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Abstract: Magnesium alloys play an important role in lightweight structures, which are extensively
used in different industries due to their excellent mechanical and physical properties. In this paper,
the formability of the AZ31B magnesium alloy sheet was studied by using tensile tests at different
temperatures (from 25 to 250 ◦C) and strain rates (from 0.017 s−1 to 0.34 s−1). The results showed that
the material behaves with positive temperature sensitivity when forming at a temperature lower than
200 ◦C. The effect of the strain rates on the formability of AZ31B was larger at high temperatures. The
metallography of AZ31B at different temperatures and strain rates was observed by OM. The results
showed that the partially recrystallized structure was exhibited at a temperature of 150 ◦C. With the
increase in temperature, the approximate complete recrystallization was exhibited at a temperature
of 250 ◦C. The fracture morphology of AZ31B was observed at different strain rates and temperatures
by SEM. Additionally, the main fracture pattern was quasi-cleavage at room temperature. However,
with the increase in temperature, the fracture pattern was transited from a quasi-cleavage pattern to a
ductile fracture pattern. The ductile fracture pattern was the main fracture pattern at a temperature
of 250 ◦C.

Keywords: strain rate; temperature; AZ31B magnesium alloy; formability

1. Introduction

With the increase in energy demands and environmental pressure, many researchers
and manufacturers find that declining the weight of a vehicle plays an important role
in protecting the environment and improving the efficiency of fuel consumption [1,2].
Declining the weight of a vehicle is the key issue when it is designed in the future. Therefore,
it is imperative to develop lightweight metal materials to replace the traditional metal
materials in the automotive applications field [3]. In order to achieve this goal, some
research groups have been investigating some lightweight metal materials to fabricate the
components of vehicles, such as aluminum alloy or magnesium alloy [4].

Magnesium (Mg) alloy is a special lightweight-structure metal material, and it exhibits
distinctive properties from other metals in terms of mechanical property (e.g., traditional
metal, steel and aluminum alloy) [5–7]. In recent years, magnesium alloys have been
extensively used in industrial fields (e.g., aerospace, automotive manufacturing, electronic
communications, military affairs, nuclear power) due to their unique mechanical properties,
such as low density, high specific stiffness and high specific strength and easy recovery.
However, the poor plasticity and formability of magnesium alloy sheets are exhibited at
room temperature due to their special crystal structure (the hexagonal closed-packed crystal
structure, with few slip systems and a strong basal plane texture) [8]. Through the research
of William J. Joost [9], the results showed that magnesium alloy exhibits tremendous
potential in the industrial field, but some technical barriers limit its development. The
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AZ-series magnesium alloy is one of the magnesium alloys with a high aluminum content,
which is widely used in industrial applications based on its high strength, high ductility
and so on. At present, the AZ31B magnesium alloy is considered to be the one with the
most potential for magnesium alloy in structural applications based on the Mg–Al–Zn
ternary system [10].

Tensile testing is the most important method used to analyze the formability, plasticity
and mechanical properties of metal sheets. The material’s characteristics can be obtained
when a specimen is stretched until it is broken, such as its strain at break, yield strength,
Young’s modulus and ultimate tensile strength, etc. [11]. Zihan Li et al. [12] investigated
the formability of AZ31B magnesium alloy sheet at an elevated temperature. The analysis
results showed that the forming limit of AZ31B was improved by increasing the forming
temperature. Zimin Wang et al. [13] investigated the effects of temperature for the up die
on the formability of AZ31B magnesium alloy in the forming process. The analysis results
showed that the formability of AZ31B could be improved by increasing the upper-die
temperature during the stamping process. Wurong Wang et al. [14] studied the formability
of AZ31B magnesium alloy in the warm-stamping process. The studied results showed
that the stamping formability of material could be seriously influenced by the changing
temperature during the warm-stamping process, and the serious anisotropy emerged when
the temperature was raised to 250 ◦C. D. Ghaffari et al. [15] investigated the effects of
the temperature gradient and the strain rate on the formability of AZ31B magnesium
alloy and the results showed that the formability of the material could be improved
considerably by increasing the temperatures and the effects of the stain rates in the forming
process and was enhanced with the raising of temperatures. Xi Nie et al. [16] studied the
effects of isothermal compression on the microstructural evolution of AZ31B magnesium
alloy. The results showed that the grain structure of AZ31B could be refined effectively
by increasing the deformation extent and cooling rate during the hot process, and the
mechanical property was improved by controlling the size of the grains of material. Jing-
Ren Dong et al. [17] studied the critical damage value of AZ31B magnesium alloy by tensile
test under different temperatures and strain rates. They obtained that the critical damage
values were more sensitive to the deformation temperature. Zhou Guowei et al. and Wang
HM et al. [18,19] investigated the strain-rate sensitivities of AZ31B magnesium alloy at
various temperatures through tensile tests and numerical simulation. The results showed
that anisotropy illustrates a larger dependence on the strain rate. Considering the effects of
tool temperature on the formability of AZ31B, Guang-sheng HUANG et al. [20] investigated
the forming limit diagrams (FLDs) of AZ31B magnesium alloy sheet by conducting stretch-
forming tests at different temperatures. They concluded that the reduction of texture
intensity is effective to the improvement of formability not only at room temperature but
also at low-and-medium temperature. But effect of texture on FLDs becomes weak with
increasing temperature. De-Hua Yu [21] studied the elevated temperature deformation
behavior of AZ31B from the point of view of modeling and constitutive. According to
the previous study about AZ31B, similar studies provided some guidance for this article.
However, the effects of the multiple strain rates and temperatures at the same time were
not investigated in the tensile process. Therefore, according to the demand for industry
components of AZ31B, it is with great significance that we study the formability of AZ31B
magnesium alloy sheet at different strain rates and forming temperatures.

