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Abstract: To study the evolution of non-metallic inclusions in 27SiMn steel, the 27SiMn steel produced
using the LD-LF-CCM process was sampled in various stages in a steel factory. The evolutionary be-
havior of inclusion in various processes was systematically analyzed by scanning electron microscopy
(SEM-EDS), and the total oxygen content and nitrogen content in 27SiMn steel were measured at
various production steps. On the basis of the calcium treatment for 27SiMn steel, the equilibrium
reactions for Ca-Al were calculated according to the thermodynamic equilibrium model. The results
showed that the types of inclusions at the start of LF stations are mainly Al2O3-FeO and MnS-Al2O3.
Before calcium treatment, the inclusions are mostly calcium aluminate and CaO-MgO-Al2O3. Com-
pared with the process after soft blowing, the number density of inclusions in tundish increased by
77.88%, possibly due to secondary oxidation. From the soft blowing process to the continuous casting
round billet, the inclusions translate into spherical CaO-MgO-Al2O3-SiO2, and a large number of
CaS were observed. One part of the CaS precipitated separately, the other part was semi-wrapped
with the composite inclusions. At the same time, calcium treatment increases the number density,
mean diameter, and the area fraction of inclusions. The mass fraction of T.O. (total oxygen content)
increased significantly after soft blowing, and the N content increased greatly from station to tundish.
The change trend of N content in steel was basically consistent with that of T.O. content. It was
necessary to prevent the secondary oxidation of molten steel during calcium treatment and the casting
process. When the liquidus temperature of liquid steel is 1873 K, w[Al] = 0.022%, and w[Ca] in steel is
controlled between 1.085 × 10−6 and 4.986 × 10−6, the Al2O3 inclusion degeneration effect is good.

Keywords: 27SiMn steel; inclusions; refining process; evolution law; thermodynamic calculation

1. Introduction

27SiMn steel is a kind of low-alloy structural steel that is mainly used to manufacture
hot stamping parts and is widely used in coal machinery, thermal power generation,
geological drilling, and other fields [1]. Regarding the development of 27SiMn steel, a
large number of previous studies have mainly concentrated on the ‘steel after’. Studies
have shown that the properties of 27SiMn steel can be improved by using heat treatment
processes, such as subcritical quenching or isothermal quenching [2–4]. However, there
are few reports about the type and behavior of inclusions and the formation mechanisms
of various inclusions in the steel. Therefore, to investigate the formation mechanism
and evolution behavior of inclusions in 27SiMn steel, it is helpful to remove and control
non-metallic inclusions and improve the quality of the steel.

The inclusions in steel mainly depend on the deoxidation system and inclusion re-
moval process. Many studies have been performed on the mechanism of inclusion forma-
tion; for aluminum-killed steel, a large number of Al2O3 inclusions are generated during
the deoxidation process. With the formation of trace elements such as Mg and Ca in steel,
these Al2O3 inclusions evolve into MgO·Al2O3 spinel inclusions and further evolve into
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CaO-Al2O3 (-MgO) inclusions [5–7]. In addition, if calcium treatment is carried out imme-
diately after aluminum deoxidation, Al2O3 inclusions will react to form spherical or nearly
spherical CaO-Al2O3 inclusions [8], which may also be crushed during rolling. Therefore,
for most steel grades, it is extremely important to control large-scale CaO-Al2O3 inclusions.

For Si-Mn-killed steel, SiO2-MnO-Al2O3 inclusions are the result of the reaction be-
tween the product of Si-Mn deoxidation (MnO-SiO2) and the dissolved Al in molten
steel [9,10]. Some scholars [11,12] believe that Si-Mn deoxidation products (MnO-SiO2)
also evolve into CaO-MnO-SiO2 inclusions, even CaO-SiO2 inclusions in the refining pro-
cess. In addition, some hard and brittle inclusions, such as Al2O3 and MgO·Al2O3 spinel,
sometimes appear in Si-Mn-killed steel [13].

