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Abstract: To study the effect of Ce on the morphology of manganese sulfide, we added different
contents of Ce into U75V heavy rail steel. The composition and morphology of sulfide in steel
were analyzed. The inclusions’ number, size, and aspect ratio were analyzed by automatic scanning
electron microscope ASPEX. The results show that the inclusions in heavy rail steel without Ce are
elongated MnS and irregular Al-Si-Ca-O inclusions. With the increase of Ce from 52 ppm to 340 ppm,
the composition of main inclusions changes along the route of Ce2O2S-MnS→ Ce2O2S-MnS-Ce2S3→
Ce2O2S-Ce3S4-Ce2S3→ Ce2O2S-Ce3S4-CeS. Ce has a noticeable spheroidization effect on MnS, which
can make inclusions finely dispersed. When Ce content is 139 ppm, the average size of inclusions is
the smallest. The mechanism of Ce-modified MnS was discussed by combining experimental results
with thermodynamic calculations. Finally, the effect of Ce treatment on inhibiting MnS deformation
was verified by simulated rolling.

Keywords: U75V heavy rail steel; MnS; Cerium treatment; gleeble

1. Introduction

U75V high-speed heavy rail steel is fine pearlite steel with high strength, toughness,
and wear resistance. It exhibits high sensitivity to white spot, however, it is difficult to
completely remove hydrogen from this type of steel. According to previous studies [1,2], an
increase in the S content of steel or the presence of MnS can reduce the diffusion coefficient
of hydrogen in steel, thereby mitigating the damage caused by hydrogen. However, due
to the excellent deformation ability of MnS, the elongation of MnS along the rolling direc-
tion during the rolling process has become one of the essential factors causing excessive
inclusions and inconsistencies in ultrasonic flaw detection. The large-size and long-striped
structure of MnS induce anisotropy in steel and significantly reduce the transverse proper-
ties of the material. MnS inclusions initiate crack formation, which occurs at the interface
between sulfide and the matrix under stress. With an increase in the load, the crack expands
gradually along with the striped MnS inclusions [3,4]. Therefore, to improve the mechanical
properties of heavy rail steel, it is particularly vital to control the morphology, size, number
density, and distribution of MnS [5].

At present, there are generally two methods to control the morphology of MnS during
the steelmaking process. The first method involves the formation of a mass of oxide
inclusions in the molten steel by adding titanium, magnesium, zirconium, and other
elements to promote the heterogeneous nucleation of MnS precipitates. This method allows
the formations of small and dispersed MnS inclusions. Oikawa et al. [6] found that the size
of MnS inclusions decreased significantly after adding Ti to Fe-0.1C-1Mn-0.02S steel. They
proposed that the liquid nucleus of (Ti, Mn) O formed at the solid-liquid interface of steel
serves as the heterogeneous nucleation site of MnS droplets. Xie et al. [7] reported that
when the Mg content of 16MnCrS5 steel was 35–42 ppm, numerous fine spindle-shaped
or spherical composite inclusions with MgO-Al2O3 as the core and MnS as the shell were
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formed in molten steel. The deformation degree of the inclusions after simulated rolling
and forging was also small. Lu et al. [8] studied the distribution and morphology of MnS
inclusions in Zr-containing non-quenched and tempered steel ingots and forging rods.
Their results showed that when Zr content is 66 ppm, MnS is spherical or angular under
two-dimensional and three-dimensional observation, and the distribution is uniform. The
second method is the addition of calcium or rare-earth elements to S-containing steel to
form smaller and lesser deformed sulfides in order to control the aspect ratio (the ratio of
length to width of an inclusion) of inclusions. Another study [9] showed that the addition
of a calcium alloy to steel can promote the transformation of sulfide from the striped to
spindle structure, and that the ratio of calcium to sulfur content in steel (w(Ca)/w(S)) has a
significant influence on the shape and length of the inclusions. When w(Ca)/w(S) > 0.2,
sulfide transforms to form a spindle structure, the average size of the inclusions decreases
with the increase in w(Ca)/w(S). Although MnS morphology control has been widely
investigated [10–12], strategies to MnS formation are still limited. For example, Ti and
Zr are not suitable for steel with a high oxygen content. Toward steel with low basicity
refining slag, added Ca replaces Al2O3 in the refining slag and increases the Al content of
steel to generate Al2O3 inclusions, which may lead to nozzle clogging [13]. The atomic size
of rare earth elements is large and they easily lose their outer electrons, resulting in high
activity. Thus, rare earth elements serve as good purifying agents and inclusion modifiers.

