zr alloy, the slope of the fitted line gradually reduces with the increase in Hf
element content. It can be seen from the plot that the coarsening rate of precipitates in
the Al-Er-Zr-Hf and Al-Er-Hf alloys annealed at 500 ◦C is about 4.71 ± 0.55 nm/h1/3 and
3.95 ± 0.29 nm/h1/3, respectively.
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Intensive research demonstrates that such precipitates have a typical spherical core/shell
structure and the nucleation and growth of precipitates are controlled by the synergy effects
between joint added elements such as Al3(Sc,Zr) particles in the Al-Sc-Zr alloy [2,6,20] and
Al3(Er,Sc,Zr) particles in the Al-Sc-Er-Zr alloy [21,22], etc. The difference in precipitate
coarsening rates for each alloy studied in this work is mainly due to the diffusion-limited
coarsening mechanism. The precipitate coarsening kinetics are closely related to the
diffusivity of solute atoms in the Al matrix, and the diffusivity coefficient of solute in the Al
matrix decreases from Er to Zr and Hf (i.e., DEr > DZr > DHf) at 450 ◦C and 500 ◦C [16]. The
Zr or Hf element will segregate to the already-nucleated Er-enriched precipitate interfaces
and form an enveloping Zr/Hf-enriched shell, which can be a barrier to the growth and
coarsening of precipitates during prolonged thermal exposure, thus further delaying the
deterioration of mechanical properties.

The diffusion distance of the solute atoms in the Al matrix can be simply calculated by
a root-mean-square (RMS) diffusion distance,

√
4Dt (D is the diffusion coefficient of solute

at a given temperature and t is annealing time), as shown in Figure 5. The RMS diffusion
distance of Er, Zr, and Hf solute atoms at a given temperature increases continuously
with prolonged annealing time; the Er element is the most significant, followed by the Zr
element, which is the main reason that the coarsening rate of nanoprecipitates in the Al-
Er-Zr/Hf alloys exhibit significant differences, i.e., Al3(Er,Zr) > Al3(Er,Zr,Hf) > Al3(Er,Hf).
Therefore, combined with the corresponding precipitate evolution, the distinct difference in
microhardness weakening behaviors can be well explicated by the disparity of precipitate
coarsening rates dominated by diffusivities of the solute elements in the Al matrix. The high
thermal stability of the Al3(Er,Zr/Hf) precipitates in dilute Al-Er-Zr/Hf alloys at elevated
temperatures can provide a new idea for the design of heat-resistant aluminum alloys.
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particles in the Al-Er-Zr-Hf and Al-Er-Zr alloys, respectively. The addition of the Hf ele-
ment is beneficial for enhancing the thermal stability of the alloys. The Al-Er-Hf and Al-
Er-Zr-Hf alloys exhibit more excellent thermal stability than that of the Al-Er-Zr alloy. 
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