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Abstract: Four-point bending fatigue tests were performed on semi-solid Al–7Si–Mg castings with
varying magnesium contents and heat treatment conditions. Additionally, the effect of anodising
on the fatigue resistance of semi-solid Al–7Si–Mg castings was evaluated. Fracture surface and
microstructure analysis showed that fatigue crack initiation occurred mainly at the periphery of
regions of positive macrosegregation at the casting surface, resulting most likely from exudation.
The microstructure of these macrosegregation regions was mostly eutectic and was frequently found
surrounded by a layer of oxides. This layer of oxides promoted weak bonding between the macroseg-
regation region and the surrounding material and acted as a crack initiation site. In this study, primary
α-Al globule agglomerates at the casting surface and surrounded by a layer of oxides also promoted
fatigue crack initiation. Fatigue resistance of semi-solid Al–7Si–Mg castings in the T5 and T6 condi-
tions increased with the increase in the magnesium content of the alloy from 0.3 to 0.45 wt.% due to
the higher precipitation hardening response. However, the increase in the magnesium content from
0.45 to 0.6 wt.% resulted in a slight decrease in the fatigue resistance. The oxide layer formed during
anodising had no significant effect on the fatigue resistance of the semi-solid Al–7Si–Mg castings in
this study due to the dominant effect of the macrosegregation regions on fatigue crack initiation.

Keywords: fatigue; crack initiation; rheocasting; macrosegregation; heat treatment

1. Introduction

Most of the fatigue life of technical components in the high cycle regime is governed
by crack initiation and propagation of microstructural short cracks [1,2]. Crack initiation
usually occurs at or near the surface of the material, resulting from defects or microstruc-
tural heterogeneities at which stress concentration is very high [1]. Castings defects at
the surface or subsurface govern the fatigue life of Al–7Si–Mg castings by decreasing the
periods of crack initiation and propagation [3,4]. Shrinkage or gas porosities and oxides are
commonly reported as the main crack initiation defects [4–6]. Morphology [7], size [8,9],
and location of defects in the cross-section of the casting [10] influence the fatigue behav-
ior of the castings significantly. Semi-solid metal (SSM) castings commonly have fewer
shrinkage and gas entrapment defects than high-pressure die castings (HPDC) [11].

SSM Al–7Si–Mg castings typically have a longer fatigue life than permanent mould
castings of the same alloy in high cycle fatigue regimes (>104 cycles) [12]. The lower defect
content of the SSM castings compared to the permanent mould castings delays the fatigue
crack initiation [12,13]. The smaller grain size of SSM castings also hinders the fatigue
crack propagation due to the higher density of the grain boundaries, which results in
the longer fatigue life of SSM castings compared to permanent mould castings [12,13].
Surface segregation is commonly found in direct-chill casting [14], HPDC [15–17], and
SSM casting [18–20] products and results in heterogeneous properties along the cross-
section of the castings [14]. Gourlay et al. [21] suggested that the surface segregation
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layer formation in HPDC results from a combination of inverse segregation and exudation
mechanisms. In inverse segregation, solute-enriched liquid flows towards the casting
surface through the interdendritic regions to compensate for solidification shrinkage and
thermal contraction [21]. Exudation occurs when the solidifying surface of the casting
starts to shrink and gains enough strength to pull away from the die wall, forming a
gap between the solidifying casting surface and the die wall [17]. Consequently, if the
pressure differential between the gap and the interior of the alloy is high enough, the solute-
enriched liquid can flow through interdendritic channels [17], or hot tears [14], into the
space between the solidifying alloy and the die wall. This exudated solute-enriched liquid
solidifies into a nearly fully eutectic microstructure [14,22]. The migration of externally
solidified crystals towards the casting centre during filling also contributes to surface
segregation [22]. Low gate flow speed, application of intensification pressure, and lower
casting temperatures promote exudation in magnesium high-pressure die castings [23].
Therefore, process parameters that commonly result in lower microporosity in HPDC
promote exudation [23]. Few studies were found relating to the effect of surface segregation
on fatigue. However, the few studies found showed that surface segregation is detrimental
to the fatigue life of castings [15,24].

Anodising is a surface treatment used to improve aluminium alloys’ corrosion and
wear resistances [20]. The brittle nature and irregularities of the oxide layer formed on the
aluminium alloys’ surface during anodising can negatively affect fatigue resistance [25].
Additionally, fatigue resistance tends to decrease with the increase in the oxide layer
thickness obtained after anodising [25]. However, most of the studies reporting this
behaviour were performed on wrought alloys.

This work identified the primary defects that result in fatigue crack initiation on
SSM Al–7Si–Mg castings with varying magnesium contents and heat treatment conditions.
The effect of anodising on crack initiation and fatigue properties was also investigated.
Additionally, the formation of the defects was discussed and correlated to the flow and
solidification conditions during the SSM casting process.

2. Experimental
2.1. Alloys

About 80 kg of Al–7Si–0.3Mg, Al–7Si–0.4Mg, and Al–7Si–0.45Mg ingots were melted
at 700 ◦C in a graphite-bonded silicon carbide crucible using an electrical resistance furnace.
The Al–7Si–0.6Mg alloy was prepared by the addition of Al–7Si–0.45Mg ingots and mag-
nesium wrapped in aluminium foil to the bottom of the graphite-bonded silicon carbide
crucible to obtain the intended alloy composition after melting. The chemical compositions
after melting were measured using a SPECTROMAXx Metal Analyzer (Spectromaxx CCD
LMXM3, Spectro Analytical Instruments, Cleves, Germany) with the results shown in
Table 1. At least two batches were prepared for each alloy.

Table 1. Average chemical compositions of the Al–7Si–Mg alloys used in this study. Compositions
in wt.%.

