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Abstract: The evolution of texture in the AlMg6Mn0.7 (1565 ch) alloy throughout the entire cycle of its
thermomechanical treatment has been studied. Using this alloy as an example, a new way is shown
to control the texture development, which is applicable to alloys with high magnesium content. An
integrated approach is applied, including optical and electron microscopy, as well as X-ray diffraction
analysis, the determination of mechanical properties and texture modeling using algorithms of the
crystallographic plasticity theory. All stages of the thermomechanical treatment have been studied,
namely the development of the deformation structure out of the as-cast structure in the reversing
hot-rolling stand, continuous hot rolling, cold rolling and final recrystallization annealing. The study
showed that second phase particles are the main source of recrystallization nuclei at all stages of
high temperature thermomechanical treatment. The importance of these particles increases when
the Zener-Hollomon parameter increases. To obtain the maximum possible proportion of a random
texture, thermomechanical processing must be carried out at high Zener-Hollomon parameters.
However, the temperature should not interfere with the complete recrystallization process at the same
time. After cold rolling and recrystallization annealing at temperatures equal or greater than 350 ◦C,
a large proportion of random texture is formed, and the properties of the metal are almost isotropic.

Keywords: recrystallization; texture; microstructure; aluminum

1. Introduction

Aluminum alloys with high magnesium content are one of the most widespread alloys
in various branches of modern industry [1–6] due to their high strength and good plasticity
characteristics. One of the problems arising during their production is the anisotropy of
their physical and mechanical properties, which reduces their molding properties and
performance and leads to metal losses [7–9]. The main reason for the anisotropy of mechan-
ical properties is the crystallographic texture that develops during the thermomechanical
processing of sheets and strips. The main way to reduce the anisotropy in deep drawing
of a highly cold rolled sheet was to start with a hot strip that has a strong cube texture
component giving 0◦/90◦ ears that reduces the amount of rolling (β-fiber) textures which
develop 45◦ ears in the final cold rolled state. As a result, the metal acquires properties
close to isotropic [10,11]. In a fully recrystallized state, there is a different way to eliminate
the anisotropy based on the recrystallization mechanism of particle stimulated nucleation
“PSN” [12,13]. The PSN mechanism is based on the development of new recrystallization
nuclei at intermetallic particles with more random orientations. As a result, recrystallization
by the PSN mechanism does not lead to a pronounced texture. In some aluminum alloys
with high magnesium content, the PSN mechanism during recrystallization can completely
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prevail over other nucleation mechanisms in practically any modes of thermomechanical
treatment [12,13]. This is facilitated, firstly, by the small subgrain size, which is characteris-
tic of this alloy group [12–15], and, secondly, by the sufficiently large amount of Mn and Fe
which contribute to the development of intermetallic compounds.

AlMg6Mn0.7 (1565 ch) is an alloy which can achieve a significant reduction in anisotropy
using the PSN mechanism. Earlier studies showed the presence of a high number of large
(greater than 1 microns) intermetallic particles in this alloy and small-sized subgrains [13].
Therefore, it can be assumed that under certain thermomechanical processing conditions,
PSN will prevail over other recrystallization nucleation mechanisms, [13] generating a
more random texture. The purpose of this study is to investigate the main feature of texture
evolution in 1565 ch during thermomechanical treatments which allows us to decrease
the anisotropy of mechanical properties. Additionally, it may demonstrate new ways of
controlling texture formation using the PSN mechanism for aluminum alloys with high
magnesium content.

2. Materials and Methods

Ingots of the AlMg6Mn0.7 (1565 ch) alloy with the chemical composition given in
Table 1 were cast into a direct chill mold and homogenized at a temperature of 500–530 ◦C
with a holding time of 4 h. The block diagram of thermomechanical processing is shown
in Figure 1. It should be noted that this alloy is mainly used for various outer shells
and structural parts in transport engineering. Hence, it is supplied in hot-rolled or fully
annealed (after cold rolling) conditions.
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Table 1. Chemical composition of the 1565 ch alloy (AlMg6Mn0.7).

Content of Chemical Elements, wt.%

Alloy Al Si Fe Cu Mn Mg Cr Zn Ti Zr
1565 ch base 0.12 0.22 0.05 0.80 5.6 0.06 0.50 0.07 0.10

As part of the study, industrial rolling of two cast billets from aluminum alloys with
high magnesium content (1565 ch) was carried out in the reversing stand of a “Quarto 2800”
hot rolling mill in order to study the evolution of the as-cast structure during hot-rolling
according to the modes given in Table 2. After reverse hot rolling was completed, this batch
of metal was cooled in air. Notably, its temperature was higher than the recrystallization
temperature for several hours. The grain microstructure, size, number of intermetallic
particles, as well as the texture composition were investigated.

