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Abstract: As an important reinforcement for metal matrix composites, the microstructure and me-
chanical properties of W-core SiC filament have drawn increasing attentions among researchers. In
this work, the growth behavior of polycrystalline 3C-SiC on W-wire substrate in the chemical vapor
deposition (CVD) process and the evolution of mechanical properties in preparation of W-core SiC
filament, were investigated as a function of gas-phase supersaturation. Kinetic studies revealed that
the growth of 3C-SiC grains was limited by surface reactions at both 850 ◦C and 1050 ◦C, and the
deposit experienced similar morphological changes from a porous structure to large clusters, with
the increase in supersaturation. Structural analyses and mechanical tests show that the production
of pores and the amorphous phase with a low supersaturation, of 9.6 × 107 at 850 ◦C, resulted in a
reduction in the modulus and hardness of the polycrystalline deposits, to 270.3 GPa and 33.9 GPa,
while the reduced structural defects (e.g., stacking faults and twins) in highly (111) orientated 3C-
SiC grains, as well as the improved surface quality obtained with the medium supersaturation of
1.6 × 107 at 1050 ◦C, enhanced the tensile strength and the Weibull modulus of W-core SiC filament
to 2.88 GPa and 11.2, respectively. During the growth of 3C-SiC grains, the variation in structural
defects density is controlled by the critical nucleation energy of the two-dimensional (2D) nucleus.

Keywords: metal matrix composite; chemical vapor deposition; W-core SiC filament; surface
morphology; stacking faults; tensile strength

1. Introduction

W-core SiC filament exhibits high tensile strength, high stiffness and excellent irradi-
ation resistance, and has a good compatibility with many metallic materials. Therefore,
it is often used as the reinforcement of metal matrix composites, in developing light-
weight structural components in aeroengines and plasma-facing components for fusion
reactors [1–3]. Considering the mechanical performance of metal matrix composites are,
mainly, determined by that of the reinforcement, it is essential to gain insight into the
relationship between the microstructure and mechanical properties of W-core SiC filament.

The continuous hot-wire CVD method is, widely, adopted to produce W-core SiC
filament [4,5]. In the CVD process, the deposition of SiC is, directly, carried out on an
electrically heated W-wire substrate, and the rapid growth of the deposit layer will be
finished within several tens of seconds. Since the deposition temperature is usually below
1200 ◦C, short-period heating has a limited influence on the tensile strength of W wire [6,7].
On the other hand, the deposit layer, mainly, consists of cubic (3C) SiC grains, which
occupies over 95 vol% of a commercial W-core SiC filament. Therefore, as a core-shell
composite, the mechanical properties of W-core SiC filament are heavily dependent on the
growth quality of deposit layer.

Owing to the small difference in the heat of formation of SiC polytypes (1.4–2.6 kJ/mol)
and the low stacking fault energies of SiC (2.9–34 mJ/m2), diverse structural defects could
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be produced in the SiC growth process [8–10]. For example, micropipes and dislocations
are, frequently, generated during the growth of hexagonal SiC single crystals by physical
vapor transport (PVT) and solution growth methods, which will severely damage their
electronic performance; stacking faults and twins are often formed in CVD polycrystalline
3C-SiC deposits, which not only have a notable impact on their mechanical properties, but
also can lead to crack initiation and propagation [11,12]. Previous studies have shown that
the type of in-grown structural defects is related to the growth mode of the SiC nuclei, and
defect densities are dictated by growth parameters [13,14].

Supersaturation is an important growth parameter, and its validity in regulating the
crystal quality of hexagonal SiC has been widely acknowledged. It is reported that a
low supersaturation could improve the surface morphology of 4H-SiC, whereas a high
supersaturation was able to eliminate micropipes and screw dislocations’ formation, during
the growth of hexagonal SiC monocrystals [15–17]. Moreover, the different dependences
of the growth rate of SiC polytypes on supersaturation have been revealed in both PVT
and solution growth processes, and the so-called ‘polytype-selective growth’ technique
has been successfully applied in growing bulk 4H- and 6H-SiC crystals [18,19]. In contrast,
only the influence of supersaturation on 3C-SiC nucleation behavior has been studied
in the CVD process, and little research focuses on its effects in the growth behavior and
mechanical properties of the polycrystalline deposit or the structural defects’ evolution in
3C-SiC grains [20].

With the aim of improving the mechanical performance of W-core SiC filament, the
growth behavior of polycrystalline 3C-SiC grains on W-wire substrate, the mechanical prop-
erties of the deposit and the resultant filament in continuous hot-wire CVD process were
investigated, as a function of gas-phase supersaturation. A newly defined thermodynamic
equation was adopted, to calculate the gas-phase supersaturation in the CVD process, and
the evolution of structural defects formed on the deposit surface and in 3C-SiC grains were
quantitatively assessed in experimental conditions. It is revealed that both the enhanced
surface qualities, the reduced stacking faults and twins’ densities can be realized under
medium gas-phase supersaturations, which are decisive factors for obtaining W-core SiC
filament with high tensile strength and a high Weibull modulus.

2. Experimental Details
2.1. Sample Preparation

SiC deposition was carried out at atmospheric pressure in a Φ2 × 120 cm continuous
hot-wire CVD reactor. W wire, with a diameter of 17.8 µm and a mean tensile strength of
3.95 GPa, was employed as the substrate. CH3SiCl3, with a purity of 98%, was used as
the precursor, and H2, with a purity of 99.999%, was applied as the carrier and dilute gas.
To create different gas-phase supersaturation conditions in the CVD reactor, flow rates of
CH3SiCl3 (FCH3SiCl3), in the range of 250–1500 sccm with deposition temperatures (T) at
850 ◦C and 1050 ◦C, were adopted during the deposition of 3C-SiC. The flow rate of H2
was kept at 2000 sccm, and the travelling speed of W-wire substrate in the CVD reactor
was set to 1.25 cm/s. In this temperature range, the selected flow rates of CH3SiCl3 and H2
could ensure the uniform and rapid growth of SiC deposits on W wire substrate [21,22].
The deposition temperature was measured from the observation window at the center of
the reactor, by a WGG 2-201 pyrometer with an error of ± 20 ◦C. The average deposition
time in the reactor was 90 s, and the duration of continuous deposition process was 30 min.