Alloys Si Mg Fe Ti Sr Al

Al–7Si–0.3Mg 7.0 ± 0.1 0.32 ± 0.04 0.14 ± 0.02 0.09 ± 0.02 0.020 ± 0.011 Bal.
Al–7Si–0.4Mg 7.2 ± 0.1 0.41 ± 0.02 0.12 ± 0.01 0.11 ± 0.01 0.029 ± 0.001 Bal.

Al–7Si–0.45Mg 7.4 ± 0.2 0.47 ± 0.01 0.11 ± 0.01 0.11 ± 0.01 0.025 ± 0.002 Bal.
Al–7Si–0.6Mg 7.1 ± 0.1 0.60 (0.04) 0.12 ± 0.01 0.12 ± 0.01 0.024 ± 0.002 Bal.

2.2. Semi-Solid Castings

The SSM castings were produced using the Rheometal™ process [26]. A so-called
enthalpy exchange material (EEM) was cast in a copper mould with a Ø40 mm cylindrical
cavity. A 12 mm diameter stainless steel rod was cast 10 mm deep into the EEM base. The
EEM height was adjusted to generate an addition corresponding to 7 wt.% of the total shot
weight. Before immersion, the EEMs were preheated to 200 ◦C in an air circulation electrical
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resistance furnace and connected to the stirring device through the steel rod. About 1.3 kg
of superheated aluminium alloy was ladled from the crucible, and, as the temperature
of the liquid reached 650 ◦C (with an approximate liquidus temperature of 612 ◦C and
solidus temperature of 555 ◦C), the preheated EEM was immersed while rotating at 850 rpm
to produce the slurry. The slurry preparation process took about 18 s. When the slurry
preparation process was complete, the slurry was immediately poured into the shot sleeve
of a 50 tonne vertical high-pressure die casting machine and injected into the die cavity
to produce tensile bars, as shown in Figure 1a. The solid fraction was mass based and
kinetic, resulting in a slurry temperature of 611–612 ◦C. Before experimentation started, a
set of high-pressure die castings were produced to warm up the assembly and maintain
reproducible thermal conditions in the shot sleeve and die cavity during the experiment.
The casting parameters were kept constant in all tests with a plunger advance speed of
0.3 m/s and an intensification pressure of 160 bar. A duration of 10 s was set for the
intensification pressure and the cooling stages of the casting in the interior of the die cavity.
However, the SSM castings, heat-treated to the T5 condition, were immediately extracted
from the die cavity after the intensification pressure stage and immersed into a water bath
at room temperature to minimise precipitation during cooling. A PolyTemp HTF 300 heater
was used to maintain a constant flow of oil at 175 ◦C in the interior of the die to reduce
temperature variations in the die between castings.
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Figure 1. (a) Illustration of the SSM casting and (b) dimensions in mm.

2.3. Heat Treatments

The SSM Al–7Si–Mg cast tensile bars were heat-treated to the T6 and T5 conditions
with the parameters previously investigated [27]. The T6 heat treatment consisted of a
solution treatment performed in a Nabertherm L40/11 muffle furnace at 510 ◦C for 4 h,
followed by quenching in a water bath at room temperature. Within 24 h of quenching, the
solution-treated samples were aged at 190 ◦C for 2 h in an air circulation electrical furnace.

The T5 treatment was performed within a period of 24 h after casting. The T5 treatment
of the tensile bars varied with composition. The SSM Al–7Si–0.3Mg and Al–7Si–0.45Mg
cast tensile bars were artificially aged at 175 ◦C for 4.5 h, while the Al–7Si–0.6Mg tensile
bars were artificially aged at 180 ◦C for 4.5 h in an air circulation electrical furnace. The
temperatures and holding times used for the different heat treatments in this study were
based on a separate study of the optimised heat treatment procedure to minimise blistering
occurrence during solution treatment and achieve peak hardness during ageing.

2.4. Anodising

The anodising process was performed in a 1.0 M H2SO4 solution at room temperature
at a constant voltage of 16 V for 15 min to investigate the influence of the anodised layer on
fatigue properties. The oxide layer thickness of the tested samples was around 3 µm. In the
current study, prior to anodising, the samples were ultrasonically cleaned in ethanol for
5 min. After anodising, the samples were rinsed in distilled water and dried.
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2.5. Tensile Testing

Tensile testing was performed at room temperature in a Zwick/Roell Z100 testing
machine (ZWICKRoell Group, Ulm-Einsingen, Germany) according to the SS-EN ISO
6892-1:2016 [28]. A constant strain rate of 0.00025 s−1 was used up to the offset 0.2%
yield strength, where the strain rate was increased to 0.002 s−1 and kept constant until
fracture. The elongation was measured continuously by a laser Zwick/Roell LaserXtens
extensometer (ZWICKRoell Group, Ulm-Einsingen, Germany). At least three samples were
tested for each condition.

2.6. Four-Point Bending Fatigue

Four-point bending fatigue tests were carried out on the SSM Al–7Si–Mg castings
using an MTS LandMark™ servo-hydraulic test machine with stress amplitude set fol-
lowing linear elastic mechanics. The nominal stress was calculated according to the beam
mechanical theory [29]:

σ =
3P(L− a)

bt2 (1)

where P is the load applied, b and t are the width and thickness of the specimens, respec-
tively, and a is the distance between the loading and support plates. The measured average
surface roughness of the castings was 1.07 ± 0.32 µm in Ra using a Taylor Hobson stylus.
The fatigue tests were carried out at room temperature under load control using sinusoidal
loading at a frequency of 10 Hz and a stress ratio of R = −1. A layer of tape was placed
between the samples’ surface and the support and loading plates of the four-point bending
fixture to reduce friction between the contacts during testing. The samples were carefully
aligned before fixation to the position. After testing, the fracture surfaces of each specimen
were analysed using a JEOL JSM-7001F Scanning Electron Microscope (SEM) to identify
the crack initiation defects.