Table 2. Rolling of the AlMg6Mn0.7 (1565 ch) alloy in the hot reversing mill.

Passnumber
Input

Thickness,
mm

Output
Thickness,

mm

Linear
Speed of the
Work Roll

Deformation
Temperature,

◦C

Strain Rate,
s−1

Rolling
Force, Tc

Zener
Parameter
Logarithm

1 400 390 57 460 0.35 2407 12.74
2 390 375 85 459 0.66 2350 13.03
3 375 355 85 459 0.79 2493 13.11
4 355 335 85 459 0.84 2432 13.13
5 335 310 85 459 0.99 2526 13.21
6 310 285 85 459 1.07 2447 13.24
7 285 255 85 459 1.28 2517 13.31
8 255 225 85 460 1.43 2436 13.35
9 225 190 85 460 1.74 2532 13.43
10 190 160 85 461 1.91 2325 13.46
11 160 130 85 460 2.26 2345 13.54
12 130 100 85 460 2.77 2457 13.63
13 100 75 85 460 3.28 2393 13.70
14 75 55 113 459 3.91 2351 13.80
15 55 40 113 455 6.15 2352 14.07
16 40 30 113 451 6.93 2233 14.19

Another part of the metal was sent to the continuous group of the “Quarto 2800”
industrial mill (Figure 2). Hot rolling was carried out according to the modes given in
Table 3.
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Table 3. Rolling of the AlMg6Mn0.7 (1565 ch) alloy in the continuous group of the “Quarto 2800” mill.

Alloy TMP Parameters
Entering a

Continuous
Group

Stand
No F1

Stand
No F2

Stand
No F3

Stand
No F4

Stand
No F5

1565 ch

Thickness, mm 35 23 18 13.5 10 6.80
Rolls rotation rate, m/min - 33 48 65 92 128

Temperature 460 ◦C - - - - 355 ◦C
Interdeformation pause, s 10.9 6.4 4.1 2.433 -

During hot rolling, the process was stopped in the continuous group and the metal was
efficiently cooled by the emulsion spray. Before and after each stand, samples were taken
and prepared to determine the microstructure, texture, size and amount of the intermetallic
particles. In addition, to study the structure and properties of the hot-rolled coil, a sample
was taken after the fifth stand (at the exit from the mill) which was not subjected to sharp
cooling but was cut out after the coil had been cooled in air. To exclude the effect of the
surface friction on texture, the samples were cut from the middle of the hot-rolled billet.

After hot deformation in the continuous group, part of the metal was sent for cold
rolling with 40–50% reduction and subsequent annealing at 250 ◦C, 350 ◦C and 500 ◦C.
Afterwards, the intermetallic particles, their structure, texture and mechanical properties
have been studied.

Texture measurements in the form of X-ray pole figures were carried out on the
samples cut from the middle planes along the sheet thickness for each given state. The
survey plane of the pole figures was parallel to the rolling plane. The texture in the form of
three incomplete pole figures {111}, {200}, {220} was investigated by the “reflection” method
using a DRON-7 X-ray diffractometer (Bourevestnik, Saint-Petersburg, Russia) in Cokα

radiation. The ranges of inclination α (0–70◦) and rotation β (0–360◦) angles with a step
of α and β = 5◦ were used. The drop in intensity on the peripheral part of the pole figure
due to the defocusing effect was corrected using correction factors calculated based on
the conditions of X-ray photography of pole figures. The orientation distribution function
(ODF), representing a superposition of a large number (2000) of standard distributions
with the same small scattering, was calculated from the measured pole figures. This ODF
was also used to calculate the full pole figures and reverse pole figures for three mutually
perpendicular directions in the sample: the normal direction (ND) to the rolling plane, the
rolling direction (RD), and the transverse direction (TD).

The JEOL 6390A scanning electron microscope (JEOL Ltd., Tokyo, Japan) with the
X-Max 80 energy dispersive detector (Oxford Instruments, Abingdon, UK) was used to
determine the size and chemical composition of constituents and dispersed particles. The
sample preparation technique consisted of mechanical grinding, polishing, and electropol-
ishing. Electropolishing was carried out at 85–110 ◦C temperature and 10–30 V voltage in
an electrolyte of the following composition: 500 mL of H3PO4; 300 mL of H2SO4; 50 g of
CrO3; and 50 mL of H2O.