Cerium (Ce, a rare earth element), exhibits high activity and readily reacts with oxygen
and sulfur in molten steel to form oxides and sulfides with a high melting point. Moreover,
Ce can refine the grain size and improve the mechanical properties of the steel, and has
a certain effect on harmful impurity elements such as phosphorus and arsenic [14–18].
Ren et al. [19] performed a thermodynamic calculation and found that the evolution order
of inclusions was Al2O3 → CeAlO3 → Ce2O2S→ Ce2O2S + CeS when the Ce content of
ultra-low carbon Al deoxidized steel increased from 0% to 0.028%, which was verified by
laboratory experiments. Liu et al. [20] found that the primary inclusions changed from
MgO·Al2O3-MnS to CeAlO3-MgO-MnS, Ce2O2S-MgO-MnS, and Ce2O2S-MnS after the
addition of 0.014%, 0.024% and 0.037% Ce to EH36 steel, respectively. The addition of
0.024% Ce can inhibit the precipitation of pure MnS because Ce has a strong desulfurization
ability. Liu et al. [21] found that 0.015% of added Ce could transform irregular MnS and
Al2O3 inclusions in medium-carbon low-alloy steel to spherical Ce2O2S and decrease the
inclusion size. Liu et al. [22] applied spring steel as fasteners of high-speed rails; they
found that the total oxygen content (T.O.) was at the lowest level when the Ce content was
0.045–0.065 wt%. Oversized and irregular sulfides and oxide inclusions transformed into
rare earth oxides, sulfides, or oxygen sulfides that were spherical and had a size of3 µm.
At present, the effect of Ce content on the inclusions in non-aluminum deoxidized U75V
heavy rail steel has not been reported, and the mechanism underlying the modification
effect of Ce on MnS in heavy rail steel remains to be studied.

2. Materials and Methods

The experiment was completed in a tubular Si-Mo resistance furnace. A 300 g U75V
steel sample, taken from the casting billet and cut into small pieces, was put into a MgO
crucible with an inner diameter of 40 mm and an outer diameter of 48 mm. A graphite
crucible was coated on the MgO crucible to protect the furnace. The schematic diagram of
the resistance furnace and the composition of molten steel are shown in Figure 1 and Table 1.

Table 1. Chemical composition of U75V steel (%).

Composition C Si Mn P S V Als

Content 0.77 0.64 0.89 0.02 0.007 0.04 0.0015
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Figure 1. Schematic diagram of silicon molybdenum tube furnace.

The schematic diagram of the experimental process is shown in Figure 2a. After the
crucible was placed, the upper lower ends of the furnace were closed; the temperature
of the resistance furnace was set as shown in Figure 2a. When the temperature reached
1600 ◦C, it was held for 30 min to ensure that the steel blocks were melted and completely
homogenized. Then, Ce was wrapped with pure iron foil and added to the molten steel
without stirring. Five levels of Ce content, 52 ppm, 139 ppm, 171 ppm, 256 ppm, and
340 ppm, were used to study the effect of Ce content on inclusions in heavy rail steel.
After holding for 15 min, the temperature began to decrease. When the temperature
dropped to 700 ◦C, the power was cut off, and then the resistance furnace was cooled to
room temperature by furnace cooling. In total, 2.5 L/min argon was injected throughout
the experiment.
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Figure 2. Temperature setting, (a): resistance furnace; (b): gleeble−3500 simulated rolling mill.

The ingot was cut into a cylindrical sample of ∅8 × 15 mm, which was used for the
rolling simulated experiment. The temperature system refers to the production process of
a plant, as shown in Figure 2b. The deformed samples were cut, polished, and observed
with ASPEX. The simulation rolling experiment was completed on gleeble-3500 thermal
simulation testing machine (Dynamic Systems Inc., Poestenkill, NY, USA).