In this article, the formability of the AZ31B magnesium alloy sheet was studied under
the multiple strain rates and tensile temperatures. The optimum formability of the AZ31B
magnesium alloy sheet was considered based on the analysis of its mechanical properties
and microstructure. Meanwhile, some guidance has been provided to help others who
study the formability of AZ31B magnesium alloy sheets in the future.
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2. Materials and Methods
2.1. Material and Sample Design

A thickness of 1.2 mm commercial AZ31B magnesium alloy sheet was selected as the
analysis material in this study. This material is a type of wrought magnesium alloy, which
was produced by squeeze casting. The chemical composition of the material is listed in
Table 1.

Table 1. Chemical composition of AZ31B magnesium alloy sheet (wt%. mass fraction).

Element Mg Al Si Ca Zn Mn Fe Cu Ni

Standard value bal. 2.420 0.080 0.040 1.020 0.300 0.003 0.010 0.001

The specimens were prepared according to the GB/T 228.1–2010 metallic materials
test pieces for tensile testing [22]. The specimens’ sampling direction, the material’s rolling
direction, and the specimen’s size are shown in Figure 1.
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Figure 1. The sketch drawing of tensile testing specimens (unit: mm).

2.2. Experimental Methods

In order to keep the stability of the temperature during the experiment process, the
tensile tests’ equipment was carried out by using the MTS, as shown in Figure 2. The
MTS was equipped with a controllable environmental chamber, which was heated by a hot
air blower motor. Based on the manufacturing process and the formability of the AZ31B
magnesium alloy sheet’s structural parts, the tensile test temperatures selected were 25 ◦C,
150 ◦C, 200 ◦C, and 250 ◦C, and the strain rates selected were 0.017 s−1, 0.17 s−1, 0.34 s−1,
as shown in Figure 3. These tensile temperatures and rates were mostly contained within
the range of the AZ31B magnesium alloy sheet industrial-forming conditions [23]. Before
the tensile testing, the specimens remained in the testing environment temperature for
30 min. According to the records of the load distributions relationship of the positions
and loads in the tensile process, the true stress and true strain were calculated. The same
experimental conditions for the specimens were repeated five times to ensure the reliability
of the results. After the tensile testing, the microstructures of the specimens were analyzed
by OM (optical microscope) and SEM (scanning electron microscopy).
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3. Results and Discussion
3.1. Mechanical Property

The data of the true stress and true strain of the tensile tests of AZ31B under the differ-
ent strain rates at each experiment temperature are shown in Figure 4. In the experiment
process, 0.017 s−1 was the slowest strain rate, and 0.34 s−1 was the fastest strain rate at each
experimental temperature. The strain rate was the most important factor in affecting the
plasticity and formability of the AZ31B magnesium alloy sheet based on the exhibition of
the test data. According to the analysis of data, the results showed that the lower effect of
the strain rate on formability was exhibited at a lower temperature, as shown in Figure 4a.
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At a temperature of 25 ◦C, the deviation value of true stress between the maximum strain
rate and minimum strain rate was 76 MPa when the true strain rose to 0.2. With the increase
in the temperature, the effect of the strain rate on the formability of AZ31B was increased,
as shown in Figure 4b–d. At a temperature of 250 ◦C, the deviation value of true stress
between the maximum strain rate and minimum strain rate was 118 MPa when the true
strain rose to 0.2. Additionally, the growth rate of the true stress was 55%, from 25 ◦C to
250 ◦C, as shown in Figure 5. Therefore, the effect of the strain rate on the formability of
AZ31B increased at a high temperature.
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Figure 4. The true stress and true strain of AZ31B under the different strain rates at each experiment
temperature. (a) at 25 ◦C; (b) 150 ◦C; (c) at 200 ◦C; (d) at 250 ◦C.
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Through the analysis above, the temperature was also an important factor in improving
the formability of the AZ31B magnesium alloy sheet during the forming process. The data
of true stress and true strain at the different temperatures under each experiment strain
rate is shown in Figure 6. Based on the analysis of experimental data under each strain rate,
the results showed that there was a serious effect of the temperature on the formability of
AZ31B. In a constant strain-rate state, the true stress of AZ31B was seriously reduced with
an increase in the temperature. Additionally, the percentage elongation after the fracture of
AZ31B at different temperatures and strain rates is shown in Figure 7. According to the
data analysis on the percentage elongation after a fracture, the results showed that there
was a lower effect of strain rate on the plasticity of AZ31B at a temperature of 25 ◦C. With
the increase in temperature during the tensile process, the effect of the strain rate on the
plasticity of AZ31B was increased. Meanwhile, the plasticity of AZ31B was improved with
the increase in temperature under the constant strain rate.
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Figure 7. The percentage elongation after fracture of AZ31B at the different tensile temperatures and
rates.