2.7. Characterisation

Samples were either sectioned along the dashed line shown in Figure 1a for obser-
vation of the cross-section or cut transversely to observe the surface layer microstructure
of the castings. Subsequently, both the cross-section and surface of the samples were
ground, and the polishing was complete with OP-U suspension before observation. During
polishing, a depth of ≤190 µm of the surface layer was removed. Optical micrographs
were acquired using an Olympus GX71F. The SEM equipped with energy-dispersive X-ray
spectroscopy (EDS) was used for EDS point analysis at a fixed acceleration voltage of 15 kV.
The compositions of the different regions in the surface layer were obtained by EDS point
analysis on at least two SSM castings per condition.

The size of the different iron-rich phases was determined by measuring the longest
line segment that could be drawn within the contour of the intermetallic phase. The
longest line segment lengths of at least 30 iron-rich intermetallic phases were measured on
optical micrographs taken with a magnification of 1000× near the cross-section centre of
each specimen.

The manual point count method from ASTM E562-11 [30] was used for determination
of the area fraction of the iron-rich and Mg2Si phases in the eutectic regions observed on
the optical micrographs. At least four different regions near the cross-section centre were
analysed for each specimen condition. The area fraction of the intermetallics determined for
the eutectic regions was multiplied by the fraction of eutectic calculated by Thermocalc™
using the Scheil–Gulliver model to obtain the area fraction of the intermetallics in each
specimen. The magnification used for determination of the area fraction of the different
intermetallic phases was 1000× for all the samples analysed.

In this work, two populations of grains were observed in the microstructures. The large
α-Al globules observed in the microstructure that likely formed during slurry preparation
and in the shot sleeve are denoted as α1. The smaller α-Al observed in the microstructures,
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<25 µm in diameter, was identified as in-cavity solidified grains [31]. The general denotation
α-Al is used when the distinction of the different α-Al in the SSM casting is irrelevant.

3. Results
3.1. Microstructural Analysis

Figure 2 shows optical micrographs from near the cross-section centres and from the
surface layer of the SSM Al–7Si–Mg castings in the T5 and T6 conditions. The eutectic
microstructure for each sample is shown in Figure 3. The microstructure near the cross-
section centre of the Al–7Si–Mg castings in both T5 and T6 conditions consisted of primary
α1-Al globules, a few small, in-cavity solidified grains, and eutectic, as shown in Figure 2.
A significant lower fraction of primary α1-Al globules and a higher fraction of in-cavity
solidified grains were observed in the surface layer than near the cross-section centre, as
shown in Figure 2. The primary α1-Al globules were concentrated in the casting centre,
similar to the externally solidified crystals in HPDC [32]. The packing of the primary α1-Al
globules towards the casting centre may have resulted from a combination of mechanisms,
such as the Magnus lift [32] and Mukai-Lin-Laplace effects [33], during die cavity filling.
Consequently, fewer primary α1-Al globules and a large fraction of in-cavity solidified
dendritic α-Al grains were observed in the surface layer, as shown in Figure 2.

The eutectic regions of the SSM Al–7Si–0.3Mg casting surface in the T5 condition con-
tained iron-rich, plate-like π-Al8FeMg3Si6 and modified Al–Si eutectic phases, as reported
in other studies for similar alloys [20]. No significant differences in the microstructure were
found for the SSM Al–7Si–0.3Mg castings in the as-cast and T5 conditions. The higher
magnesium content of both SSM Al–7Si–0.45Mg and Al–7Si–0.6Mg castings resulted in
the formation of the Mg2Si phase in the eutectic regions in addition to iron-rich, plate-like
π-Al8FeMg3Si6 and modified Al–Si eutectic phases, as seen in Figure 3b,c, respectively. The
microstructure of the SSM Al–7Si–0.4Mg casting was identical to the SSM Al–7Si–0.45Mg
castings, and, for this reason, it is not shown in Figure 2.

The T6 heat treatment changed the eutectic microstructure of the SSM Al–7Si–Mg
castings’ surface compared to the same alloy castings in the T5 condition, in addition to
strengthening the α-Al matrix by precipitation hardening. Spheroidised eutectic silicon
and a minor fraction of iron-rich intermetallic phases surrounded by an α-Al phase were
observed in the eutectic regions of the SSM castings’ surface in the T6 condition, as shown
in Figure 2d through Figures 2j and 3d,e. No Mg2Si phase was observed in either castings’
surface in the T6 condition, which suggests that it was dissolved during the solution
treatment, as reported in other studies [34]. Wang and Davidson [34] showed an incomplete
dissolution of the π-Al8FeMg3Si6 phase for Al–7Si–Mg castings with magnesium content
higher than 0.4 wt.%. It seems that a significant portion of the π-Al8FeMg3Si6 phase
remained after solution treatment of the higher magnesium SSM casting surface in the
T6 condition, as showed in the highlighted image of Figure 2j. However, for the SSM
Al–7Si–0.3Mg casting in the T6 condition it appears that the π-Al8FeMg3Si6 phase was
mostly transformed into thin β-Al5FeSi platelets, as shown in Figure 3d and reported in
other studies for alloys with similar magnesium levels [34].