The grain size was determined on the Axiovert-40 MAT optical microscope (Carl Zeiss,
Oberkochen, Germany) in polarized light (the samples were prepared by electropolishing
in a fluor boron electrolyte) with the calculation of the average grain size by the secant
method according to GOST 21073.

Mechanical properties (ultimate strength (σmax), conventional yield strength (σ0.2)
and relative elongation (δ) were determined on flat specimens cut in three directions: along
the rolling direction, transverse direction and at an angle of 45◦ to the rolling direction. To
gather the statistics, five samples were taken for each direction. Tensile tests were carried
out in accordance with GOST 1497 at the original gauge length 10 = 4b0 for 3104 and
10 = 5.65

√
F0.

In addition, the texture and grain structure development was calculated at various
stages of thermomechanical processing using the previously developed models [16–18].
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3. Results
3.1. Evolution of Intermetallic Particles

After casting, large primary intermetallic compounds of the Al6(FeMn)- and Mg2Si-
type (Figure 3a,c,d) with an average size of 10.3 µm and volume of 0.49% are developed in
the AlMg6Mn0.7 (1565 ch) alloy. Intermetallic compounds of these two types are often found
in aluminum alloys [19,20] with high magnesium content and were frequently observed
in the present 1565 ch alloy [12,21]. The presence of Al6(FeMn) is explained by the large
amount of Mn as well as the presence of impurity iron (Fe) and silicon as (Mg2Si)- due
to the high content of magnesium (Mg) and some silicon (Si)-impurities. Both types of
intermetallic compounds arise along the boundaries of dendritic grains. They are of eutectic
origin with an elongated shape and small size (average radius of 1 µm). Finely dispersed
particles (Figure 3b) are almost unobservable after casting.
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After homogenization (Figure 4a), the average radius of large intermetallic com-
pounds decreases to 8.66 µm, and their volume decreases to 0.33%. In general, there are
many more large intermetallic particles in AlMg6Mn0.7 (1565 ch) as compared to other
high-magnesium alloys.
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At the same time, one can observe a large number of secondary phases as dispersoids
(Figure 4b), which occupy more than 4.2% with a rather large average radius of 420 nm. The
retarding force to grain boundary motion due to these particles (Zener dragPz) is 0.22 MPa,
calculated according to Equation (1) [22]:

PZ =
3γBFV

rD
(1)

where FV is the volume fraction of second phase particles; rD is the average particle size.
It is not so high in comparison with other high-magnesium alloys. For example, the vol-

ume occupied by the particles in 5083 alloy is 1.04–1.3%; and their size is 22.9–51.2 nm [19].
In other aluminum magnesium 5754 the volume of intermetallic particles is 0.17% and
their size is 126 nm. For both alloys the measurement was done in the homogenized state.
As result, the retarding force in the 5083 alloy can reach 0.23–0.41 MPa depending on the
homogenization mode [19]. Until the Zener drag Pz reaches 0.35 MPa, a completely recrys-
tallized structure is observed, and when Pz becomes 0.41 MPa a partially recrystallized
structure occurs. This suggests that recrystallization is also possible in the AlMg6Mn0.7
(1565 ch) alloy under certain conditions of thermomechanical treatment.

During the thermomechanical treatment of the as-cast structure in the hot reversing
mill, the fragile eutectic intermetallic compounds are crushed (Figure 5a, Table 4), which has
been repeatedly described in various studies [23–25]. As a result, their volume practically
does not change. However, their number increases, facilitating the PSN mechanism. At
the same time, no significant changes in the proportion of fine particles are observed. This
is explained by the fact that the rolling process takes 8–10 min, which is not enough for
the complete precipitation of fine metastable particles-in contrast to the homogenization
process which lasts 4 h (Figure 5b).
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In-cast 4.9 10.3 13.96 - - -
Hom. 3.3 8.66 9.9 8.2 0.42 0.48

Reverse 3.2 6 6.52 8.4 0.4 0.45
Continuous 3.0 5 5.38 8.7 0.33 0.38
Coldrolled 2.2 2.5 5.22 10.7 0.51 0.58

