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Abstract: The development of new β-Ti alloys has been extensively studied in the medical field
in recent times due to their more suitable mechanical properties, such as a relatively low Young’s
modulus. This paper analyzes the influence of heat treatments (homogenization and annealing) and
hot rolling on the microstructure, phase composition, and some mechanical properties of ternary
alloys of the Ti-xNb-5Mo system, with an amount of Nb varying between 0 and 30 wt%. The samples
are produced by argon arc melting. After melting, the samples are homogenized at 1000 ◦C for 24 h
and are hot rolled and annealed at 1000 ◦C for 6 h with slow cooling. Structural and microstructural
analyses are made using X-ray diffraction and optical and scanning electron microscopy. Mechanical
properties are evaluated by Vickers microhardness and Young’s modulus. The amount of β phase
increases after heat treatment and reduces after hot rolling. The microhardness and Young’s mod-
ulus of all heat-treated samples decrease when compared with the hot rolled ones. Some samples
exhibit atypical Young’s modulus and microhardness values, such as 515 HV for the as-cast Ti-10Nb-
5Mo sample, indicating the possible presence of ω phase in the microstructure. The Ti-30Nb-5Mo
sample suffers less variation in its phase composition with thermomechanical treatments due to
the β-stabilizing effect of the alloying elements. The studied mechanical properties indicate that
the annealed Ti-30Nb-5Mo sample has potential for biomedical applications, exhibiting a Young’s
modulus value of 69 GPa and a microhardness of 236 HV.

Keywords: biomaterial; Ti alloys; thermomechanical treatments; phase composition; microstructure;
microhardness; Young’s modulus

1. Introduction

Currently, the use of biomaterials is growing and plays a crucial role in the biomedical
area. In recent years, materials processing technologies have advanced considerably,
allowing for the development of numerous biomaterials with adaptable properties for
several applications, such as orthopedic, dental, and cardiovascular implants; drug delivery;
and tissue engineering [1–3].

Commercially pure titanium (CP-Ti) and the Ti-6Al-4V alloy are widely used as metal-
lic biomaterials for orthopedic and dental bone implants [4,5]. However, these materials
have a higher Young’s modulus than those of the cortical human bones (<30 GPa) [4,6]
and potentially toxic elements (V and Al) [6–8]. Therefore, efforts have been conducted to
develop new Ti alloys without cytotoxic elements, containing, for example, Mo, Nb, Ta,
and Zr, and with mechanical properties closer to those of the human bones [6]. Each Ti
phase has different mechanical properties, with the β phase having lower elastic modulus
values. For this reason, new Ti alloys are developed using β-stabilizing elements [9–11].
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Ideally, a biomaterial for an implant must have a non-toxic composition, light weight,
adequate mechanical strength, good castability, low Young’s modulus, and high corrosion
and wear resistance. In Ti’s solid solutions, it is possible to improve these properties by
modifying the type and concentration of the alloying elements [12,13]. When added to Ti
alloys, Nb can increase corrosion resistance [14], whereas Mo can enhance mechanical com-
patibility, both being recognized as β-stabilizer elements [11,14,15]. Furthermore, they are
known non-toxic or allergenic metals that can improve the properties of Ti alloys [11–13,16].

In addition to chemical composition, thermomechanical processing can also change
the structure, microstructure, and mechanical properties of Ti and its alloys [9,17,18].
Heat treatments can provide stress relief, minimize imperfections, and promote a more
homogeneous phase distribution [9,19]. Moreover, thermomechanical treatments, such
as hot rolling, can increase mechanical and wear resistance, reduce ductility, and induce
metastable α” phase formation [18,20,21].