3.2. Size and Area Fraction of Intermetallic Phases

The increase in the magnesium content of the casting did not have a clear effect on
the size of the iron-rich intermetallic phases obtained for the SSM Al–7Si–Mg castings
in the T5 conditions, as shown in Figure 4a. A slightly larger π-Al8FeMg3Si6 phase was
obtained for the SSM Al–7Si–0.45Mg casting in the T5 condition in comparison to both the
SSM Al–7Si–0.3Mg and SSM Al–7Si–0.6Mg castings in the same condition, as shown in
Figure 4a. After T6 heat treatment, smaller, iron-rich intermetallic phases were obtained for
all castings. However, no differences in size were obtained for the β-Al5FeSi phase of the
SSM Al–7Si–0.3Mg casting in the T6 condition and the π-Al8FeMg3Si6 phase for the SSM
Al–7Si–0.45Mg casting in the same condition.
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Figure 4b shows the area fraction of the different intermetallic phases detected in the
selected SSM castings. There was no significant influence on the fraction of π-Al8FeMg3Si6
phase caused by the increase in the magnesium content for the SSM Al–7Si–Mg castings in
the T5 condition. However, in addition to the π-Al8FeMg3Si6 phase, the Mg2Si phase was
detected for the SSM Al–7Si–Mg castings in the T5 condition with magnesium contents
higher than 0.3 wt.%, as shown in Figure 4b. It seems that the Mg2Si phase fraction tended
to be lower for the SSM Al–7Si–0.45Mg casting in the T5 condition in comparison to the
SSM Al–7Si–0.6Mg casting in the same condition. The fraction of intermetallic phases
decreased after T6 heat treatment, particularly for the SSM Al–7Si-0.3–Mg casting, as show
in Figure 4b.

3.3. Effect of Heat Treatment and Magnesium Content on Tensile Properties

Figure 5 shows the tensile properties obtained for the SSM Al–7Si–Mg castings in the
different conditions. The increase in the magnesium content of the SSM Al–7Si–Mg castings
resulted in an increase in the 0.2% offset yield strength for both T5 and T6 conditions. The
0.2% offset yield strength was significantly higher for the SSM castings in the T6 condition
than the castings with the same composition in the T5 condition. However, the 0.2% offset
yield strength increased slightly for the SSM Al–7Si–0.3Mg casting in the T5 heat treatment
in comparison to the casting with the same composition in the as-cast condition. Therefore,
precipitation hardening occurred to some extent in the SSM Al–7Si–0.3Mg castings in the
T5 condition.
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The tensile strength was similar for both SSM Al–7Si–0.3Mg casting in the as-cast and
T5 condition, as shown in Figure 5. No significant differences were obtained for the tensile
strength for the SSM Al–7Si–0.3Mg and Al–7Si–0.45Mg castings in the T5 condition. Both
SSM Al–7Si–0.4Mg and Al–7Si–0.6Mg castings in the T5 conditions showed slightly higher
tensile strength in comparison with the other SSM castings in the same condition. The
tensile strength increased after T6 heat treatment for all SSM castings in comparison to both
as-cast and T5 conditions.

The highest elongation was obtained for the SSM Al–7Si–0.3Mg casting in the as-cast
conditions, as shown in Figure 5. After T5 heat treatment, the elongation obtained for
the SSM Al–7Si–0.3Mg castings decreased. The increase in the magnesium content did
not affect the elongation of the castings in the T5 condition, except the SSM Al–7Si–0.4Mg
casting, which appeared to have a slightly higher elongation than the castings with higher
magnesium contents. The increase in the magnesium content of the SSM Al–7Si–Mg
castings in the T6 condition resulted in a decrease in the elongation, as shown in Figure 5.
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A higher elongation was obtained for the SSM Al–7Si–0.3Mg castings in the T6 condition in
comparison to the T5 condition while, for the SSM Al–7Si–0.45Mg castings, no significant
differences were obtained. Figure 4 shows that a significant fraction of the π-Al8FeMg3Si6
phase remained in the microstructure for the SSM Al–7Si–0.45Mg casting after the T6 heat
treatment, which can explain the low elongation obtained. A larger scatter in the elongation
values was obtained for the SSM Al–7Si–0.3Mg castings than for the other castings with
higher magnesium contents, which is an indication of higher defect content in the SSM
Al–7Si–0.3Mg castings.

3.4. Effect of Heat Treatment and Magnesium Content on Fatigue Properties

The four-point bending fatigue results are shown in Figure 6 as SN curves in which the
different marker filling patterns indicate the defect at which the fatigue crack initiated. It seems
that the four-point bending fatigue life of the SSM Al–7Si–0.3Mg castings increased with the
increase in the precipitation hardening obtained during ageing to the T5 and T6 conditions, as
shown in Figure 6a. Therefore, the SSM casting in the as-cast condition had the lowest fatigue
life compared to both T5 and T6 conditions. The SSM Al–7Si–0.3Mg castings in the T5 condition
showed greater scattering in the fatigue results. Both macrosegregation and cold shots located at
the casting surface initiated fatigue cracks in the SSM Al–7Si–0.3Mg castings in the T5 condition.
However, for the SSM Al–7Si–0.3Mg castings in both as-cast and T6 condition, just one defect
type was identified that started fatigue cracks, cold shot, and macrosegregation. Defects of
various shapes, sizes, and locations result in larger scattering in fatigue life [35]. The fact that
two types of defect were found to initiate fatigue cracks in the SSM Al–7Si–0.3Mg castings in
the T5 condition may explain the higher scattering in the fatigue results compared to the other
SSM castings shown in Figure 6a.
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Figure 6. SN curves with all experiments shown and the cause of failure identified on individ-
ual sample level of (a) SSM Al–7Si–0.3Mg castings in the as-cast, T5, and T6 conditions and SSM
Al–7Si–Mg castings with varying magnesium contents in the (b) T5 and (c) T6 conditions. (d) SN
curve obtained for the SSM Al–7Si–0.4Mg castings in the T5 condition with and without anodising.
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Fatigue life increased with the increase in magnesium content from 0.3 to 0.40 wt.% of
the SSM castings in the T5 condition, as shown in Figure 6b. The increase in the magnesium
content from 0.4 to 0.45 wt.% of the SSM Al–7Si–Mg castings in the T5 condition did not
significantly affect the fatigue life. For the SSM Al–7Si–Mg castings in the T6 condition,
the increase in the magnesium content from 0.3 to 0.45 wt.% increased the fatigue life, as
shown in Figure 6c. The increase in the magnesium content from 0.3 to 0.45 wt.% for the
SSM castings in both T5 and T6 conditions resulted in an enhanced precipitation hardening
during ageing [36]. An increase in the magnesium content of the SSM castings in the
T5 condition from 0.45 to 0.6 wt.% resulted in a slight decrease in fatigue life, as seen in
Figure 6b. This result is similar to previous studies that showed that fatigue life decreased
with the increase in the magnesium content of Al–7Si–Mg castings from 0.4 to 0.7 wt.% [3].
No difference in fatigue life was obtained for the SSM Al–7Si–0.4Mg castings in the T5
condition with or without anodising, which shows that surface macrosegregation had a
major effect on the fatigue life of these samples, as shown in Figure 6d.