2.2. Microstructure Characterization

The thickness of the deposit layer and the corresponding surface morphology were
observed by an FEI Nova NanoSEM 450 (FEI Technologies Inc., Hillsboro, OR, USA). A
PANalytical X’ pert Pro diffractometer (PANalytical B. V., Eindhoven, The Netherlands),
with a Cu Kα1 (λ = 0.15406 nm) radiation source, was used to analyze the structural
characteristics of the deposit. XRD patterns were recorded in the Bragg-Brentano config-
uration, with a working voltage of 40 kV and a current of 35 mA. Each sample consisted
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of 50 filaments with a length of 40 mm, which were placed parallel to each other and laid
at the center of a glass slide. The whole patterns in the 2θ range of 30–80◦ were recorded,
with a step size of 0.02◦ and a scanning speed of 2◦/min. The texture coefficient of the hkl
crystallographic plane (TChkl) in the SiC deposit could be calculated from Equation (1) [23]

TChkl =
Ihkl/I0

hkl
1
N ∑ [Ihkl/I0

hkl ]
(1)

where Ihkl and I0
hkl are intensities of (hkl) crystallographic planes in the deposit pattern

and the Powder Diffraction File of 3C-SiC (PDF#29-1129), respectively. The single-line
method was utilized to analyze the (111) diffraction profiles [24]. The volume-weighted
coherently scattering domain size (D111

V ) and the microstrain (e111) along the 111 direction
of the 3C-SiC grain could be calculated from the following equations:

D111
V =

λ

β
Sample
L cos θ

(2)

e111 =
β

Sample
G

4 tan θ
(3)

where β
Sample
L and β

Sample
G are the real Lorentz and Gaussian components of the (111)

diffraction profile, θ is the corresponding diffraction angle. A standard KCl powder and the
approach proposed by Langford were adopted to subtract the contribution of instrumental
broadening to diffraction profiles [25,26].

Raman spectra of the deposits were recorded by a Renishaw inVia reflex Raman
microscope, in a backscattering configuration. A 514.5 nm Ar+ laser source, with a power
of 5 mW, was focused on the cross-sectional surface of each sample. The diameter of the
laser spot and the spectral resolution were 1 µm and 1 cm−1, respectively. The density of
structural defects (i.e., stacking faults and twins) in 3C-SiC grains could be estimated from
the hexagonality (h%) equation:

h% = 3.4[ω(TO1) − ω(TO2)] (4)

where ω(TO1) is the wavenumber of the transverse optical (TO) band of 3C-SiC, and ω(TO2)
is the wavenumber of the structural-defects-induced TO band of hexagonal SiC [27,28].

Conventional and high-resolution transmission electron microscopy (TEM) analyses of
the deposit’s microstructure and stacking sequences in 3C-SiC grains were performed using
an FEI Tecnai G2 F30 TEM (FEI Technologies Inc., Hillsboro, OR, USA), operated at 300 kV.
Cross-sectional TEM specimens were sectioned from SiC filament/epoxy composites and
fabricated by mechanical grinding and Ar+ ion beam milling. The strain fields in 3C-SiC
grains were established by geometry phase analysis (GPA), using the Strain++ software [29].

2.3. Mechanical Tests

Mechanical properties of the deposit were measured by nanoindentation tests using a
Hystrion TI 950 TriboIndenter nanoindenter (Hysitron Inc., Minneapolis, MN, USA). The
tests were performed at the central part of the deposit layer, with a diamond Berkovich in-
denter and a peak load of 11 mN. The indentation modulus and the hardness of the deposit
were calculated from the load-displacement curves, using the Oliver–Pharr method [30].

Tensile tests of the resultant W-core SiC filaments were carried out using a Grandtry
XLD 100C tensile tester (Grandtry Testing Instruments Co., Ltd., Guangzhou, China),
with a crosshead velocity at 1 mm/min and a load cell of 50 N. The gauge length of the
tensile specimen was 25 mm, and 20 filaments were examined in each group. The failure
probability (F) at the stress level of σ is estimated by:

F(σ) =
i− 0.5

20
(5)

where i represents the rank of a tested specimen arranged in the increasing order of failure
strength. The Weibull modulus and the mean tensile strength of W-core SiC filaments
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were determined, by the two-parameter Weibull function [31]. The elastic modulus of the
filaments was calculated from the recorded load-displacement curves.

2.4. Thermodynamic Calculation

The deposition reaction of SiC from CH3SiCl3 can be described as follows:

CH3SiCl3 = SiC + 3HCl (6)

The gas-phase supersaturation (S) in this process can be derived from the equilibrium
partial pressure of the related species, by using the following equation:

S =
Phomo

CH3SiCl3

Phetero
CH3SiCl3

·
(

Phetero
HCl

Phomo
HCl

)3

− 1 (7)

where Phomo and Phetero represent the partial pressure of CH3SiCl3 and HCl in the homo-
geneous gas-phase equilibrium state and the heterogeneous gas-solid equilibrium state,
respectively, which are calculated from the equilibrium reaction model using the Gibbs
energy minimization approach [32,33].