The reason for this phenomenon was that the formability of AZ31B was mainly deter-
mined based on the competing hardening and softening [24]. At the lower temperature, the
density of dislocation increased and proliferated rapidly during the deformation process,
which caused the dislocation movement to become more and more difficult. The hardening
played a major role during the tensile process at room temperature. Therefore, the poor
effect of strain rate on the formability was exhibited. Furthermore, a lower percentage
of elongation after the fracture and plasticity occurred was exhibited. However, the com-
petition between the hardening and softening changed with the increase in temperature.
At the high temperature, the dislocation movement was improved due to enough energy
in the deformation process [25,26]. The softening played a major role during the tensile
process. Therefore, a higher percentage of elongation after AZ31B’s fracture and plasticity
was exhibited at the high temperature. In addition, at the high strain rate, there was not
enough time for the plasticity deformation, so the lower plasticity and formability of AZ31B
were exhibited.

3.2. Microstructure Evolution

The primary metallography of AZ31B magnesium alloy at room temperature was
shown and was not an obvious characteristic of the elongated and recrystallised grains,
as shown in Figure 8. The size-uniformity of the grains was observed, and the average
grain size was 15.8 µm. At a temperature of 25 ◦C, under the lower strain rate, no obvious
characteristics were observed for the deformation of the structure of the grain, and the
relatively uniform structure of the grain was observed, as shown in Figure 9a,b. However,
when the strain rate rose to 0.34 s−1, the slight feature of elongation for the grain was
observed, as shown in Figure 9c. It was stressed when the lower effect of the strain rate on
the deformation of the grain structure was at room temperature.
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Figure 9. The metallography of AZ31B at different temperatures and strain rates. (a) 0.017 s−1 at
25 ◦C; (b) 0.17 s−1 at 25 ◦C; (c) 0.34 s−1 at 25 ◦C; (d) 0.017 s−1 at 150 ◦C; (e) 0.17 s−1 at 150 ◦C;
(f) 0.34 s−1 at 150 ◦C; (g) 0.017 s−1 at 200 ◦C; (h) 0.17 s−1 at 200 ◦C; (i) 0.34 s−1 at 200 ◦C; (j) 0.017 s−1

at 250 ◦C; (k) 0.17 s−1 at 250 ◦C; (l) 0.34 s−1 at 250 ◦C.

With the increase in temperature, the deformation degree of grains was gradually
increased, and the grains were elongated in the tensile direction, as shown in Figure 9d–i.



Metals 2022, 12, 1103 10 of 14

When the temperature was raised to 150 ◦C, the shapes of the grain were deformed from
an equiaxed shape to a flat shape, and the deformation degree of the shape of grains
was increased with the increase in strain rate. Meanwhile, there were some fine grains
observed, which were considered the initial stage of recrystallization of AZ31B, as shown
in Figure 9d,e. When the temperature was raised to 200 ◦C, the recrystallization degree
was increased, and more fine-grain structures were observed, as shown in Figure 9g–i. The
effect of the strain rate on the grain structure was increased at high temperatures. Under
the lower strain rate, the grains were mainly divided into a fine grain and coarse grain,
and the coarse grains were not obviously elongated, as shown in Figure 9g. However,
when the strain rate rose to 0.34 s−1, the obvious elongation feature for coarse grains was
observed, as shown in Figure 9i. When the temperature was raised to 250 ◦C, the obvious
characteristics of an approximate complete recrystallization and relative uniform fine-grain
structure were observed. The average grain size was 9.8 µm. However, there were also a
few coarse grains observed, as shown in Figure 9j. Additionally, the approximate spiculate
morphology of the coarse grains was observed when the strain rate rose to 0.34 s−1, as
shown in Figure 9l. According to the analysis above, at the high temperature, with an
increase in the strain rate, the degree of elongating for the coarse grains gradually increased.
The average grain size was reduced, and the recrystallization increased continually with
the increase in temperature. Additionally, the more serious effect of the high strain rate
on the grain structure was exhibited at the high temperature, as shown in Figure 9c,f,i,l.
Therefore, the better plasticity and uniform fine-grain structure of the AZ31B magnesium
alloy sheet could be obtained under the lower strain rate at the higher temperature.