It can be seen that our predecessors have conducted a lot of research on the evolution
of inclusions in steel under different processes, but because 27SiMn is mainly aluminum
deoxidization, silicon manganese deoxidization is complementary, Moreover, the content
of silicon and manganese in the steel is high, different from the common aluminum and
silicon-manganese killed steel. In addition, the spinel inclusions, which are formed during
the ladle refining process, have the potential to cause nozzle clogging as well as defects in
products. Furthermore, the liquid oxide inclusions in the steel melt can be transformed into
spinel inclusions during the casting process [14]. Hence, it is crucial to predict inclusion
evolution in 27SiMn steel during the ladle refining and continuous casting processes.

2. Materials and Methods

The process flow of 27SiMn steel was:150t LD-LF-CCM. The average composition is
shown in Table 1. During the tapping process of the converter, aluminum block, ferrosilicon
(FeSi75), and manganese-silicon alloy (FeMn65Si17) were sequentially added to deoxidize
alloying. In the LF refining process, the white slag was desulfurized, and the composition
was fine-tuned during the white slag retention period. In the middle of the white slag
refining, the chemical composition of molten steel was adjusted to the target composition,
and then the silicon barium alloy was added for deep deoxidation. After the refining, the
silicon calcium wire was fed, the argon blowing and soft stirring were carried out at the
same time, and the argon blowing and soft stirring were continued after feeding the wire.
Protective casting was adopted in continuous casting. The cross-section was Φ150 mm, the
casting speed was 2.0 m·min−1, and the superheat was 30 K. The mold powder was the
special powder for 27SiMn round billet.

Table 1. Average composition of 27SiMn steel.

Element C Si Mn P S Als Ca

Average
Mass (%) 0.27 1.20 1.25 ≤0.020 ≤0.006 0.022 0.0037

Mass (%) 0.25~0.30 1.15~1.25 1.20~1.30 ≤0.025 ≤0.010 0.020~0.026 0.0034~0.0041

In order to study the evolution law of inclusions in 27SiMn steel, the whole process
of tracking sampling was carried out. Steel samples were taken by bucket sampler at LF
start (1), mid-LF smelting (2: before calcium treatment), LF outlet (3: after soft blowing),
and in the middle of tundish casting (4). Subsequently, a full-section billet sample with
a length of 200 mm was cut from the continuous casting round billet (5). The oxygen
and nitrogen gas analysis sample of Φ5 mm × 50 mm and the metallographic sample of
10 mm × 10 mm × 20 mm were processed from the bucket sample by wire cutting. The
metallographic sample of 20 mm × 20 mm × 20 mm was analyzed at the position of 1/4 of
the continuous casting slab near the inner arc. The processing schematic diagram is shown
in Figure 1.
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Figure 1. Cutting position and size of sample: (a) bucket sample, (b) round billet.

After pre-grinding and polishing, the morphology, quantity, and size of inclusions
were observed by a scanning electron microscope (SEM), and the elemental composition
of inclusions was analyzed by an energy dispersive spectrometer (EDS). Then, the num-
ber, size, and area of the non-metallic inclusions were counted by the image analysis
software Image-Pro Plus 6.0 (Media Cybernetics, Rockville, MD, USA). The total oxygen
content (T.O.) and total nitrogen content (T.N.) in the steel were detected by nitrogen and
oxygen analyzers.

3. Result and Discussion
3.1. Change in Oxygen and Nitrogen Content in Steel of Various Processes

The changes in total oxygen and total nitrogen contents in 27SiMn steel are shown in
Figure 2. T.O. represents the level of micro-inclusions in the steel. A lower T.O. indicates that
the fewer oxide inclusions in the steel, the purer the steel. The average mass fraction of T.O.
in the steel at LF entry was 11 × 10−6, and the average mass fraction of T.N. was 38 × 10−6.
There was little change in the T.O. mass fraction of the steel from the LF station to before the
calcium treatment. The mass fraction of T.N. increased slightly, and the secondary oxidation
was not serious. Because of the addition of a large number of aluminum particles as a
reducing agent in the process of white slag, aluminum particles reacted with slag oxidizing
substances to produce Al2O3. In this process, the bottom-blowing stirring intensity was
large, resulting in inclusions, such as Al2O3 in slag entering the molten steel and polluting
the molten steel.