Figure 1 shows the calculated gas-phase supersaturation in different deposition condi-
tions. The iso-supersaturation lines suggest that gas-phase supersaturation in continuous
hot-wire CVD process depends more on deposition temperature than on the flow rate
of CH3SiCl3. For SiC deposition, a high supersaturation can be created by employing
a low deposition temperature and a high CH3SiCl3 flow rate, whereas high deposition
temperatures and low CH3SiCl3 flow rates are necessary to build low supersaturations in
the reactor. In experimental deposition conditions, the gas-phase supersaturation increases
from 9.6 × 107 to 1.7 × 109, with the flow rate of CH3SiCl3 increasing from 250 sccm
to 1250 sccm at 850 ◦C, which exhibits an increase from 5.4 × 106 to 2.5 × 107 when the
deposition temperature further increases to 1050 ◦C.
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3. Results and Discussion
3.1. Growth Kinetics of the Deposit

Figure 2 presents the thickness of deposit layer, prepared at different deposition
temperatures and gas-phase supersaturations. It can be seen from Figure 2a–c that the
increase in supersaturation, from 9.6 × 107 to 1.7 × 109 at 850 ◦C, enabled the deposit layer
to increase from 3.2 µm to 22.7 µm. Meanwhile, as displayed in Figure 2d–f, a rapid growth
of the deposit from 6.5 µm to 38.9 µm took place at 1050 ◦C, with the supersaturation
increasing from 5.4 × 106 to 2.5 × 107. At both 850 ◦C and 1050 ◦C, an increase in the
flow rate of CH3SiCl3 not only can enhance the gas-phase supersaturation, but also can
provide more precursor for SiC deposition. Besides, an increase in deposition temperature
is able to accelerate the endothermic decomposition process of CH3SiCl3 in the gas phase
as well as the reactions of intermediates on W-wire substrate, both of which are beneficial
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to deposit growth [34,35]. As a result, deposits with increased thicknesses were obtained,
at the elevated gas-phase supersaturations and the elevated deposition temperature.
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Figure 2. SEM secondary electron images showing the deposit layer obtained at different deposition
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Figure 3 illustrates the growth kinetics of the deposit in different deposition conditions.
At 850 ◦C, the growth rate of the deposit increased from 2.1 µm/min to 14.3 µm/min,
with the flow rate of CH3SiCl3 increasing from 250 sccm to 1250 sccm, which experienced
an increase from 4.8 µm/min to 25.9 µm/min, when the deposition temperature reached
1050 ◦C. It can be drawn from the inset that the growth behavior of the deposits at both
850 ◦C and 1050 ◦C can be described by the following Arrhenius equation:

rSiC = 3.7 exp
(
−61.7kJ/mol

RT

)
FCH3SiCl3 (8)

Metals 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

also explain that, although much higher gas-phase supersaturations were established at 
850 °C, relatively low growth rates were obtained in deposition process. 

 
Figure 3. Growth rate of SiC deposit (rSiC), as a function of the flow rate of CH3SiCl3 at 850 °C and 
1050 °C, respectively. The fitted Arrhenius plots are shown in the inset. 

3.2. Surface Morphology and Microstructure of the Deposit 
Figure 4 exhibits the surface morphology of the deposit obtained in different depo-

sition conditions. It can be seen from Figure 4a that a porous surface was formed at 850 
°C, with supersaturation of 9.6 × 107. As shown in the inset, the pores are interconnected 
and have a mean size of 0.88 μm. When the supersaturation rose to 5.7 × 108, Figure 4b, 
clearly, demonstrates that the increased deposition rate promoted the growth of fine 
faceted grains, and numerous pits with an average size of 0.94 μm were formed on the 
dense deposit surface. In Figure 4c, the deposit prepared with the supersaturation of 1.7 × 
109 exhibits a rough surface morphology, which consists of clusters and grooves. The 
average size of the cluster is 2.68 μm. In Figure 4d, the surface morphology of deposit 
prepared at 1050 °C, with supersaturation of 5.4 × 106, is similar to that obtained in the 
low supersaturation condition at 850 °C, except that the pores are isolated and the aver-
age size has decreased to 0.37 μm. When the supersaturation increased to 1.6 × 107, the 
uniformly distributed faceted grains and the shallow pits, with a decreased size of 0.84 
μm, enable the deposit to demonstrate a homogeneous and compact surface morphology 
in Figure 4e. As displayed in Figure 4f, when the supersaturation was 2.5 × 107, large 
clusters with an average size of 6.45 μm were produced on the deposit surface, and deep 
grooves could be observed around them, which further increased the surface roughness 
of the deposit. Since deposit growth was limited by surface reactions in this temperature 
range, the porous structure produced in low supersaturation situations at 850 °C should 
be attributed to the insufficient production of gas-phase intermediate species and re-
stricted diffusion of adatoms on W wire substrate, while the occurrence of facet grains 
and rough surface morphologies in higher supersaturation conditions are related to the 
preferential growth of coarse grains with abundant intermediates [37]. 

Figure 3. Growth rate of SiC deposit (rSiC), as a function of the flow rate of CH3SiCl3 at 850 ◦C and
1050 ◦C, respectively. The fitted Arrhenius plots are shown in the inset.



Metals 2022, 12, 881 6 of 18

This result suggests that when deposition processes were carried out at the same
flow rate of CH3SiCl3, the growth rate of the deposit would be, largely, determined by the
deposition temperature. Therefore, it could be concluded that the deposition process is
limited by surface reactions in this temperature range [36]. This growth mechanism can
also explain that, although much higher gas-phase supersaturations were established at
850 ◦C, relatively low growth rates were obtained in deposition process.