In this study, the influence of some thermomechanical processes on the crystalline
structure, microstructure, and some mechanical properties of Ti-xNb-5Mo (x = 0, 10, 20,
30 wt%) aiming toward biomedical applications were investigated. The phase composition,
microstructure, and mechanical properties of the samples were evaluated after argon
arc melting, hot rolling, and homogenization and annealing heat treatments. Although
some articles point out that Mo can be toxic [8,22], there are works showing that Ti-alloys
containing Mo exhibit excellent biocompatibility [23], such as Ti-15Mo [24], Ti-15Mo-
5Mn [25], and Ti-12Mo-6Zr-2Fe (TMZF) [26]. As it is a strong β-stabilizing element, high
Mo contents also tend to increase bond strength between atoms, which may increase the
Young modulus [18]. Thus, to avoid possible cytotoxicity of Mo and to not negatively
influence the mechanical properties, it was chosen to work with a low concentration of this
element. The Nb concentrations were chosen to study alloys with α + β phases, up to the
alloy with only a β phase.

Additionally, Brazil is one of the leading countries in producing and concentrating Nb
minerals, accounting for about 90% of all world production, and Companhia Brasileira de
Metalurgia e Mineração (CBMM) is the world’s leading producer of this element [27,28].
Moreover, niobium is of interest in the biomedical area because it increases corrosion
resistance, reduces Young’s modulus, and promotes shape memory behavior in Ti alloys,
aside from Ti alloys being biocompatible, non-allergic, and non-toxic [29,30].

2. Materials and Methods

Ingots of Ti-xNb-5Mo (x = 0, 10, 20, 30 wt%) alloys, weighing approximately 60 g each,
were produced by arc melting in an argon gas atmosphere, using commercially pure Ti
grade 2 bars (CP-Ti, Sandinox, Sorocaba, Brazil), Mo wires (99.9% purity, Sigma-Aldrich,
Saint Louis, MO, USA), and Nb chips (99.8% purity, Sigma-Aldrich) as precursor materials.
The details of casting, chemical composition, structure and microstructure, and selected
mechanical properties of as-cast alloys are described in a previous paper [31]. After melting,
the ingots were homogenized by a heat treatment at 1273 K in a vacuum of 10−7 Torr
for 24 h, with slow cooling to reduce internal stresses and imperfections and to eliminate
possible agglomerated or segregated elements. After that, the samples were hot rolled at
1273 K, without a controlled atmosphere, to obtain samples in a regular format for further
analysis. A reduction of approximately 1 mm in thickness per pass, until reaching a final
thickness of approximately 4 mm, was used. Finally, an annealing heat treatment was
conducted at 1273 K in a vacuum of 10−7 Torr for 6 h to reduce the internal stresses of the
material and to eliminate possible dislocations caused by mechanical deformation.

X-ray diffractometry (XRD) was used to evaluate structure and phase composition.
The measurements were made using Panalytical X’Pert-Pro model equipment (Malvern
Panalytical, Malvern, UK), with Cu-Kα radiation, operated at 30 mA and 40 kV, and with
continuous-time mode. Rietveld refinement of the XRD diffractograms was performed
using GSAS software [32] with the EXPEGUI interface [33]. The crystallographic datasheets
of α and β Ti-phases [34] were used. To eliminate the experimental contributions of
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the equipment, a standard CP-Ti sample was used [18]. Microstructural information
was obtained by optical microscopy (OM), using an Olympus BX51M model equipment
(Olympus, Tokyo, Japan), and scanning electron microscopy (SEM) by a Carl Zeiss EVO-
015 model microscope (Carl Zeiss, Oberkochen, Germany) in the secondary electron (SE)
imaging mode.

Microhardness measurements were obtained using Shimadzu HMV-2 model equip-
ment. Five indentations made performed in each sample, using a load of 25 gf (0.245 N) for
10 s, based on the ASTM E92 standard [35]. Following the standard procedures, Young’s
modulus values were obtained by the impulse excitation method, with Sonelastic® equip-
ment (ATCP Physical Engineering, São Carlos, Brazil) [36]. Average values were calculated
from three distinct specimens for each sample, with five measurements on each specimen.