After soft blowing, the mass fraction of T.O. in the steel increased significantly, and
the mass fraction of T.O. increased to 18 × 10−6. This was mainly due to the secondary
oxidation of molten steel ‘boiling’ in the calcium treatment process; the intense reaction of
feeding the silicon calcium wire; the partial exposure of the liquid surface; and the entrance
of some air into the molten steel because the wire was fed into the molten steel, causing the
total oxygen content in the steel to increase. During the subsequent LF exit to the tundish
station, the total nitrogen content increased significantly, and the mass fraction of T.N.
increased by 65%, from 40 × 10−6 to 66 × 10−6. The molten steel (N) was mainly derived
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from the dissolution of nitrogen in the air, and the mass fraction of T.N. reflected the degree
of secondary oxidation of molten steel to a certain extent. The increase in the total nitrogen
content indicates that a part of the air entered the molten steel, and the molten steel had
serious secondary oxidation. The slag coverage in the ladle transportation process and
the protective pouring in the casting process should be strengthened. The change trend
of N content in steel was basically consistent with that of T.O. content, indicating that
the secondary oxidation of molten steel during calcium treatment and the casting process
needs to be prevented.
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Figure 2. Changes in T.O. and T.N. contents during the whole process in steel.

3.2. Variation in Inclusion Quantity and Size in Steel of Each Process

The changes in inclusion number density, area fraction, and average size in the pro-
duction process of 27SiMn steel are shown in Figure 3. It can be seen in Figure 3a that the
number density of inclusions decreased from the LF station to before calcium treatment,
which indicates that the removal effect of inclusions was good at this stage. From before
calcium treatment to tundish, the number density of inclusions in the steel increased contin-
uously, and the number density of inclusions in the slab decreased again, which was caused
by the increase in the inclusion removal rate due to the metallurgical effect of tundish.
Figure 3b shows that the area fraction of inclusions reached 0.230% when LF entered the
station, which was mainly due to the large number of alumina inclusions produced by alu-
minum deoxidization, resulting in the increase in the area fraction of the inclusions. After
that, because of the removal of inclusions after floatation, the area fraction of inclusions
decreased, and the area fraction of inclusions increased significantly after calcium treatment,
which was due to the formation of large-scale calcium aluminate inclusions. After that,
the inclusion was floated and removed because of the soft blowing effect, and the area
fraction was reduced. It can be seen in Figure 3c that the average size of the inclusions is
large after LF enters the station, and the average size of inclusions fluctuated after calcium
treatment, which may be due to the formation of large-scale calcium aluminate inclusions
during calcium treatment.
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3.3. Changes in Morphology and Composition of Inclusions in Each Process
3.3.1. LF Start