Interestingly, for the SSM Al–7Si–Mg castings in the T6 condition, all the fatigue
cracks initiated on macrosegregation regions, except in two samples where either no crack
was observed or the crack initiated in an unidentified defect. Previous studies showed
that fatigue cracks in SSM castings in T5 and T6 conditions initiated most often either
in oxide inclusions [12] or in both oxides and porosities [37]. However, in this study,
macrosegregation was the defect most often found at fatigue crack initiation sites.

3.5. Fatigue Crack Initiation

In this study, the fatigue crack initiation occurred at the periphery of macrosegregation
regions on 32 of a total of 54 SSM castings tested, as shown in Figure 6. Cold shots, less pre-
dominant than macrosegregation regions, were also harmful to fatigue properties, resulting
in the fatigue crack initiation of 11 SSM castings tested. Figure 7 shows representative
SEM micrographs of the defects at which fatigue crack initiation occurred in the SSM
Al–7Si–Mg castings in the T5 and T6 conditions. The slurry flow direction in the die cavity
was perpendicular to gravity. Therefore, there was better contact of the slurry with the
bottom die wall compared to the top die wall during die cavity filling, which may have
affected defect distribution. However, no trend was observed in the distribution of the
defects, as seen in Table 2.

Table 2. Number of defects that initiated fatigue crack and distribution as a function of the casting
surface position during die cavity filling.

Defect Casting Surface Position during Die Cavity Filling

Top die Bottom die
Macrosegregation 16 16

Cold shot 5 6

In most of the specimens tested, the fatigue crack was initiated at the periphery of the
macrosegregation or cold shot located at the casting surface. The regions of macrosegrega-
tion had up to 200 µm thickness and a smooth surface when observed by SEM, as shown
in Figure 7a,c. Additionally, the regions of macrosegregation often appeared surrounded
by an oxide layer, as seen in Figure 7a,c. Therefore, it is likely that the bond between the
regions of macrosegregation and the surrounding microstructure was weak. It is reasonable
to assume that the oxide layer formed during anodising (around 3 µm thick in this study)
had little or no effect on the fatigue life of SSM Al–7Si–Mg castings that contain large
macrosegregation-related defects such as the ones observed in Figure 7.
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the T5 condition, (b) SSM Al–7Si–0.6Mg casting in the T5, and (c) SSM Al–7Si–0.3Mg casting in the
T6 conditions. The dashed line shows the casting surface position in the image.
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Cold shots located at the casting surface also originated fatigue cracks in this study.
These defects had a thickness significantly greater than the region of macrosegregation
when observed on the fracture surface, as seen in Figure 7b. Similar to macrosegregation,
the cold shots displayed a smooth surface, suggesting weak bonding between the defect
and the surroundings, possibly due to an oxide layer covering the defect surface. A gap
was observed between the cold shot and the surrounding fractured material, as shown in
the highlighted image in Figure 7b. This gap, which may have widened during the fatigue
testing, continued through the casting surface for a certain length, which revealed the weak
bonding that existed between the defect and the surrounding material.