As shown in Figure 10, the typical fracture morphology of the AZ31B specimens under
the different temperatures and strain rates was observed by SEM. The fracture morphology
of AZ31B under the different strain rates at a temperature of 25 ◦C is shown in Figure 10a–c.
According to the analysis of the fracture pattern, the cleavage steps and the river pattern
were the main fracture patterns at this experimental temperature. At a temperature of
25 ◦C, with the increase in the strain rate, the fracture morphology was mainly composed
of cleavage steps to the river pattern. There was quite a difference with other light metals
in the fracture model under the high strain rate [27]. The increase in the temperature and
the fracture morphology of AZ31B under the different strain rates is shown in Figure 10d–i.
The quasi-cleavage river pattern was observed in the fracture morphology of AZ31B, and
some small dimples were exhibited at a temperature of 150 ◦C. With the increase in the
strain rate, the quantity and size of the dimples did not obviously decrease. When the
temperature was raised to 250 ◦C, the dimple depth in the fracture surface of AZ31B
was deeper than the lower temperature, as shown in Figure 10j–l, which was the typical
dimple pattern. Additionally, the better plasticity of AZ31B was exhibited under the
lower strain rate at a temperature of 250 ◦C. Meanwhile, the deeper dimple pattern also
provided evidence for the plasticity of AZ31B at the high tensile temperature. Based on the
analysis of the fracture morphology of AZ31B and the mechanical properties above, with
the increase in tensile temperature, the fracture pattern of AZ31B was gradually transited
from a quasi-cleavage fracture pattern to a ductile fracture pattern. The cleavage step and
river pattern were observed at a temperature of 25 ◦C; with the increasing temperature,
the big and deep dimples were exhibited at a temperature of 250 ◦C. It was observed
that the elongation percentage after the fracture and plasticity of AZ31B increased with
the increasing temperature, as seen in Figure 7. This phenomenon could be attributed
to the transition between the hardening effect and softening effect of AZ31B [28]. When
the tensile temperature was 25 ◦C, a more hardening phenomenon was exhibited, and
there was not enough energy to support the plasticity deformation and dislocation’s rapid
propagation. Therefore, the formability of AZ31B was mainly determined by its hardening
during the tensile process. However, with the increase in temperature, the softening effect
increased gradually. When the temperature was raised to 250 ◦C, there was enough energy
to support the deformation and the dislocation’s rapid propagation of AZ31B during the
tensile process. Therefore, the plasticity and formability of AZ31B were improved at a high
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temperature. However, at the same temperature, there was not enough time to support the
deformation of AZ31B; thus, lower plasticity was exhibited. Therefore, at a temperature of
250 ◦C, the depth of the dimples at 0.017 s−1 was deeper than that at 0.34 s−1.
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4. Conclusions

In this article, the tensile tests for the AZ31B magnesium alloy sheet were carried out
at different temperatures and strain rates. According to the analysis of the mechanical
property and microstructure of AZ31B at the different strain rates and temperatures, the
following results were reached:

(1) AZ31B magnesium alloy sheets behave positively to temperature sensitivity when
forming at a temperature lower than 200 ◦C.

(2) The partially recrystallized AZ31B was exhibited at a temperature of 150 ◦C, and the
approximate complete recrystallization was exhibited at a temperature of 250 ◦C. At
room temperature, the quasi-cleavage fracture pattern is the main fracture pattern for
AZ31B in the forming process. However, with an increasing temperature, the fracture
pattern of AZ31B transits from a quasi-cleavage fracture pattern to a ductile fracture
pattern in the forming process. At a high temperature, the ductile fracture pattern is
the main fracture pattern for AZ31B in the forming process.

(3) The strain rate is an important factor in affecting the plasticity and formability of
AZ31B. At room temperature, there is no obvious effect. However, with the increasing
temperature, the distinct effect of the strain rate on the grain structure and plasticity
is exhibited at a temperature of 150 ◦C, and a more serious effect is exhibited at a
temperature of 250 ◦C.

(4) The percentage elongation after the fracture of AZ31B declined with the increasing
strain rates. The formability and plasticity would be improved by controlling the
lower strain rate and the higher temperature in the forming process.
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