3. Results and Discussion

The diffractograms of the produced as-cast, homogenized, hot rolled, and annealed
samples are shown in Figure 1. The phase compositions quantified by the Rietveld refine-
ment of each sample are shown in Figure 2. The as-cast Ti-5Mo sample showed coexistence
of the α’ (63%), α” (22%), and β (15%) phases. After the homogenization heat treatment,
there was an increase in the α’ phase (82%) and a reduction in the amount of α” phase
(1%), and the β phase remained almost unchanged (17%). The hot rolling process de-
creased the amount of β phase to 5%, whereas α” phase was raised close to its original
amount (22%). The annealing treatment augmented the quantity of β phase (12%) and
diminished the amount of the martensitic α’ and α” phases (73% and 15%, respectively).
For the Ti-10Nb-5Mo sample, the α’ and β phase proportions elevated from 12% and 38%
to 44% and 50%, respectively, whereas the α” phase decayed from 50% to 6%, between the
as-cast and homogenized conditions. After hot rolling, the amount of α’ phase had a slight
decrease (38%) along with the β phase (25%), whereas the α” phase reached 37%. After
annealing, the phase composition returned to similar amounts compared to the as-cast
conditions for the Ti-20Nb-5Mo alloy, whose phase composition after melting consisted
of 40% α” phase and 60% β phase. The sample exhibited an increase in the β phase (69%)
after homogenization heat treatment, whereas in the hot rolled condition this value de-
creased to 49%. The Ti-30Nb-5Mo samples showed no changes in phase composition after
thermomechanical processing, presenting only the β phase in as-cast, homogenized, and
annealed conditions. After hot rolling, a minor peak of α” phase was identified, induced
by mechanical deformation. However, the amount of this phase was not enough to be
measured properly.

Due to overlapping phases, some XDR lines were wider than usual, especially after the
melting and hot rolling of the Ti-10Nb-5Mo alloy samples. Therefore, the Rietveld method
was used to analyze the diffractogram to separate, identify, and quantify each phase.

Overall, the heat treatments facilitated the growth of α’ and β phases and suppressed
α” phase precipitation due to the recrystallization of the microstructure during slow cooling
and stress relieving. On the other hand, hot rolling diminished the α’ and β phases and
favored α” phase precipitation, due to high cooling rates in addition to the defects promoted
by mechanical deformations [18].