The microstructures of the macrosegregation and cold-shot regions that originated
fatigue cracks in this study were obtained by polishing the casting surface where the
defect was located. Figure 8a shows the microstructure observed after polishing the sur-
face perpendicular to the fracture surface shown in Figure 7a. An almost fully eutectic
microstructure was observed in the region of macrosegregation. In contrast, in the bulk sur-
face, the microstructure consisted of few primary α1-Al globules, in-cavity solidified grains,
and eutectic, as shown in Figure 8a. Additionally, evidence of oxide films located between
the defect and the surroundings is highlighted by circles in Figure 8a. Lee et al. [15] found
that macrosegregation decreased the fatigue life of magnesium high-pressure die castings.
The microstructure of the regions of macrosegregation consisted of mostly eutectic [15],
similar to this study.
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Figure 8. Microstructure of the crack initiation region on the surface perpendicular to the fracture
surface of (a) SSM Al–7Si–0.45Mg in the T5 condition and (b) SSM Al–7Si–0.6Mg casting in the T5
condition after fatigue testing at σ =±158 MPa. (c) The microstructure of the surface perpendicular to
(b) after polishing. The full line shows the fracture surface location in the images. The red line shows
the position of the casting surface observed in (b). The circles highlight some regions of no bonding.
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Figure 8b shows the microstructure observed after polishing the surface perpendicular
to the fracture surface shown in Figure 7b where the cold shot was located. Figure 8c shows
the microstructure observed after polishing the fracture surface shown in Figure 7b. The
red line observed in Figure 8b shows the approximate position of the perpendicular surface
observed in Figure 8c. It seems that the gaps observed in Figure 8b,c divided a portion
of material with a distinct microstructure (cold shot) compared to the surroundings. The
microstructure of the cold shot contained a higher fraction of primary α1-Al globules and
a lower fraction of in-cavity solidified grains compared to the surroundings, as shown
in Figure 8c. The fraction of primary α1-Al globules in the cold-shot region and the
surroundings was determined by the manual point count method from ASTM E562-11 [30].
A total of 0.44 ± 0.08 and 0.19 ± 0.03 primary α1-Al globules fractions were determined for
the cold-shot region and surroundings, respectively. Note that these fractions of primary
α1-Al globules include the growth of the primary α1-Al globules during solidification that
occurs in the die cavity. The higher fraction of primary α1-Al globules in the cold-shot
region suggests that this region was formed at an earlier stage of the SSM casting process
than the surroundings. Additionally, there was evidence of oxides surrounding the cold
shot, which indicates that it was exposed to air at some point during the casting process.
Small globular grains can reach the maximum packing solid fraction point, and they exhibit
a solid-like behaviour at solid fractions higher than 0.6 [38]. Therefore, it is unlikely that
the agglomerate of α1-Al globules in the cold-shot region had a solid-like behaviour during
die cavity filling.

An almost fully eutectic microstructure was observed in certain regions, filling the
existing gap between the cold-shot region and the surroundings, as seen in Figure 8b. The
bond between the cold shot and the surrounding microstructure was weak due to the gaps
observed between the cold shot and the surroundings, as shown in Figure 8b,c. These
weak bonds or gaps most likely resulted from the oxide films located in between the cold
shot and the surrounding bulk surface. The distinct microstructure of the cold-shot region
compared to the surroundings and the existing weak bonding between these regions due
to the presence of oxides result in stress concentration regions in the material [35].

Figure 9 shows the microstructures of the regions of macrosegregation observed on
the casting surface. The polishing procedure removed a layer of the casting surface of less
than 190 µm in height. For the SSM castings in the T5 condition, the microstructure of
the regions of macrosegregation consisted mostly of modified eutectic. In the T6 condi-
tion, a higher fraction of spheroidised eutectic silicon was observed in these regions of
macrosegregation compared to the surroundings, as shown in Figure 9c. Occasionally either
primary silicon or primary α-Al dendrites were also observed in the regions of macrosegre-
gation. EDS measurements of silicon, magnesium, and iron concentrations in the regions
of macrosegregation and surroundings of the SSM Al–7Si–Mg castings in both T5 and T6
conditions are shown in Figure 10. The SSM Al–7Si–0.4Mg castings were not analysed since
they had similar microstructure and fatigue resistance to the SSM Al–7Si–0.45Mg castings.
Both silicon and magnesium concentrations were significantly higher in the regions of
macrosegregation than in the surroundings, particularly the silicon concentration. The
iron concentration was slightly higher in the regions of macrosegregation compared to the
surroundings in the SSM Al–7Si–0.3Mg casting in the T5 condition. However, no significant
differences in iron concentration were found for the other castings, as shown in Figure 10b.
For the SSM Al–7Si–Mg castings in the T6 condition, higher silicon concentrations were
obtained in the surroundings of the regions of macrosegregation compared to the SSM
castings with the same magnesium content in the T5 condition. However, it seems that the
magnesium concentration tended to decrease further in both regions of macrosegregation
and surroundings for the SSM Al–7Si–Mg castings in the T6 condition compared to the
castings in the T5 condition.
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concentrations were obtained in the surroundings of the regions of macrosegregation 
compared to the SSM castings with the same magnesium content in the T5 condition. 
However, it seems that the magnesium concentration tended to decrease further in both 
regions of macrosegregation and surroundings for the SSM Al–7Si–Mg castings in the T6 
condition compared to the castings in the T5 condition. 
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Figure 9. Optical micrographs showing regions of macrosegregation on the first 190 µm surface
layer of (a) SSM Al–7Si–0.3Mg and (b) SSM Al–7Si–0.6Mg castings in the T5 condition and (c) SSM
Al–7Si–0.45Mg casting in the T6 condition. 1—Region of positive macrosegregation. Arrows indicate
the possible location of oxide films. The dashed line shows the die wall position during casting.
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Figure 10. Concentrations of elements in the regions of macrosegregation and bulk surface measured
by EDS: (a) silicon and (b) magnesium and iron. The horizontal, dashed line in (a) indicates the
silicon nominal composition of the alloys.

4. Discussion
4.1. Fatigue Results

In four-point bending fatigue testing, the stress was at its maximum at the sample’s
surface, which increased the significance of defects located at the casting surface and
surface microstructure [39]. Both regions of macrosegregation and cold shots located at the
casting surface were mostly found surrounded by oxides, resulting in weak bonding at
the interfaces. Therefore, fatigue crack initiation was more likely to occur at the periphery
of these defects, where the stresses were concentrated [3]. Murakami and Endo [40]
showed that a small defect in a material could be analysed as a short crack that starts
from the defect and stops propagating. Therefore, the defect projected area on a plane
perpendicular to the direction of the maximum stress can be considered as the equivalent
crack [40]. The maximum value of the stress intensity factor (Kl,max) along a small defect
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(
√

Area ≤ 1000 µm) periphery can be correlated to its projected area using the following
equation [35]:

Kl,max ≈ 0.65σ0

√
π
√

Area (2)

in which σ0 is the maximum principal stress in MPa, and the
√

Area is the square root of
the projected area of the defect in m. The Kl,max along the defect periphery that resulted in
fatigue failure was calculated using Equation (2) for a series of SSM Al–7Si–Mg castings in
the T5 and T6 conditions. The values of Kl,max varied between 1.3 to 3.6 MPa

√
m. Although

cold shots were thicker than the macrosegregation regions (Figure 5) when observed on
the fracture surface of the sample, it did not necessarily result in higher Kl,max for the cold
shots. Therefore, macrosegregation can be as detrimental for fatigue life as cold shots.