During deformation in the continuous group of hot rolling stands, the intermetallic
particles are barely affected, and their volume fraction, in general, does not change (Figure 6,
Table 4). This result is consistent with the data obtained in [23], which also demonstrates that
most active fragmentation of intermetallic compounds occurs in the break-down hot mill at
the early stage of hot working of the as-cast structure. After that, the tendency to fracture
and further fragment decreases. This evolution of particles is due to the initial crushing
of the most fragile intermetallic compounds which are represented by nonequilibrium
eutectics that survived the homogenization process. Harder and finer-sized intermetallic
compounds, close to the equilibrium phase, are not so prone to crushing at any stage of
thermomechanical treatment. Also, the size and amount of fine particles is stable. Hence,
changes in the size and amount of intermetallic particles are insignificant and cannot affect
the recrystallization process at this stage.
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In the case of cold rolling, the average size of the intermetallic compounds is cut
in half in comparison with the hot-rolled state (Figure 7a, Table 4). This suggests that
these particles begin to crush again during cold deformation. A possible explanation
for this pattern observed in this alloy is that the aluminum surrounding these particles
has a significantly higher strength during cold deformation. Therefore, the force on the
intermetallic particles, which contributes to their fragmentation, increases and can have a
double effect on the PSN-mechanism. On one hand, it increases the number of potential
locations where PSN nuclei can arise on the second phase particles. On the other hand,
it reduces the probability of their further growth since the size of potential PSN nuclei is
significantly reduced.
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In addition, the size and number of fine particles increases (Figure 7b, Table 4). This
also has a double effect on the recrystallization pattern. On the one hand, an increase in
their number will contribute to its inhibition. On the other hand, an increase in their size
will lead to the opposite effect.

After annealing at 250 ◦C (Figure 8a), the amount of intermetallic particles generally
does not change compared to the cold rolled state. Both Al6(FeMn) and Mg2Si particles are
present in the alloy. At the temperature of 350 ◦C (Figure 8b), the number of intermetallic
compounds of the Mg2Si type is somewhat decreased. At the same time the amount of
Al6(FeMn) remains unchanged. This is explained by the fact that the dissolution tempera-
ture of Al6(FeMn) is more than 50 ◦C higher than Mg2Si [19]. It should be noted that the
dissolution of the Mg2Si in our case occurs at lower temperatures than the calculations
done in ref. [19] predict. This could be explained by the fact that the computation was
carried out for the precipitation of fine particles, while in this case, Mg2Si compounds have
a much more nonequilibrium nature and were formed during crystallization. Their rapid
dissolution precisely at this stage of thermomechanical treatment can also be explained
by the fact that after cold rolling their size is significantly reduced, which makes their
dissolution easier. Heating at a temperature of 500 ◦C (Figure 8c) leads to a further decrease
in the amount of Mg2Si particles.
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Fine particles behave in a similar manner as large ones. At the temperature of 250 ◦C
(Figure 9a, a large number of dark fine particles that can be attributed to Mg2Si, as well
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as the light dispersoids of the Al6(FeMn) type. When heated to 350 ◦C (Figure 9b), Mg2Si
dispersoids actively dissolve, and at 500 ◦C (Figure 9c) they completely disappear. At
the same time, an increase in temperature does not affect the number and size of light
particles of the Al6(FeMn) type. It should be noted that Mg2Si dissolve even faster than
large non-equilibrium intermetallic compounds of the same type. This may be explained by
the fact that fine particles are usually much smaller in size (>1 µm) and therefore dissolve
faster. Additionally, it is impossible to accurately determine the composition of small
dispersoids by using SEM. As a result, it can be both Mg2Si as well as the much less stable
β(Al3Mg2) particles [19]. The latter might precipitate at the end of self-annealing when the
temperature becomes less than 250 ◦C [19].
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3.2. Grain Structure Evolution

In the as-cast state the alloy1565 ch has a dendritic structure, with 350 µm average
grain size. A deformed structure with elongated grains and small inclusions of equiaxed
recrystallized grains is observed in the investigated alloy (Figure 10). The main reason
for this is the observed fine intermetallic particles (dispersoids) which inhibit the recrys-
tallization process. This is due to the low Zener-Hollomon parameter at this stage of
thermomechanical treatment, where the energy accumulated during deformation is insuf-
ficient for recrystallization to occur. The development of the small recrystallized fraction
can be explained by the large second phase intermetallic particles which accumulate more
dislocations around them than other elements of the microstructure [26]. Therefore, the
recrystallization nuclei formed around them require much less Zener-Hollomon energy
to start the recrystallization process. However, due to the fine particles, the subsequent
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motion of the high-angle boundaries is blocked when they move out of the area with high
dislocation densities accumulated around the particle.
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Figure 10. Results of Al Mg4.5Mn0.3 (AA5182) andAlMg6Mn0.7 (1565 ch) alloys optical microscopy
results of the as-cast structure (a) and after reversing mill (b).