The Ce content was measured by the ICP method. The composition, quantity, size,
and aspect ratio of inclusions were analyzed by an ASPEX automatic scanning electron
microscope (FEI, Hillsboro, OR, USA) after the ingot was ground and polished. The
sampling position, analysis surface, and random observation position are shown in Figure 3,
which reduces the influence of S element segregation inside the ingot. The scanning
area of each sample was about 10 mm2, and the minimum size of inclusions scanned
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was 1 µm. The inclusion morphology was observed by a ZEISS electron microscope
equipped with an EDS (Energy Dispersive Spectrometer) model of Gemini SEM 500 (Zeiss,
Niedersachsen, Germany). The extraction of inclusions was conducted by electrolysis
with anhydrous organic solution, and the electrolyte was 10% AA solution (a mixed
solution of 1% tetramethylammonium chloride-10% acetylacetone-89% methanol). Figure 4
is the schematic diagram of the electrolytic cell. The current density was 0.04 A/cm2

and the temperature was 0~5 ◦C. The electrolysis time was 4 h. After electrolysis, the
filtered membrane was filtered with Polytetrafluoroethylene (PTFE) filter membrane. After
spraying gold on the filtered membrane, the three-dimensional characteristics of inclusions
were observed by field emission scanning electron microscopy. Table 2 shows the Ce
content in each sample, where C0 is the control group without Ce addition.
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Figure 4. Schematic diagram of inclusion extraction (1—anode; 2—cathode; 3—thermometer; 4—
electrolytes; 5—beaker).

Table 2. Ce content of each sample (mass%).

No. C0 C1 C2 C3 C4 C5

Ce 0 0.0052 0.0139 0.0171 0.0256 0.0340

3. Results and Discussion
3.1. Composition and Morphology of Inclusions

Figure 5 shows the morphology and elemental mapping profiles of typical inclusions
with different Ce contents. Figure 5a,b shows the control group C0 without Ce treatment.
The inclusions are mainly large-scale irregular striped MnS and spherical Al2O3-SiO2-CaO
inclusions. After Ce treatment, the inclusions in steel convert to oxygen sulfides or Ce
sulfides, which is in agreement with the result reported by Adabavazeh et al. [15] and
Gao et al. [23]. Because of the low wettability and large contact angle between Ce-containing
inclusions and molten steel [15], the inclusions in molten steel are ellipsoidal, and their size
is markedly reduced. When the Ce content was 52 ppm, the primary inclusion type was
Ce2O2S that formed the core, with a small amount of MnS composite inclusions precipitated
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on the surface, as shown in Figure 5c. In addition to the Ce2O2S-MnS composite inclusions,
CexS inclusions were observed when Ce content was 139 ppm and 171 ppm, as shown in
Figure 5d. However, when the Ce content was approximately 256 and 340 ppm, the typical
inclusions were single Ce2O2S inclusions and composite Ce2O2S and CexS inclusions, as
shown in Figure 5e,f. MnS was rarely precipitated on the surface of Ce2O2S, because with
the increase in the Ce content, a large amount of S is consumed by the Ce2O2S and CexS
inclusions, causing the actual concentration of [S][Mn] in molten steel to not reach the
equilibrium concentration.
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(c) 52 ppm, (d) 139 ppm, 171 ppm, (e,f) 256 ppm, 340 ppm.

The three-dimensional morphology of typical inclusions with different Ce contents
is shown in Figure 6. Figure 6a shows the morphology of MnS in the steel without Ce
addition; it can be seen that MnS is irregular and large. When the Ce was 52 ppm, the
typical inclusion was an ellipsoidal composite, with Ce2O2S as the core, and a small amount
of MnS precipitates on the surface. No single irregular MnS precipitates were observed, as
shown in Figure 6b. Figure 6c,d shows that the Ce2O2S-MnS-CexS composite inclusions
and the Ce2O2S-MnS inclusions appear when the Ce content of molten steel was 139 and
171 ppm, in addition to near-spherical CexS inclusions. When the Ce content was 256, and
340 ppm, the inclusions in the steel were mainly single Ce2O2S and Ce2O2S-CexS, as shown
in Figure 6e,f. It is worth mentioning that in Figure 6c, the inclusion comprised Ce2O2S
as the core, with the surface precipitation of MnS and CexS composite inclusions. Theses
type of inclusions are not observed in the two-dimensional morphology, indicating that
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three-dimensional morphology can more accurately reveal the type of inclusions. It can be
found that the variation trend of inclusions is similar to that illustrated in Figure 5.
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The typical inclusion types of each sample obtained after electron microscopy were
classified and counted; the results are summarized in Table 3. When the Ce content was
52 ppm, the striped MnS disappeared. Nonetheless, the Ce content must be optimized on
the basis of the size, number density, and aspect ratio of inclusions.