In this study, the magnesium content and heat treatment conditions of the castings
tested were varied. From the four-point bending fatigue results, there was not a clear
trend showing the predominance of one or another defect with regard to stress level, heat
treatment, or magnesium content of the casting, as shown in Figure 6.

Casting defects play a dominant role in fatigue, but the composition, microstructure,
and heat treatment condition also affect fatigue properties [3]. The magnesium content
and the heat treatment condition of the SSM castings influence not only the α-Al matrix
strength but also the eutectic microstructure [3]. The increase in the α-Al strength reduces
the number and size of local plastic deformation regions in the material during fatigue
testing at a certain stress level [3]. Therefore, the formation of microcracks at the periphery
of regions of macrosegregation and cold shots, stress concentration areas, is less likely for
SSM castings with higher yield strength during fatigue testing. The strengthening of the
α-Al matrix that results from precipitation hardening may be the reason for the higher
fatigue life obtained for the SSM Al–7Si–0.3Mg castings in the T5 condition compared to
the as-cast condition, as seen in Figure 6a.

The increase in the magnesium content of the SSM castings results in the strengthening
of the α-Al matrix after ageing and a change in the eutectic microstructure [41]. The eutectic
microstructure of the SSM Al–7Si–0.3Mg castings in the T5 condition consisted of modified
eutectic silicon and plate-like π-Al8FeMg3Si6. The increase in the magnesium content of the
SSM casting resulted in the formation of the Mg2Si phase, in addition to the π-Al8FeMg3Si6
phase, as shown in Figure 2d,f and Figure 4. Fatigue life seemed to increase with the
increase in the magnesium content from 0.3 to 0.40 wt.% of the SSM castings in the T5
condition. This increase in the fatigue life most likely resulted from the higher strength
of the α-Al phase of the SSM Al–7Si–0.40Mg casting in the T5 condition compared to the
SSM Al–7Si–0.3Mg casting in the same condition. The increase in the magnesium content
from 0.4 to 0.45 wt.% did not affect the fatigue life of the SSM castings in the T5 condition.
When the magnesium content of the casting increased from 0.45 to 0.6 wt.%, the fatigue life
tended to decrease slightly, as shown in Figure 6b. Wang et al. [3] also obtained a decrease
in the fatigue life of Al–7Si–Mg sand castings when the magnesium content was increased
from 0.4 to 0.7 wt.%. The increase in the magnesium content of castings increased the
size of the brittle π-Al8FeMg3Si6 phase, in addition to enhancing precipitation hardening
during ageing [36]. However, in the current study, the increase in the magnesium content
of the SSM castings in the T5 conditions did not result in a larger π-Al8FeMg3Si6 phase
being formed, as shown in Figure 4. It seems that a slightly higher fraction of Mg2Si was
formed in the SSM Al–7Si–0.6Mg castings in the T5 condition than in the SSM castings with
lower magnesium contents, as shown in Figure 4.

Figure 6a shows that fatigue life increased for the SSM Al–7Si–0.3Mg castings in the
T6 condition compared to the T5 condition. The reduction in intermetallic phases fraction
(Figure 4) and the larger space between eutectic silicon spheroids obtained after T6 heat
treatment reduced dislocation interactions with the eutectic phases, which resulted in fewer
microcracks being formed in the defect surroundings [3]. Additionally, the increase in α-Al
strength minimised the number and area of the local plastic deformation regions in the
casting during fatigue testing [3]. The increase in precipitation hardening that resulted



Metals 2022, 12, 1061 17 of 21

from the increase in the magnesium content from 0.3 to 0.45 wt.% can explain the increase
in the fatigue life of the SSM Al–7Si–0.45Mg casting in the T6 condition compared to that of
the SSM Al–7Si–0.3Mg casting in the same condition, as shown in Figure 6c.

4.2. Defects Formation

In the die cavity, solidification occurs with the growth of the slurry α1-Al crystals and
nucleation and growth of the in-cavity solidified crystals and eutectic. As the solidification
progresses, the solute concentration in the remaining liquid increases until the conditions
for eutectic reaction are reached. The cooling rate near the die wall is higher compared
to the casting centre. As the surface layer of the casting shrinks, the solute-enriched
liquid from the adjacent areas flows through the mushy zone towards the casting surface,
i.e., by the inverse segregation mechanism [22]. Inverse segregation is enhanced by the
intensification pressure applied that squeezes the central α1-Al globules to one another
and forces the solute-enriched liquid that previously filled the α1-Al interdendritic spaces
laterally towards the casting surface [22]. This solute-enriched liquid moved towards the
casting surface and solidified into small, primary α-Al dendrites and eutectic, as described
in other studies [17]. Figure 2 shows that the microstructure of the casting surface consisted
of small, primary α-Al dendrites, eutectic, and a few slurry α1-Al globules. Additionally,
the concentration of alloying elements in the surface layer of the casting was significantly
higher compared to the nominal composition of the alloy which resulted from inverse
segregation, as shown in Figure 10.