When the AlMg6Mn0.7 (1565 ch) alloy is hot rolled in the continuous group with five
stands there is almost no recrystallization between the deformation steps (Figure 11b,c).
This is due to the fact that the time between the deformation pauses is very short. Therefore,
despite the higher Zener-Hollomon parameter, recrystallization does not have time to
occur in contrast to the alloys 5182 [27] (and 3104 to some extent). This difference in the
recrystallization kinetics is explained by the fact that there are many fine intermetallic
particles in this alloy that hinder grain boundary motion, as mentioned above. However,
the recrystallization process proceeds completely during subsequent self-annealing in
the hot coil. This can be attributed to two factors: The first is the high Zener-Hollomon
parameter, which reaches its maximum value at the output of the last hot rolling stand. This,
in turn, leads to a significant increase in the recrystallization driving force which overcomes
the retarding effect of fine particles. Another factor contributing to recrystallization is the
time required for it to occur (several hours during coil cooling in comparison with 5–10 s in
inter-stand deformation pauses).

After cold rolling (Figure 12a), grains are elongated in the rolling direction, i.e., a typical
deformed structure develops. When heated to 250 ◦C (Figure 12b), the deformed grains
elongated in the rolling direction are still observed. When heated to 350 ◦C temperature
(Figure 12c), complete recrystallization with a new fine-grained structure (an average size
of 21 µm) is observed. When the temperature of recrystallizing annealing is increased to
500 ◦C (Figure 12d), the grain structure, in general, does not change its size. Thus, the
recrystallization process proceeds completely in the cold-rolled state after annealing at a
temperature equal to or greater than 350 ◦C. It is facilitated by the accumulated internal
energy of structural imperfections, which is much higher than at the hot rolling stage.
Moreover, there is enough time to fully complete the recrystallization process.
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Figure 12. Grain structure after annealing of cold-rolled sheet (a) after cold rolling (b) after annealing
at 250 ◦C, (c) after annealing at 350 ◦C, (d) after annealing at 500 ◦C.

3.3. Texture Evolution

The AlMg6Mn0.7 (1565 ch) alloy does not have a pronounced texture (Figure 13a) in
the as-cast state, which is a standard scenario for this casting method [28]. After the cast
structure is processed in the hot-reversing stand, a rolling (β-fiber) texture is observed,
expressed mainly by the brass “Bs” component (Figure 13b). For a better understanding of
the main features of texture evolution at the early stage of thermomechanical processing,
we consider the results of the calculated rolling texture evolution.

The orientation distribution pattern (texture) after deformation in the first stand
(Figure 14a) is generally similar to the one observed after the processing of the cast structure
(Figure 14b). The main dominant texture component is the brass “Bs” component. As noted
earlier, deformation along the two slip planes of this component with the lowest Taylor
factor [29] is most beneficial in alloys with high magnesium content, and the hardening
on it is less than in other alloys of this system [18]. The S-component characteristic of
aluminum alloys is formed in addition to the brass-type texture during further deformation
in the five-stand group. This is due to the fact that no softening occurs in inter-deformation
pauses and the systems of planes associated with the Bs-component are gradually blocked.
Note that the “S-type” texture component {124}<211>appears faster in other aluminum
alloys. The Cu-texture component {112}<111> does not appear in the AlMg6Mn0.7 (1565 ch)
alloy even during deformation in the last stand. An insignificant cubic texture is observed
after self-annealing and other pronounced texture components are not observed.
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As can be seen from the ODF data analysis, a stable rolling texture (β-fiber) consisting
mainly of the classical S-component as well as a small amount of Cu-(copper) and Bs-(brass)
textures is formed as the deformation proceeds. The transition of these components into
the recrystallization textures during inter-deformation pauses cannot be observed, despite
the rather long time available for their development. This strongly distinguishes this alloy
from the classical 5182 in which recrystallization textures are intensely formed during
inter-deformation pauses [30,31]. The difference can be explained by the large number of
dispersoid particles formed due to zirconium, which is poorly soluble in aluminum. These
particles can significantly reduce the growth rate of new grain boundaries. At the same
time, the deformation textures partially transform into recrystallization textures during
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self-annealing. However, they transform into a “textureless” (random) component. This
can also be explained by an increased content of manganese in the form of intermetallic
particles which generate the PSN random texture component [32]. Thus, it can be concluded
that the alloy is not prone to the formation of a pronounced recrystallization texture but the
proportion of the random component is quite large at all stages of hot rolling. Therefore,
the hot-rolled sheet shows a weak anisotropy of properties. However, in the case of
subsequent cold rolling, a sharp deformation texture will still be formed which will lead
to a sharp increase in anisotropy, which can hardly be compensated for by an initial cube
recrystallization texture component, as done in can stock.