3.2. Surface Morphology and Microstructure of the Deposit

Figure 4 exhibits the surface morphology of the deposit obtained in different deposition
conditions. It can be seen from Figure 4a that a porous surface was formed at 850 ◦C, with
supersaturation of 9.6 × 107. As shown in the inset, the pores are interconnected and have
a mean size of 0.88 µm. When the supersaturation rose to 5.7 × 108, Figure 4b, clearly,
demonstrates that the increased deposition rate promoted the growth of fine faceted grains,
and numerous pits with an average size of 0.94 µm were formed on the dense deposit
surface. In Figure 4c, the deposit prepared with the supersaturation of 1.7 × 109 exhibits a
rough surface morphology, which consists of clusters and grooves. The average size of the
cluster is 2.68 µm. In Figure 4d, the surface morphology of deposit prepared at 1050 ◦C,
with supersaturation of 5.4 × 106, is similar to that obtained in the low supersaturation
condition at 850 ◦C, except that the pores are isolated and the average size has decreased
to 0.37 µm. When the supersaturation increased to 1.6 × 107, the uniformly distributed
faceted grains and the shallow pits, with a decreased size of 0.84 µm, enable the deposit to
demonstrate a homogeneous and compact surface morphology in Figure 4e. As displayed
in Figure 4f, when the supersaturation was 2.5 × 107, large clusters with an average size
of 6.45 µm were produced on the deposit surface, and deep grooves could be observed
around them, which further increased the surface roughness of the deposit. Since deposit
growth was limited by surface reactions in this temperature range, the porous structure
produced in low supersaturation situations at 850 ◦C should be attributed to the insufficient
production of gas-phase intermediate species and restricted diffusion of adatoms on W
wire substrate, while the occurrence of facet grains and rough surface morphologies in
higher supersaturation conditions are related to the preferential growth of coarse grains
with abundant intermediates [37].

Figure 5 shows the XRD patterns of the resultant W-core SiC filaments, which mainly
consist of signals from the 3C-SiC deposit and the W-wire substrate. At both 850 and
1050 ◦C, the diffraction peaks of 3C-SiC are intensified with the increase in supersaturation,
which are due to the growth of the deposit layer. It can be drawn from the insets that the
texture coefficient of (111) plane is much higher than those of (220) and (311) planes in each
deposition condition, which suggests that a strong (111) texture was developed during
the growth of the 3C-SiC deposit. In addition, the texture coefficient of the (111) plane
increased from 0.55 to 0.74, with the supersaturation increasing from 9.6 × 107 to 1.7 × 109

at 850 ◦C, which grew from 0.59 to 0.69 at 1050 ◦C, with the increase in supersaturation
from 5.4 × 106 to 2.5 × 107, indicating that when an increased growth rate of the deposit
on W wire substrate could be realized in higher supersaturation conditions, the growth
of 3C-SiC grains along the 111 direction would be strengthened in the deposition process.
The relationship between growth rate and the preferential orientation of the deposit in a
surface reaction limited CVD process can be described by:

rSiC = k0VNhkl (9)
where k0 is the rate constant, V is the molar volume of the deposit and Nhkl is the atomic
density of (hkl) plane [38]. In 3C-SiC, the (111) plane possesses the highest Si-C pair density
(2.02 × 105 mol/m2). Thus, the preferential growth of 3C-SiC grains along the 111 direction
could yield higher growth rates in elevated supersaturation situations.
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SiC 0 hklr k VN=  (9)

where k0 is the rate constant, V is the molar volume of the deposit and Nhkl is the atomic 
density of (hkl) plane [38]. In 3C-SiC, the (111) plane possesses the highest Si-C pair 
density (2.02 × 105 mol/m2). Thus, the preferential growth of 3C-SiC grains along the 111 
direction could yield higher growth rates in elevated supersaturation situations. 

Figure 4. SEM secondary electron images showing the surface morphology of deposits obtained at
different deposition temperatures (T) and gas-phase supersaturations (S). The magnified view of the
deposit and the average size of surface defects obtained at different deposition temperatures and
gas-phase supersaturations are illustrated in the insets. (a) T = 850 ◦C, S = 9.6 × 107; (b) T = 850 ◦C,
S = 5.7 × 108; (c) T = 850 ◦C, S = 1.7× 109; (d) T = 1050 ◦C, S = 5.4× 106; (e) T = 1050 ◦C, S = 1.6 × 107;
(f) T = 1050 ◦C, S = 2.5 × 107.
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Figure 5. XRD patterns of the W-core SiC filaments, prepared at 850 ◦C (a) and 1050 ◦C (b) under
different supersaturation conditions. The corresponding texture coefficients of the (111), (220) and
(311) planes in 3C-SiC grains are displayed in the insets.

The volume-weighted coherently scattering domain size and microstrain in the
111 direction, of the deposited 3C-SiC grains, are listed in Table 1. It is observed that
the average domain size experienced a decrease from 168 Å to 137 Å, with the supersatura-
tion increasing from 9.6 × 107 to 1.7 × 109 at 850 ◦C, and the microstrain increased from
1.86 × 10−3 to 2.59 × 10−3. Likewise, when the deposition temperature was 1050 ◦C, the
increase in supersaturation, from 5.4 × 106 to 2.5 × 107, resulted in the average domain
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size decreasing from 213 Å to 156 Å, which is accompanied by the microstrain increasing
from 1.72 × 10−3 to 2.88 × 10−3. These results suggest that, although an increased super-
saturation could promote the deposition rate and facilitate the development of the (111)
texture in the deposit, it tends to reduce the domain size and enhance the microstrain in
the 111 direction of the deposited 3C-SiC grains.

Table 1. The volume-weighted coherently scattering domain size (DV) and microstrain (e) in the (111)
direction, of the deposited 3C-SiC grains in different deposition conditions.