Table 3. Types of inclusions in different heats.

Typical Inclusions Si-Al-Ca-O MnS Ce2O2S-MnS CexS Ce2O2S Ce2O2S-CexS Ce2O2S-CexS-MnS

C0
√√ √√

– – – – –
C1 – –

√√
– – – –

C2 – –
√√ √

– –
√

C3 – –
√√ √ √ √ √

C4 – –
√ √ √ √√

–
C5 – –

√ √ √ √√
–

√√
: the main type of inclusions,

√
: a small number of inclusions.

3.2. Number Density, Size, and Aspect Ratio of Inclusions

To quantitatively characterize the inclusions in the steel sample, the number density,
average size, and aspect ratio of the inclusions were calculated, the results are shown in
Figures 7 and 8.
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Figure 7 shows the changes in the number density and size of inclusions in different
samples. Ce addition was found to significantly increase the number density of the in-
clusions in molten steel. When Ce was not added, the number density of the inclusions
was 17.74/mm2. With an increase in the Ce content, the number density of the inclusions
increased, reaching a maximum of 51.76/mm2 at 340 ppm Ce. In addition, Ce addition can
significantly reduce the size of the inclusions. The average size of the inclusions before Ce
addition was 6.74 µm, whereas after Ce addition it was 3.22–4.16 µm. Unlike the number
density, the average size of the inclusions first decreased and then increased with an in-
crease in the Ce content, which agrees with the result of Luo [24] and Wang [25]. Because of
the change of free energy, the free energy of O and S binding in Ce and steel is considerably
lower than that of S and Mn binding; thus, rare earth oxygen sulfides are easily gener-
ated [26]. Moreover, the melting point of rare earth sulfides is higher than that of MnS, and
they precipitate before MnS during the solidification process. The continuous consumption
of S reduces the activity of S in steel, which significantly affects the combination of Mn and
S, thereby decreasing the core of heterogeneous nucleation, and reducing the probability of
the transformation of single-particle MnS inclusions to large MnS inclusions under high
supersaturation conditions. When the Ce content was high or excessive, the addition of
excessive Ce enhances the binding ability of rare earth elements to the formation elements
of the inclusions, resulting in the formation of a large number of rare earth inclusions. The
inclusion collision and aggregation probabilities increase sharply; therefore, the inclusion
size increases gradually.

The effect of the Ce content on the aspect ratio of the inclusions is shown in Figure 8.
The average aspect ratio of the inclusions decreased significantly after Ce addition. The
aspect ratio of the inclusions without Ce was 1.9, whereas for the inclusions with Ce it
was between 1.55 and 1.86. The average aspect ratio of the inclusions increases with the
Ce content. The proportion of the inclusions with an aspect ratio between one and two
increased significantly after Ce treatment. The proportion of inclusions with an aspect
ratio between two and three and >three decreased, indicating that Ce addition induces
an apparent spheroidization effect on the inclusions. However, when the Ce content is
excessive, i.e., more than 256 ppm, the proportion of the inclusions with an aspect ratio
between one and two decreased gradually, whereas the proportion of the inclusions with
an aspect ratio between two and three increases gradually. This trend is observed because
inclusion collision and aggregation lead to an irregular shape and size enlargement. It
indicates that excessive Ce content is not conducive to the dispersion and fine control of
the inclusions. According to the number density, size, and aspect ratio of the inclusions,
many fine and dispersed ellipsoidal inclusions can be generated at 139 ppm Ce.
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3.3. Thermodynamic Analysis of Inclusion Formation in Steel