In the texture of the sample annealed at 250 ◦C (see ODF in Figure 15), the classical
texture of β-fiber of rolled aluminum alloys develops during deformation [33]. It starts
with the brass texture which lies in the center of the ϕ2 = 90◦ (equivalent to ϕ2 = 0◦)
section, usually denoted as the Bs component. Orientations close to Bs along the β-fiber
are observed in the ϕ2 = sections lower than 90◦ down to ϕ2 = 65◦ (S). The Cu (copper)
component occurs in the ϕ2 = 45◦ section and expands along the ß-fiber up to ϕ2 = 65◦ (S).
In general, this is a classical picture inherent in cold-worked aluminum alloys [33–35] with
a predominance of the Bs-texture, characteristic of aluminum alloys with high magnesium
content [18]. The data of X-ray structural analysis are confirmed by the data of optical
metallography, showing the absence of recrystallization at 250 ◦C. It is worth noting that
there is a fraction of the cube texture and components close to it which are located in all
ϕ2 sections of the ODF figure. However, the cube texture component is still rather weak.
It should be noted that this component is retained in a sufficient volume upon annealing
after a 50% reduction in high magnesium aluminium alloys [34,35]. The pattern observed
in Figure 15 can be explained by the fact that the cube texture is almost not observed in the
hot-rolled state after self-annealing as well, which explains its small fraction at the next
stages of heat treatment.
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Figure 15. ODF for the state after annealing at 250 ◦C with a 3-h exposure.

ODFs for annealing at 350 ◦C (Figure 16a) and 500 ◦C (Figure 16b) are shown in one
figure on purpose, since the observed texture compositions almost coincide. Except for the
sections from ϕ2 = 85◦ to ϕ2 = 90◦, where the texture of brass Bs and texture components
close to it are observed, there are no other pronounced components. One can hardly observe
the cube texture component. In general, the texture is similar to that observed for this
alloy in the hot-rolled state after self-annealing [36]. The presence of the Bs texture can be
explained by the fact that after annealing some unrecrystallized (highly recovered) grains
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(which remain undetected by optical microscopy) contain these components. It must be
mentioned that Bs has more resistivity to recrystallization, so they have more chances to
survive [37].
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After cold rolling and annealing at 500 ◦C, the AlMg6Mn0.7 (1565 ch) alloy has almost
identical mechanical properties in the directions of 0◦, 45◦, and 90◦, and the coefficient of
planar anisotropy (generalized coefficient including r0◦ , r45◦ and r90◦ ) is 0.87, which means
an almost complete isotropy of properties (see Table 5). It can be assumed that the slight
anisotropy that is still observed is associated with the remaining Bs texture.

Table 5. Mechanical properties of the Al Mg6Mn0.7 (1565 ch) alloy after annealing at 500 ◦C (1 h).

Direction to RD σ0,2 (MPa) σu (MPa) A% n ∆r

0◦ 160 ± 2 320 ± 3 24 ± 1 0.26 ± 0
0.8745◦ 158 ± 4 321 ± 3 25 ± 1 0.26 ± 0

90◦ 156 ± 4 321 ± 4 24 ± 1 0.25 ± 0

Hence, due to the PSN mechanism it is possible to obtain an almost random texture
and “textureless” properties close to isotropic in the AlMg6Mn0.7 (1565 ch) alloy. On the one
hand, it is necessary to strive for the maximum possible Zener-Hollomon parameter during
hot rolling in a continuous group (or reversible stand) in order to increase the number
of PSN nuclei that appear on intermetallic particles and contribute to the development
of a textureless (random) component during recrystallization. On the other hand, high
Zener parameters require the temperature to be decreased (since the latter affects it more
than the strain rate), which will facilitate no or only partial recrystallization. Thus, if hot
deformation is the final stage of thermomechanical treatment, it must be carried out at high
Zener parameters in order to obtain the maximum possible amount of textureless (random)
component. However, the temperature should not drop below 350 ◦C since in this case
complete recrystallization is impossible.

During the final annealing for one hour after cold rolling at a temperature equal to or
greater than 350 ◦C, complete recrystallization can be observed in the AlMg6Mn0.7 (1565 ch)
alloy. The textureless component (random texture) is formed and the material properties
are close to being isotropic.
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3.4. Computational Result

Figure 17 shows the computation of texture evolution of the Cube, β-fiber fraction
from the Zener-Hollomon parameter which is directly determined by the deformation
process temperature and rate [38].