T (◦C) Supersaturation DV (Å) e × 103

850

9.6 × 107 168 ± 13 1.86 ± 0.15
2.7 × 108 163 ± 11 1.97 ± 0.12
5.7 × 108 156 ± 13 2.14 ± 0.17
1.0 × 109 149 ± 16 2.33 ± 0.14
1.7 × 109 137 ± 10 2.59 ± 0.10

1050

5.4 × 106 213 ± 16 1.72 ± 0.23
1.1 × 107 201 ± 14 2.23 ± 0.19
1.6 × 107 182 ± 7 2.51 ± 0.11
2.1 × 107 170 ± 9 2.67 ± 0.14
2.5 × 107 156 ± 12 2.88 ± 0.17

Figure 6 displays the Raman spectra of the deposits, prepared in different deposition
conditions. As shown in Figure 6a, the longitudinal optical (TO) and the transverse
optical (LO) bands of 3C-SiC are located at ~790 cm−1 and ~970 cm−1, respectively. It
can be observed from the inset that the TO band has split into two components, TO1 and
TO2, as a result of the formation of stacking faults and twins in the 3C-SiC grains [39].
Besides, the broad band at ~720 cm−1 is aroused by amorphous SiC, the bands at ~770
and ~950 cm−1 are caused by hexagonal SiC polytypes and the Fröhlich mode, which is
produced by the interaction between the incident photons and structural defects, occurs at
~870 cm−1 [40–42]. At 850 ◦C, the signal from amorphous SiC decreased with the increase
in supersaturation, and the splitting of the TO band increased from 11.4 to 20.7 cm−1.
Although little amorphous SiC was deposited at 1050 ◦C, the splitting of the TO band still
experienced an increase from 8.3 cm−1 to 13.4 cm−1 during the supersaturation, increasing
from 5.4 × 106 to 2.5 × 107. In addition, at both 850 ◦C and 1050 ◦C, the Fröhlich mode was
intensified in high supersaturation conditions, indicating more structural defects that were
formed during the growth of the 3C-SiC grains.

Figure 7 shows the variations of the full width at half the maximum of the TO1 band
and the hexagonality of the deposited 3C-SiC grains, at 850 ◦C and 1050 ◦C. The full width
at half the maximum of the TO1 band increased from 7.8 cm−1 to 15.7 cm−1, with the
supersaturation increasing from 9.6 × 107 to 1.7 × 109 at 850 ◦C. In the meantime, the
hexagonality of the deposited 3C-SiC grains went up from 38.7% to 70.4%. At 1050 ◦C, the
full width at half the maximum of the TO1 band experienced an increase from 6.3 cm−1

to 10.1 cm−1, with the supersaturation increasing from 5.4 × 106 to 2.5 × 107, while the
hexagonality of the deposited 3C-SiC grains rose from 28.2% to 45.6%. The full width at
half the maximum of the TO1 band is inversely proportional to the domain size in the
SiC grain, and the formation of stacking faults and twins in 3C-SiC grains can not only
convert the cubic stacking sequences to hexagonal ones but also produce lattice strain
in the 111 direction [43,44]. Thus, it can be deduced that the deposit prepared with the
supersaturation of 1.7 × 109 at 850 ◦C has a small domain size and high lattice strain,
whereas the deposit prepared with the supersaturation of 5.4 × 106 at 1050 ◦C will exhibit
a large domain size and low lattice strain. These results agree well with the XRD analyses.
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Figure 8 shows the microstructure of polycrystalline SiC grains deposited at 850 ◦C,
with supersaturation of 9.6 × 107 and 1.7 × 109, respectively. It can be observed from
Figure 8a that the deposit consists of columnar grains. The inserted selected area electron
diffraction pattern (SAED) suggests that the 3C-SiC grain, preferentially, grows along the
111 direction, although small misorientations exist in adjacent grains. In addition, the
columnar 3C-SiC grains contain numerous planar defects, which spread laterally to fill the
entire cross section of the grains and account for the streaks in the SAED pattern. From
the high-resolution TEM (HRTEM) image in Figure 8b, it can be seen that the amorphous
phase is formed at the 3C-SiC grain boundary, which produces a weak Raman signal at
~720 cm−1. Within the columnar grain, the planar defects are, mainly, stacking faults
and twins, which interrupt the regular 3C stacking order and locally transform the cubic
stacking sequences into hexagonal ones. As a result, the thickness of the 3C domain was
decreased to 1.5 nm. The stacking sequences of the structural defects-induced 2H-, 4H- and
6H- domains in the dotted circle areas, are exhibited in Figure 8c. These areas generate
the TO2 band and the hexagonal bands in the Raman spectra. The inverse fast Fourier
transform (FFT) image in Figure 8d, clearly, demonstrates the lattice distortion introduced
perpendicular to the (111) plane, by structural defects in the 3C-SiC columnar grain. As
shown in Figure 8e, the lattice spacing of the structural defects-induced hexagonal domain
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(0.255 nm) is slightly higher than that of the 3C domain (0.251 nm) [45]. As a result, the
formation of structural defects will introduce tensile strain to SiC (111) lattices, which are
illustrated in Figure 8f. Additionally, since the structural defects in 3C-SiC columnar grains
exhibit the lateral expansion behavior, when different defect nuclei meet each other during
their lateral growth on the (111) plane, dislocations will be produced at their interfaces,
which can explain the observed Frank dislocations in Figure 8d.
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nm. Although the structural defects induced dislocations and the variations in lattice 
spacing could still be observed in Figure 9d,e, the decreased structural defect density 
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was formed in the deposit, when the supersaturation increased to 2.5 × 107, and the den-
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Figure 8. Bright-field TEM image of the deposits prepared at 850 ◦C, with supersaturation
of 9.6 × 107 (a) and 1.7 × 109 (g), respectively. The insets show the SAED patterns along the
0-11 crytallographic axis of 3C-SiC. The corresponding HRTEM images of 3C-SiC grains, along
the 0-11 crystallographic axis, are shown in (b,h). The stacking sequences in the dotted circle areas of
(b,h) are given in (c,i). (d,j) exhibit the filtered inverse FFT (111) lattice fringe images of 3C-SiC, in
the dotted rectangular areas of (b,h). (e,k) exhibit the lattice spacing in the green and red rectangular
regions of (d,j), and the corresponding strain fields are shown in (f,l), respectively.