The precipitation of each sample during the cooling process was calculated by Fact-
Sage8.1, a thermodynamic calculation software; the result is shown in Figure 9. The
inclusions without Ce were primarily the Al2O3-SiO2-MgO and MnS. When the Ce con-
tent was 52 ppm, a large amount of dispersed Ce2O2S was formed at 1600 ◦C. Ce2O2S
acts as a heterogeneous nucleation core during the cooling process of molten steel, which
facilitates MnS precipitation on its surface and avoids the formation of long-striped MnS.
As can be seen in Figure 9c, when the Ce content was 139 ppm, CeS began to form at
high temperatures. During the cooling process, CeS was first converted to Ce3S4 and
finally to Ce2S3 near the liquidus temperature. With a further increase in the Ce content by
171 ppm, the Ce2O2S content slightly changed, the Ce2S3 content increased gradually, and
the amount of MnS precipitates decreased gradually, as shown in Figure 9d. As shown in
Figure 9e,f, when the Ce content was 256 and 340 ppm, MnS precipitation did not occur at
all, and the stable sulfide phase of solidified Ce was changed from single Ce2S3 to Ce2S3,
Ce3S4, and CeS and Ce3S4, respectively, which is consistent with the analysis results of
the abovementioned inclusion morphology. Through the above analysis, we confirm that
Ce plays a role in mitigating the formation of long-striped MnS through two ways: (1) Ce
induces the precipitation of MnS on the surface of sulfur oxides, and (2) the total amount of
MnS precipitates is reduced upon S consumption.
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3.4. Evolution Mechanism of Inclusions in Heavy Rail Steel after Adding Ce

Based on the thermodynamic calculation and the experimental results, the evolution
mechanism of the inclusions in U75V heavy rail steel after Ce addition was investigated,
as illustrated in Figure 10. According to the composition and morphology analysis of the
inclusions, mass Ce2O2S phases exist in the inclusions upon Ce addition, which mainly
have two sources. (1) The entry of Ce into molten steel and its combination with O and S in
the molten steel, which can be expressed as Equation (1) [27], and (2) the modification of
the SiO2-Al2O3-CaO inclusion upon Ce addition. When Ce is not added to molten steel,
the inclusions at high temperature mainly comprise the SiO2-Al2O3-CaO system. These
inclusions are generally large and irregular in shape, while MnS is precipitated during
solidification [28]. Therefore, Ce added to the molten steel first diffuses to the interface
between the oxide inclusions and molten steel in the form of atoms, followed by their
conversion to the ionic form and attachment to the surface of the oxide inclusions. Second,
Ce ions react with the active sites on the oxide surface, and reaction products CeAlO3
and Ce2O3 adhere to the surface of the original inclusion in the form of a liquid film and
grow. As the reaction proceeds, Ce and O in the molten steel continue to diffuse into the
interface; the reaction proceeds smoothly, with an increase in the thickness of the liquid film.
Once the liquid film reaches a specific thickness, it solidifies and aggregates into spheres
according to the principle of minimum surface energy [26]. Thus, a composite inclusion
with Si-Al-Ca-O as the core and Ce-Si-Al-Ca oxide as the surface is formed. Al and Si in
the inner layer also diffuses to the outer layer with further reaction. Ce ions continue to
diffuse to the inner layer, and the required diffusion driving force increases accordingly. At
this stage, the ion exchange process of Ce and Al, Si and Ca slows down. Till the end of the
diffusion process of internal and external ions, Ce completes the modification of Al-Si-Ca
oxide in steel, which can be expressed as Equation (2) [29]. At this stage, the content of
Ce in molten steel is sufficient to allow the reaction between Ce oxide S in molten steel,
generating oxygen sulfide, which can be expressed as Equation (3) [30].
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The subsequent inclusion evolution can be roughly divided into three paths according
to the different Ce contents. When the content of Ce in molten steel is low (52 ppm), the
Ce2O2S inclusions are formed at steelmaking temperature. As the temperature decreases to
the liquidus, MnS precipitates on the surface of the Ce2O2S inclusions until the temperature
drops to room temperature and the inclusions are composed of the Ce2O2S-MnS composite.
When the Ce content of molten steel increases to the moderate levels of 139 and 171 ppm,
Ce reacts with S in molten steel to form CeS at the steelmaking temperature. Then, with
the decrease in temperature, CeS will undergo phase transformation, from CeS to Ce3S4
and then to Ce2S3. Some of these compounds embed on the surface of Ce2O2S. When the
temperature further decreases to the liquidus temperature, MnS begins to precipitate on
Ce2O2S. Finally, upon cooling to room temperature, the inclusion comprises Ce2O2S-MnS-
Ce2S3. Ce2O2S and CeS are also formed at high temperatures when the content of Ce in
molten steel reaches 256 and 340 ppm, but no MnS was precipitated during the cooling
process. The difference was that CeS completely transformed into Ce2S3 and Ce3S4 when
Ce was 256 ppm, while CeS partially transforms into Ce3S4 when Ce was 340 ppm. The
formation of sulfides in Ce can be described by Equations (4)–(6) [31].