Z =
.
εexp

(
Q
RT

)
(2)

where
.
ε is strain rate, T is temperature, R is the molar gas constant and Q is the activation

energy [J/mol].
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The β-fiber fractions consist of Bs, Cu, and S components. Euler angles and Miller
indices of all these components as well as the Cube fraction are present in Table 6. Addition-
ally, in Figure 8 the dependence of the PSN fraction from the Zener-Hollomon parameter
are present. The PSN fraction consists of grain nucleated during recrystallization at second
phase particles. As was mention before, grains which recrystallize by the PSN mechanism
give a mostly random texture.

Table 6. Euler angles of Ideal texture components “β-fiber” according to [39].

Component Miller Indices
{hkl}〈uvw〉

Euler Angles

ϕ1 Φ ϕ2

Cube {001}〈100〉 0 0 0◦/90
Bs {011}〈211〉 35◦ 45◦ 0◦/90◦

Cu {112}〈111〉 90◦ 30◦ 45◦

S {123}〈634〉 60◦ 35◦ 65◦

Note that at a low Zener-Hollomon parameter value the subgrains of magnesium rich
alloys have the same size as the subgrains of lean (low alloyed) aluminum alloys. Thus, at a
low Zener parameter the nuclei formed from subgrains and second phase particles during
hot rolling of the as-cast structure are comparable in size. Therefore, at low Zener-Hollomon
parameter values the PSN-based recrystallized volume fraction is comparable in volume
fractions with the cube texture and β-fiber texture. As the Zener-Hollomon parameter
increases, the subgrain size decreases and the PSN-based recrystallized volume fraction
grows-at the same time as the volume fractions of the cube and β-fiber textures decrease.

Recrystallization of AlMg6Mn0.7 (1565 ch) is quite complex during this stage of ther-
momechanical treatment due to the interdependence on classical and particle stimulated
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recrystallization and the interaction with fine dispersoids, blocking grain boundary motion,
and it requires a high Zener parameter [40]. Since recrystallization is needed for texture
evolution and control in aluminum alloys, hot rolling such alloys in the reversing mill
with a high Zener parameter value is a suitable approach. Some more random texture
constituents will prevail after such hot rolling. In this alloy it has a positive effect, as it
will reduce the β fiber texture fraction during the final stage of hot rolling. It shall be
noted that for recrystallization of grains with a lower β fiber texture the mechanism of
oriented growth is less pronounced, decreasing the cube texture volume fraction. The Zener
parameter will be very high during the final stages of hot rolling, and the subgrain size will
be very small. This is the reason why during recrystallization the PSN will successfully
compete with the formation of the cube texture, even completely suppressing it in some
cases [13]. The smaller the β fiber texture fraction is, the more efficiently the cube texture
will be suppressed. Thus, a total absence of any pronounced texture is possible during the
final stages of hot rolling. Following cold rolling completion and final recrystallization
annealing, a microstructure can also be achieved in such an alloy, having no defined texture
components, i.e., having a random texture.

Self-annealing simulations were carried out at different temperatures and different
Zener-Hollomon parameters characteristic of hot rolling to explain this effect.

Figure 18 shows the dependences of the recrystallized volume, cube and random
orientation (PSN) proportions on the Zener parameter for the AlMg6Mn0.7 (1565 ch) alloy
obtained by simulation. Note that the temperature has a prevailing effect on the Zener
parameter during rolling.
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As can be seen from Figure 18, the β-texture is not formed at all since the sizes of its
nuclei are too small and their development is suppressed by fine particles. The proportion
of the cube texture is very small. Thus, the AlMg6Mn0.7 (1565ch) alloy is a material in which
almost isotropic properties can be obtained by adjusting the annealing or self-annealing
temperature. This method is based on the PSN mechanism. The insufficient temperature
for recrystallization, which is shown in Figure 18, seems to be the only problem. The texture
of this alloy is very sensitive to the hot rolling end (coil exit) temperature. It determines the
temperature of self-annealing since the uncrystallized rolling (β-fiber) textures may prevail
in this case, which will interfere with the cube and PSN texture, obtaining an isotropic
(balanced) texture. In general, it is possible to obtain it at this stage.

It should also be noted that the Zener-Hollomon parameter and the number of PSN-
nuclei participating in recrystallization increase when the temperature decreases. However,
recrystallization takes place only partially at temperatures below 350 ◦C and it contributes
to the preservation of the rolling (β-fiber) texture.