As shown in Figure 8g, the 111 direction of 3C-SiC became the dominant growth
direction in the deposit, when the supersaturation increased to 1.7 × 109. The intensified
streaks in the SAED pattern suggest that more structural defects were formed in these
columnar grains. As shown in Figure 8f, the thickness of the 3C domain was further
decreased to 0.75 nm, by the increased stacking faults and twins. Besides, unstable stacking
faults (USF) were produced in 3C-SiC grain. Figure 8i demonstrates the stacking sequences
of the USF, in which the neighboring Si-C bilayers locate almost at the same position. It
can be seen from Figure 8j,k that the formation of USF could significantly increase the
(111) lattice spacing to 0.265 nm, bringing about severe lattice strain in the 111 direction of
3C-SiC grains [46]. The decrease in 3C domain thickness and the increase in lattice strain
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in the 111 direction in high supersaturation conditions are consistent with the XRD and
Raman results.

Figure 9a displays polycrystalline 3C-SiC grains, deposited at 1050 ◦C with supersatu-
ration of 5.4 × 106. From the inserted SAED pattern and the HRTEM image in Figure 9b,
it can be drawn that the number of stacking faults and twins decreased in 3C-SiC grains.
Figure 9c shows that the 3C stacking sequence in the columnar grain could be maintained
in a wide range, and the resultant thickness of the 3C domain could reach 5 nm. Although
the structural defects induced dislocations and the variations in lattice spacing could still be
observed in Figure 9d,e, the decreased structural defect density resulted in the alleviation
of lattice strain in Figure 9f. From the bright-field image in Figure 9g and the inserted SAED
pattern, it is obvious that a strengthened (111) texture was formed in the deposit, when the
supersaturation increased to 2.5 × 107, and the density of the laterally extended structural
defects in 3C-SiC columnar grains was also enhanced. As illustrated in Figure 9h,i, the
increased number of stacking faults, twins and unstable stacking faults induced the 3C
domain thickness to reduce to 2 nm. Since the lattice spacings of these structural defects
are all larger than that of the 3C domain, the lattice distortion and intensified lattice strain
observed in Figure 9j,l should be ascribed to the increased number of structural defects in
3C-SiC grains. It is obvious that the thicknesses of 3C domains obtained at 1050 ◦C are larger
than those formed at 850 ◦C. Thus, the decrease in supersaturation at elevated deposition
temperatures could, also, reduce the structural defects generated in 3C-SiC grains.
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nanoindentation tests. It can be seen from Figure 10a that the indentation modulus of the 
deposit prepared at 850 °C increased from 270.3 GPa to 323.5 GPa and, then, decreased to 
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obvious change can be observed as the supersaturation further increased to 1.7 × 109. In 
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Figure 9. Bright-field TEM image of the deposits prepared at 1050 ◦C, with supersaturation
of 5.4 × 106 (a) and 2.5 × 107 (g), respectively. The insets show the SAED patterns along the
0-11 crytallographic axis of 3C-SiC. The corresponding HRTEM images of 3C-SiC grains, along the
0-11 crystallographic axis, are shown in (b,h). The stacking sequences in the dotted circle areas of
(b,h) are given in (c,i). (d,j) exhibit the filtered inverse FFT (111) lattice fringe images of 3C-SiC, in
the dotted rectangular areas of (b,h). (e,k) exhibit the lattice spacing in the green and red rectangular
regions of (d,j), and the corresponding strain fields are shown in (f,l), respectively.
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3.3. Mechanical Properties of the Deposit and the W-Core SiC Filament

Figure 10 shows the mechanical properties of the deposits, determined from nanoin-
dentation tests. It can be seen from Figure 10a that the indentation modulus of the deposit
prepared at 850 ◦C increased from 270.3 GPa to 323.5 GPa and, then, decreased to 309.1 GPa,
with the supersaturation increasing from 9.6× 107 to 1.7× 109. The hardness of the deposit,
initially, increased from 33.9 GPa at 9.6 × 107 to 37.8 GPa at 2.7 × 108, and no obvious
change can be observed as the supersaturation further increased to 1.7 × 109. In Figure 10b,
the variation of the deposit’s indentation modulus with the increasing supersaturation at
1050 ◦C was similar to that at 850 ◦C, and a medium supersaturation of 1.6 × 107 favored
the 3C-SiC deposit to reach the maximum indentation modulus of 347.9 GPa. However,
the hardness of the deposit was insensitive to the deposition conditions. Studies have
shown that the formation of pores and amorphous phase would seriously degrade the
elastic modulus and hardness of SiC [47,48]. Besides, stacking faults and residual stress
could cause a reduction in the elastic modulus of 3C-SiC [49,50]. Since the deposit has a
strong 111 texture, and the tensile strains were introduced by stacking faults and twins
formed on the (111) planes, the residual stresses in 3C-SiC grains could be estimated by the
following equation:

σr = E111e (10)

where E111 is the Young’s modulus of 3C-SiC in the 111 direction, 425.3 GPa, and e is
the microstrain determined by XRD analysis [49]. It can be calculated from Equation (10)
and the microstrains in Table 1 that the residual stress in the 3C-SiC grain increased from
0.79 GPa to 1.1 GPa, with the supersaturation increasing from 9.6 × 107 to 1.7 × 109 at
850 ◦C, which experienced an increase from 0.73 GPa to 1.22 GPa, with the supersaturation
increasing from 5.4 × 106 to 2.5 × 107 at 1050 ◦C. When a compact deposit with a strong
(111) texture was obtained on W-wire substrate, the high residual stress produced in 3C-SiC
grains would reduce the elastic modulus of the deposit.
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Thus, the reduced pores and structural defects formed in the deposition process
promote the indentation modulus of the deposit prepared with the supersaturations of
1.0 × 109 at 850 ◦C to 323.5 GPa, while the elimination of amorphous phase and the rela-
tively low residual stress developed in the compact and textured 3C-SiC deposit further
enhance the indentation modulus and the hardness of deposit obtained, with supersatura-
tion of 1.6 × 107 at 1050 ◦C to 347.9 and 39.6 GPa, respectively.