[Ce] + [O]+
1
2
[S] =

1
2
(Ce 2O2 S), 4Gθ = −675700 + 165.5T (1)

6x+2y+4z
3 [Ce] + xAl2O3 · yCaO · zSiO2 =

3x+y+2z
3 Ce2O3

+2x[Al] + z[Si] + y[Ca]
(2)

(Ce 2O3) + [S] = (Ce 2O2 S) + [O], 4Gθ= 77360 − 28.48T (3)

[Ce] + [S] = (CeS), 4Gθ = −422100 + 120.38T (4)

[Ce]+
3
2
[S] =

1
2
(Ce 2S3), 4Gθ = −536420 + 163.86T (5)

[Ce]+
4
3
[S] =

1
3
(Ce 3S4), 4Gθ = −497670 + 146.3T (6)

3.5. Effect of Ce on Sulfide after Simulated Rolling

Figure 11 shows the distribution of the aspect ratio of inclusions after hot compression.
The average aspect ratio of the inclusions in C0 was 2.77, while the aspect ratio of the
inclusions after hot compression upon Ce addition was 1.54–1.83, which was significantly
smaller than that of the former, indicating that the inclusions of Ce-added steel are still near-
spherical after hot compression. Regarding the proportion of the inclusions with different
aspect ratios, the proportions of the inclusions with varying aspect ratios in sample C0
were ~30%. Compared with those before rolling, as shown in Figure 8, the proportion of
the inclusions with aspect ratios between one and two was significantly reduced, and the
proportions of the inclusions with aspect ratios between two and three and larger than three
were significantly increased, which indicates that MnS underwent deformation during
hot compression. According to the change in the aspect ratios before and after simulated
rolling, the change in the aspect ratio of the inclusion in C0 was 45.79%. In contrast, the
aspect ratios of C1 to C5 upon Ce addition changed negligibly, indicating that MnS is not
elongated. This confirms that Ce can well inhibit the deformation of MnS during rolling.
Based on the calculation results for the number density and size of inclusions, the inclusions
in C2 have a high number density and a small size. Therefore, to obtain numerous small
and dispersed deformation-resistant inclusions in U75V heavy rail steel, the Ce content
must be controlled at 139 ppm.
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4. Conclusions

This study analyzed the composition, two-dimensional and three-dimensional mor-
phologies, number density, and size of the inclusions in heavy rail steel with different Ce
contents. The evolution of the inclusions after Ce addition was discussed, and the effect of
added Ce on modified MnS was investigated in terms of the aspect ratio of the inclusions
before and after thermal deformation. The conclusions are as follows:

(1) Without Ce addition to steel, the inclusions in heavy rail steel were elongated MnS
and irregular Al-Si-Ca-O inclusions. With the increase in the Ce content from 52 to
340 ppm, the composition of the main inclusions changed in order of Ce2O2S-MnS→
Ce2O2S-MnS-Ce2S3 → Ce2O2S-Ce3S4-Ce2S3 → Ce2O2S-Ce3S4-CeS.

(2) The addition of Ce to molten steel causes a significant increase in the number density
and a considerable reduction in the size and aspect ratio of the inclusions. The average
size of the inclusions without Ce was 6.74 µm. The average size of inclusions upon Ce
addition was 2.01–4.04 µm, the size of inclusions was the smallest at 139 ppm Ce.

(3) The change in the aspect ratio of the inclusions before and after thermal deformation
was minimal, indicating that Ce can significantly inhibit the deformation of inclusions
during the hot compression process. Therefore, when the Ce content of molten
steel was 139 ppm, substantial amounts of dispersed, fine, and deformation-resistant
inclusions can be obtained.
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