It is very important to get a fully recrystallized structure for control of the texture
formation during the annealing process after cold deformation. In the absence of recrystal-
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lization, a pronounced β-fiber texture [12] is formed. The possibility of recrystallization
is directly affected by the driving Pd and the retarding Pz forces. The Equations (1) and
(3) were used to calculate the driving and retarding recrystallization forces during the
annealing process.

PD =
ρGb2

2
(3)

ρ is the dislocation density (taken as 1015 m2 during cold deformation), G is the Young
modulus of aluminum (taken 7 × 1012 N/m2), and b is the abs. value of Burgers vector
(taken 0.2 × 10−9) [4].

It should be noted that the Equation (3) uses a somewhat simplified approach to
calculating Pd. It suggests that the driving force of recrystallization is determined by the
number of dislocations that are present in the cold-rolled metal. Nevertheless, dislocation
density is not constant and some dislocations annihilate during the heating time. In this
case, the workpiece thickness was several mm, and heating was carried out in a saltpeter
bath. As a result the decrease in dislocation density can be neglected and the calculated
value of PD does not depend on the temperature. At 250 ◦C, the retarding force exceeds
the driving force, so recrystallization does not occur (Figure 19). At 350 ◦C, some of the
fine particles of the Mg2Si type dissolve, so the PD exceeds the Pz and as a result the
recrystallization process occurs. When the temperature reaches 500 ◦C, the dark particles
completely disappear, see Figure 9. This lead to a significant drop in the breaking force
compared to the 350 ◦C case.
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The critical particle radius of particles η* is calculated, after which it become a re-
crystallization nucleus. To determine the quantity of particles which take part in the
PSN mechanism, one substracts the number of particles which have a value of η* less
then critical.

As η∗ =
2γB
PD

(4)
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γB is the energy of a high angle boundary (taken 0.5 J m−2).
The dependance of the number of particles capable for new grain nucleation from the

annealing temperature is present in Figure 20. As can be seen, the number of participles
which can become nuclei decreases with increasing temperature, since the total amount of
intermetallics decreases due to the dissolution of large particles of the Mg2Si type. However,
it should be noted that despite the decrease in the total number of large intermetallic
particles, the PSN mechanism is predominant. What can be seen from the results of the
texture and mechanical properties analysis given earlier are shown in Figure 16 and Table 6.
It should be noted that during self-annealing, the total amount of intermetallic that are
suitable for nucleation is 2.5 × 1012. In the case of annealing at 350 ◦C, the total number
of particles 8 × 1013 is suitable nucleation. This could be explained by the fact that in the
cold-deformed state, due to the higher dislocation density, the potential size for nucleation
is much smaller than in the hot state. Therefore, despite the fact that the total number of
particles during self-annealing is greater, the nuclei number is much less.
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4. Conclusions

1. Recrystallization processes do not occur in the AlMg6Mn0.7 (1565 ch) alloy during
the hot deformation of the cast structure. The dendritic as-cast structure is stretched
in the rolling direction and the β-fiber texture is formed, in which the Bs-orientation
plays a dominant role. Because of the rather low Zener-Hollomon parameters and the
retarding effect from the second-phase fine particles, recrystallization does not occur in the
experimentally investigated modes of hot working the as-cast structure. Modeling shows
that the PSN mechanism will be the main nucleation mechanism during recrystallization
as the Zener-Hollomon parameter increases.

2. When rolling in a continuous hot rolling group, recrystallization does not occur in
the interstand space due to the fine second-phase particles and the short inter-pass times.
As a result, further accumulation of plane strain rolling (β-fiber) orientations, mainly in the
form of the development of S- and Cu-components, occurs. The AlMg6Mn0.7 (1565 ch) alloy
is completely recrystallized during self-annealing after hot rolling. In this case, the main
prevailing mechanism is particle stimulated nucleation “PSN” on intermetallic particles,
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which leads to a significant volume of a random texture with small fragments of the cube
texture. Modeling shows that the proportion of the random component increases as the
temperature and the Zener-Hollomon parameters increase.

3. A pronounced texture of β-fiber with three classical components (Bs-, Cu- and
S) is formed during cold rolling, but with the Bs component as the most pronounced.
Recrystallization after cold rolling of the AlMg6Mn0.7 (1565 ch) alloy begins at a temperature
of >>300 ◦C. After recrystallization during cold rolling, a random (textureless) component
with a small proportion of Bs-textures is formed. Analysis of the mechanical properties
shows almost complete isotropy.
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