The Weibull plots and stress-strain curves of the W-core SiC filaments obtained from
tensile tests are illustrated in Figure 11. In Figure 11a,b, the increase in supersaturation at
both 850 ◦C and 1050 ◦C would change the slope of the Weibull plots, which suggests that
the uniformity of the filament’s tensile strength, i.e., the Weibull modulus, is influenced by
this deposition parameter. In addition, although the stress-strain curves in Figure 11c,d
demonstrate the brittle fracture behavior of the filaments, the increase in supersatura-
tion can, also, alter their elastic modulus and tensile strength. Table 2 summarizes the
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mechanical properties of the as-prepared W-core SiC filaments. At 850 ◦C, the filaments
prepared with the supersaturation of 9.6 × 107 exhibited the lowest elastic modulus and
tensile strength of 248.9 GPa and 1.23 GPa, respectively. The increase in supersaturation,
simultaneously, enhanced the mechanical properties and Weibull modulus of the filaments,
and a high elastic modulus of 316.1 GPa and a high tensile strength of 2.63 GPa were
achieved with the supersaturation at 5.7 × 108 and 1.0 × 109, respectively. Moreover, the
Weibull modulus of the filament experienced an increase from 6.2 to 10.3, as a result of
the enhanced surface quality of the deposit. When the supersaturation came to 1.7 × 109,
the elastic modulus and tensile strength of the filament were reduced by 17.4 GPa and
0.18 GPa, respectively, accompanied with a drop of 2.2 in the Weibull modulus. Experi-
mental and simulation studies have shown that when 3C-SiC contains amorphous phase,
pores and stacking faults, these defects would decrease its tensile strength [51,52]. Thus,
the reduction in tensile strength is related to the increased structural defects density, while
the rough surface morphology leads to the decrease in the Weibull modulus. When the
supersaturation is 1.0 × 109, not only would pores not be formed during the deposition
process, the densities of stacking faults and twins in 3C-SiC grains were also less than those
produced with the supersaturation of 1.7 × 109. As a result, the filament prepared with the
supersaturation of 1.0 × 109 demonstrates the highest tensile strength at 850 ◦C. Similar
changes are observed in the mechanical properties of the filaments prepared at 1050 ◦C.
Since the content of the amorphous phase and pores in the homogeneous deposit prepared
with the medium supersaturation of 1.6 × 107 were negligibly small, and limited stacking
faults and twins were formed in 3C-SiC grains, the filament was able to reach the highest
elastic modulus of 353.1 GPa, with a tensile strength of 2.88 GPa, as well as a high Weibull
modulus of 11.2. In general, the mechanical properties of the filaments prepared at 1050 ◦C
are better than those at 850 ◦C, which, also, benefit from the elimination of amorphous
phase and the relatively low structural-defects density at the high deposition temperature.
These results indicate the mechanical performance of the W-core SiC filaments is, mainly,
determined by the growth quality and the mechanical properties of the deposit.

Metals 2022, 12, x FOR PEER REVIEW 14 of 19 
 

 

the Weibull modulus of the filament experienced an increase from 6.2 to 10.3, as a result 
of the enhanced surface quality of the deposit. When the supersaturation came to 1.7 × 
109, the elastic modulus and tensile strength of the filament were reduced by 17.4 GPa 
and 0.18 GPa, respectively, accompanied with a drop of 2.2 in the Weibull modulus. Ex-
perimental and simulation studies have shown that when 3C-SiC contains amorphous 
phase, pores and stacking faults, these defects would decrease its tensile strength [51,52]. 
Thus, the reduction in tensile strength is related to the increased structural defects den-
sity, while the rough surface morphology leads to the decrease in the Weibull modulus. 
When the supersaturation is 1.0 × 109, not only would pores not be formed during the 
deposition process, the densities of stacking faults and twins in 3C-SiC grains were also 
less than those produced with the supersaturation of 1.7 × 109. As a result, the filament 
prepared with the supersaturation of 1.0 × 109 demonstrates the highest tensile strength at 
850 °C. Similar changes are observed in the mechanical properties of the filaments pre-
pared at 1050 °C. Since the content of the amorphous phase and pores in the homoge-
neous deposit prepared with the medium supersaturation of 1.6 × 107 were negligibly 
small, and limited stacking faults and twins were formed in 3C-SiC grains, the filament 
was able to reach the highest elastic modulus of 353.1 GPa, with a tensile strength of 2.88 
GPa, as well as a high Weibull modulus of 11.2. In general, the mechanical properties of 
the filaments prepared at 1050 °C are better than those at 850 °C, which, also, benefit from 
the elimination of amorphous phase and the relatively low structural-defects density at 
the high deposition temperature. These results indicate the mechanical performance of 
the W-core SiC filaments is, mainly, determined by the growth quality and the mechan-
ical properties of the deposit. 

 
Figure 11. Weibull plots of W-core SiC filaments prepared in different supersaturation conditions, 
at 850 °C (a) and 1050 °C (b), respectively. The corresponding stress-strain curves of the filaments 
are displayed in (c,d). 

Figure 11. Weibull plots of W-core SiC filaments prepared in different supersaturation conditions, at
850 ◦C (a) and 1050 ◦C (b), respectively. The corresponding stress-strain curves of the filaments are
displayed in (c,d).