The nearly pure eutectic regions observed in Figure 9 resulted from the exudation
mechanism, as observed in other studies [17,20,23,42]. Usually, inverse segregation is less
severe than exudation [42]. Figure 10 shows that the concentration of alloying elements,
particularly silicon, was much higher in the regions of macrosegregation compared to
the adjacent areas of the surface layer of the castings. Oxide films were generally found
surrounding the regions of macrosegregation, as shown in Figure 9. In this study, most
of the fatigue cracks initiated at the periphery of the regions of macrosegregation where
the bonding was very weak due to the presence of oxides at the interface. Figure 11
illustrates the different stages of the formation of the regions of macrosegregation based on
the observations in this study and the literature [23,42–44].

At a certain moment during solidification in the die cavity, the solidifying surface layer
of the alloy shrinks from the die wall due to solidification shrinkage and thermal contraction
and, when it gains enough strength, pulls away from the die wall, forming a gap [23,42].
A pressure differential is generated between the air gap and the interior of the solidifying
alloy [17,21]. The air gap between the solidifying alloy and the die wall is illustrated in
Figure 11a. Lee et al. [23] found that the application of intensification pressure enhances
the exudation mechanism. During the intensification pressure stage, the solute-enriched
liquid can flow through the interdendritic channels and the oxide layer of the solidifying
alloy into the space between the solidifying alloy and the die wall. However, the eutectic
microstructure and the very high solute concentration of the regions of macrosegregation
suggest that these regions are formed during the last stages of solidification during which
the permeability of the interdendritic regions is very low. Therefore, at the last stages
of solidification, the tensile strains generated due to the contraction of the solidifying
surface layer [14] and intensification pressure can result in open hot tears through which
the solute-enriched liquid can flow into the space between the solidifying layer and die
wall. This mechanism may explain why the regions of macrosegregation appear as pools
on the casting surface and not as a continuous layer on the casting surface, as shown in
Figure 9.
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After the solute-enriched liquid flows through the oxide layer into the space between
the casting surface and die wall, it becomes exposed to air and, almost immediately, an
oxide layer forms on its surface, as schematically shown in Figure 11b. Therefore, the
regions of macrosegregation are often observed surrounded by oxide films, as shown in
Figure 9. Oxide films located near the casting surface can also act as cracks through which
solute-enriched liquid can flow and fill the space between the solidifying surface layer and
the die wall. It is likely that, during intensification pressure, the existing air gap space
between the solidifying alloy surface and the die wall decreases due to the increase in the
internal pressure of the alloy. Therefore, the existing solute-enriched liquid in the space
between the casting surface and the die wall is pressed against the die wall and solidifies,
as shown in Figure 11c.

Figure 7b shows a defect observed on the fatigue fracture surface identified as a cold
shot. This defect had a semi-elliptical shape, had an oxide layer, and solidified earlier than
the adjacent regions, identical to the cold shots formed in HPDC. The fatigue cracks initiated
at the periphery of the cold shot. The fraction of primary α1-Al globules in the cold-shot
regions was higher (0.44± 0.08) than in the surroundings (0.19± 0.03). It is unlikely that the
fraction of primary α1-Al globules in the cold shot was high enough to reach the maximum
packing solid fraction point where the agglomerate of α1-Al globules behaves like a rigid
solid [38]. The dimensionless Reynolds number is normally used to characterise the type
of flow, laminar or turbulent, during die cavity filling [11]. The viscosity of slurries varies
considerably depending on the α-Al crystal size, shape and fraction, and shear rate [45,46].
Therefore, it is difficult to determine the Reynolds number of slurries and, thereby, estimate
the type of flow obtained during die cavity filling. However, even assuming that the flow
type during die cavity filling is essentially laminar, the development of flow instabilities
during die cavity filling is possible. These instabilities can result in a loose, solid network
of α1-Al globules trapped near the casting surface by the surrounding solidifying alloy.
This agglomerate of α1-Al globules was likely exposed to air at some stage of the die cavity
filling to form the oxide layer on its surface, resulting in a weak bond with the adjacent
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regions, as shown in Figure 8b,c. In the last stages of solidification, the weak bonding
between the defect and the surroundings can create a lower resistance path compared to
the α-Al interdendritic regions for the flow of solute-enriched liquid towards the casting
surface. Therefore, an almost fully eutectic region was observed between the defect and the
surroundings, as shown in Figure 8b.

5. Conclusions

SSM Al–7Si–Mg castings in the as-cast, T5, and T6 condition were tested under four-
point bending fatigue. Regions of positive macrosegregation at the casting surface were
the most detrimental defects for fatigue in this study. The microstructure of the regions of
macrosegregation was predominantly eutectic. These regions most likely formed in the last
stages of solidification due to their higher silicon content compared to the bulk surface. An
oxide layer was frequently found in the periphery of the regions of macrosegregation, which
reduced the bonding between these regions and the bulk casting surface. Consequently,
fatigue crack initiation occurred at the periphery of the regions of macrosegregation in
most of the SSM castings. Cold shot was another defect that initiated fatigue crack in the
SSM Al–7Si–Mg castings in this study. The cold shots were covered by an oxide layer
that reduced the bonding with the surrounding microstructure, which resulted in fatigue
crack initiation. The formation of a 3 µm thick oxide layer on the surface after anodising
resulted in no effect on the fatigue life of the SSM Al–7Si–Mg castings, most likely due to
the dominant effect of the macrosegregation regions formed near the castings’ surface on
fatigue crack initiation.

The higher precipitation hardening response for the SSM Al–7Si–0.45Mg castings in
the T5 and T6 condition compared to the SSM Al–7Si–0.3Mg castings in the same conditions
resulted in higher fatigue resistance. However, the increase in the magnesium content of
the alloy from 0.45 wt.% to 0.6 wt.% resulted in a slight decrease in the fatigue life of the
SSM Al–Si–Mg castings in the T5 condition.
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