The microstructural features of the Ti-5Mo, Ti-10Nb-5Mo, Ti-20Nb-5Mo, and Ti-30Nb-
5Mo samples for each thermomechanical condition are shown in Figures 3–6, which corrob-
orate directly with the XRD results. The images of the Ti-5Mo and Ti-10Nb-5Mo samples
depict similar lamellar structures. Coarser needles, which are typical of α’ phase, as well
as some acicular structures of α” phase and grain boundary characteristics of β phase
appeared in both samples [37]. The Ti-20Nb-5Mo sample displayed noticeable β phase
grain boundaries in all conditions and minor amount of α” phase needles inside the grains
of the homogenized and annealed conditions. Lastly, the Ti-30Nb-5Mo sample exhibited
only β phase grain boundaries in all conditions. The micrographs of the hot rolled samples
present a clear deformation at the grain in the rolling direction, remaining smaller and elon-
gated, whereas the heat treatments increased the size of the grains due to recrystallization
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and stress relief mechanisms at high temperatures [18,38]. More significant changes in the
microstructures of the samples of Ti-5Mo and Ti-10Nb-5Mo alloys were observed due to a
greater amount of α phase.
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The Vickers microhardness values of the studied samples are displayed in Figure 7.
Due to a solid solution and the phase precipitation hardening effect, all samples showed
higher values than CP-Ti grade 2 (148 HV) [39]. As-cast and hot rolled Ti-5Mo and Ti-
20Nb-5Mo, homogenized and annealed Ti-10Nb-5Mo, and hot rolled Ti-30Nb-5Mo samples
showed similar values to those of Ti-6Al-4V (304 HV) and AISI 316L (289 HV). In general,
hot rolling tended to raise the microhardness values of the samples as a result of increases
in dislocation density by mechanical working [40], whereas heat treatments caused decay
due to the stress relief. However, this trend was not observed for the Ti-20Nb-5Mo sample,
which had an elevated microhardness after heat treatment, possibly due to the formation
of the metastable ω phase, which makes the material harder and more brittle [16,41,42].
Thoemmes et al. [43] found similar results for heat treatment at 1000 ◦C for 24 h slowly
cooled Ti-29Nb samples and concluded that the cooling rate may have been slow enough
that the samples were subjected to an aging heat treatment. The ω phase may also be
present in the as-cast Ti-10Nb-5Mo sample, which may explain the significant increase
in the values of this sample. As-cast, homogenized, and annealed Ti-30Nb-5Mo samples
presented better hardness values to be used as biomaterials.
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Figure 8 compares the Young’s modulus values of hot rolled and annealed samples.
The Young’s modulus values were influenced by the annealing treatment, except for the
Ti-5Mo sample, whose value remained at around 100 GPa in both conditions. The Ti-10Nb-
5Mo-10Nb and Ti-30Nb-5Mo samples had their values decreased from 98 GPa and 73 GPa
to 78 GPa and 69 GPa, respectively, due to the increase in β phase quantity between the hot
rolled and annealed samples. On the other hand, the values of the annealed Ti-20Nb-5Mo
sample increased in comparison to those of the hot rolled condition, which is another
indication ofω phase presence in this sample. In general, theω phase in Ti alloys has the
highest modulus values, followed by α, α’, α”, and β phases [9,10,20,44].
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Different thermomechanical treatments and levels at which plastic deformation is ap-
plied both affected deformation mechanisms, causing a change in Young’s modulus [45–47].
The Ti-30Nb-5Mo samples suffered few changes in their microstructure, leading to a minor
variation in their modulus.

The different compositions of the samples also influenced the variation of the mechan-
ical properties studied as a function of the thermomechanical treatments. The sample with
10% Nb was more susceptible to variations in its Young’s Modulus and microhardness with
different processing.

The produced Ti-xNb-5Mo alloys have better Young’s modulus values than some
commercial alloys, such as CP-Ti grade 2 and Ti-6Al-4V. The annealed Ti-30Nb-5Mo sample
exhibits the lowest Young’s modulus (69 GPa) among all produced samples, with a value
around two times higher than that of human cortical bone [48]. The microhardness of this
same sample is lower than those of other metallic biomaterials, such as Ti-6Al-4V and AISI
316L, which is another appropriate property for biomedical applications, since it can be
easily mechanically formed.

4. Conclusions

With the results presented above, it is possible to conclude that:

• The microstructures of the samples were sensitive to the thermomechanical processing
performed. In the Ti-5Mo, Ti-10Nb-5Mo, and Ti-20Nb-5Mo samples, the homogeniza-
tion heat treatment promoted the growth of α’ and β phases and the reduction in
α” phase, whereas hot rolling suppressed α’ and β phases and facilitated α” phase
formation. With a majority of β phase, the Ti-30Nb-5Mo sample showed a minor
amount of α” phase, not quantified by the Rietveld method, after hot rolling.

• The studied mechanical properties of the alloy samples with 10% Nb were more
sensitive to the thermomechanical treatments.
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• The microhardness of all samples was higher than that of CP-Ti, leading to increased
wear resistance.

• The high Vickers microhardness and Young’s modulus of the as-cast and heat-treated
Ti-10Nb-5Mo and Ti-20Nb-5Mo samples may indicate the presence of ω phase in
their microstructures.

• All samples exhibited a lower Young’s modulus than those of commercial alloys.
• Annealed Ti-30Nb-5Mo samples showed the best values of Young’s modulus (69 GPa),

presenting a favorable mechanical property for biomedical applications.
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