Metals 2022, 12, 881 14 of 18

Table 2. The elastic modulus (Ef), mean tensile strength (σf) and Weibull modulus (m) of W-core
SiC filaments.

T (◦C) Supersaturation Ef (GPa) σf (GPa) m

850

9.6 × 107 248.9 ± 20.7 1.23 6.2
2.7 × 108 280.7 ± 21.4 1.87 7.4
5.7 × 108 316.1 ± 23.7 2.35 9.1
1.0 × 109 305.0 ± 20.2 2.63 10.3
1.7 × 109 297.6 ± 16.1 2.45 8.5

1050

5.4 × 106 301.6 ± 22.6 1.92 7.7
1.1 × 107 332.3 ± 27.3 2.55 8.8
1.6 × 107 353.1 ± 18.1 2.88 11.2
2.1 × 107 340.8 ± 24.2 2.85 9.4
2.5 × 107 329.9 ± 15.1 2.67 8.1

3.4. Structural Defects Evolution in Different Gas Phase Supersaturation Conditions

In view of the lateral extended planar defects formed in 3C-SiC columnar grains, we
propose a 2D nucleation model to understand their evolution in different supersaturation
conditions. As illustrated in Figure 12, the growth of 3C-SiC columnar grain is realized
by the continuous formation of 2D nuclei and their lateral expansions on the (111) plane.
Both the perfect 3C nucleus and defect nuclei (e.g., stacking faults and twins and unstable
stacking faults) could be produced in the growth process. When different nuclei meet each
other during the lateral growth, dislocations will be formed at the interface. The critical
nucleation energy of a perfect 3C-SiC nucleus and a defect nucleus on the (111) plane of
3C-SiC can be calculated as follows [53,54]:

∆G∗3C = 2πr∗hγ0 − πr∗2h
kT ln(1 + S)

Ω
(11)

∆G∗defect = 2πr∗hγ0 − πr∗2h
kT ln(1 + S)

Ω
+ πr∗2γ′ +

πr∗2h
Ω

(∆d)2δ

2
(12)

where r* is critical radius of the nucleus, γ0 is the average surface energy of SiC, 1.74 J/m2 [55],
h is the height of the nucleus, k is the Boltzmann constant, Ω is the volume of Si-C tetrahe-
dron, 2.08 × 10−29 m3, δ is the force constant of the Si-C bond, 309 N/m, and ∆d and γ’ are
the lattice spacing difference and the interfacial energy between the 2D nucleus and the
(111) plane of 3C-SiC, which are listed in Table 3.
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Table 3. The lattice spacing difference and the interfacial energy between the 2D nucleus and the
(111) plane of 3C-SiC [45,56,57].

3C SF USF Twin

∆d (nm) 0 1.5 × 10−3 1.5 × 10−2 4.9 × 10−4

γ’ (mJ/m2) 0 40.7 75.3 27.1

Figure 13 displays the calculated critical nucleation energies of different 2D nucleus. In
each supersaturation condition, the perfect 3C nucleus has the lowest the critical nucleation
energy, indicating it is the most easily produced structure during the growth of columnar
grain. At both 850 and 1050 ◦C, the USF nucleus exhibits the highest the critical nucle-
ation energy, especially in low supersaturation conditions. These results conform to TEM
observations in Figures 8 and 9b, that little USF was formed in 3C-SiC grains, when the
supersaturation was 9.6 × 107 at 850 ◦C and 5.4 × 106 at 1050 ◦C, respectively. An increase
in the supersaturation at each deposition temperature can decrease the critical nucleation
energies of stacking faults and twin nuclei, which suggests more structural defects and
small 3C domains will be produced in deposits. These results are in accordance with the
XRD profile analyses. The critical nucleation energy of USF nucleus will be significantly
reduced in high supersaturation conditions. Therefore, it is possible to generate unstable
stacking faults during the growth of 3C-SiC grains, which can explain the occurrence of this
defect in Figures 8 and 9h, when the supersaturation was 1.7 × 109 at 850 ◦C and 2.5 × 107

at 1050 ◦C, respectively. Moreover, at the same flow rate of CH3SiCl3, the relatively low
supersaturations produced at 1050 ◦C are able to further increase the critical nucleation
energy of the faulted nuclei. As a result, fewer structural defects will be produced in 3C-SiC
grains when the deposition processes were carried out at 1050 ◦C, which agrees well with
the changes in the hexagonality of 3C-SiC grains. Thus, it is the critical nucleation energy
of 2D nucleus that determines the structural defects evolution in the deposition process.
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4. Conclusions

1. In a continuous hot-wire CVD process, the decrease in deposition temperature and
the increase in CH3SiCl3 flow rate will increase the gas phase supersaturation.

2. At both 850 ◦C and 1050 ◦C, an increase in gas phase supersaturation can increase the
deposition rate. The growth of the deposit layer on W-wire substrate is limited by the
surface reactions.

3. An amorphous phase and a porous surface structure were produced by the low
supersaturation of 9.6 × 107 at 850 ◦C, while intensified (111) texture and increased
structural defects, together with a rough surface structure, were developed in the
deposit prepared by the high supersaturation of 2.5 × 107 at 1050 ◦C.
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4. A polycrystalline 3C-SiC deposit, with a high modulus of 347.9 GPa, was obtained
with a medium supersaturation of 1.6 × 107 at 1050 ◦C, which, also, promoted the
mean tensile strength and the Weibull modulus of the resultant W-core SiC filament,
to 2.88 GPa and 11.2, respectively. The improved mechanical performance should be
attributed to the reduced structural defects and the enhanced surface quality.

5. Under different supersaturation conditions, the evolution of structural defects in 3C-
SiC columnar grains is controlled by the critical nucleation energy of the 2D nucleus.
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