The morphology and composition of typical inclusions in LF inlet samples are shown
in Figure 4. The main types of inclusions were Al2O3-FeO and MnS-Al2O3 inclusions. As
shown in Figure 4a, the morphology of Al2O3-FeO inclusions is triangular, and the main
reasons for such inclusions are as follows. In terms of single deoxidation, the deoxidation
ability of Al is much greater than that of Si and Mn, followed by Si, and the deoxidation
ability of Mn is the weakest. MnO is usually produced in Si-Mn-killed steel during the ladle
furnace (LF) refining process [15]. In many cases, the behavior of the inclusions in steel melt
depends on the sequence of alloy addition [16]. In the process of converter tapping, Al was
first added for strong deoxidation, and then ferrosilicon alloy and ferrosilicon alloy were
added. Therefore, when composite deoxidation was adopted, Al2O3 inclusions were first
formed, And MnO is not stable thermodynamically under the highly reduced conditions
imposed by the high [Al]. Relevant literature shows that MnO-containing spinel would
only be stable in steel containing 6 pct Mn if the concentration of dissolved Al were lower
than approximately 170 ppm, much lower than the actual Al concentration in these grades
(wt pct Al > 0.5). The conclusion is that the MnO concentration in oxide inclusions would
be zero or negligible (although Mn-containing sulfides can form during solidification, as
shown later) [17]. Therefore, there may be a small amount of MnO in the molten steel
without being observed. FeO in inclusions may come from the steel matrix [18] or from
rapid solidification after sampling due to incomplete deoxidation during LF entry. As
shown in Figure 4b, the core of the inclusions was Al2O3, and the outside was wrapped
by MnS. Sulfide in steel belongs to plastic inclusions, and the harm of oxide inclusions
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could be reduced effectively by coating oxide inclusions with composite precipitation. The
reason for this consideration is the presence of Al2O3 as the core and the fact that MnS is a
solidification product, which suggests that, originally, such an inclusion was Al2O3, and
MnS precipitated on it during cooling [19].
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3.3.2. Before Ca Addition

The morphology and composition of inclusions in the steel before calcium treatment
are shown in Figure 5. Compared with the LF inlet station, the types of inclusions in the
sample before calcium treatment were more numerous, mainly including the following
four types. (1) Al2O3 inclusions: as shown in Figure 5a, Al2O3 inclusions were formed
by aluminum deoxidization, which was too late to float up. The shapes of the Al2O3
inclusions remaining in the steel were mostly massive. (2) Calcium aluminate inclusions: as
shown in Figure 5b, some studies reported that these were products of chemical reactions
among slag-steel-inclusion, which meant that they were classified as endogenous inclusions.
However, other studies pointed out that they were entrapped slag particles, that is, they
were classified as exogenous inclusions [20]. (3) Silicate inclusions: as shown in Figure 5c,
silicate inclusions were formed by the addition of Si-Ba alloy during the refining process.
(4) CaO-MgO-Al2O3 composite inclusions: the CaO-MgO-Al2O3 composite inclusion is
shown in Figure 5d. There may be two sources of inclusion for MgO-Al2O3 composite
inclusion. The composition of inclusions in slag-covered steel tends to change over time
because the inclusions are not in equilibrium with the slag. This results in a driving force
for mass transfer between the slag and the steel that can result in, e.g., Al modification
of Mg modification of Al2O3 inclusions to spinels, as discussed below, or the dissolved
aluminum in the steel reduced the MgO in the refractory lining of the ladle, and the reduced
Mg reacts with Al2O3 to form MgO-Al2O3 composite inclusion. In the refining process,
the CaO in the refining slag was continuously reduced by the dissolved aluminum, and
the generated dissolved calcium converted the MgO-Al2O3 inclusion into the liquid CaO-
MgO-Al2O3 composite inclusion, which was irregular in shape. The equations used in the
above reaction are as follows [21]:

2[Al] + 3MgO(slag/refractory)= Al2O3+3[Mg]
∆Gθ = 982800 − 328.9T

(1)

[Mg] + [O] + Al2O3= MgO · Al2O3
∆Gθ= −110720 + 93.51T

(2)

2[Al] + 3CaO(slag)= Al2O3+3[Ca]
∆Gθ= 696951 − 47.91T

(3)

[Ca] + [O] + MgO · Al2O3= CaO · MgO · Al2O3 (4)



Metals 2022, 12, 718 7 of 12
Metals 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

 

Figure 5. Compositions and morphologies of typical inclusions before Ca addition, (a) Al2O3 inclu-

sion, (b) Calcium aluminate inclusion, (c) Silicate inclusion, (d) CaO-MgO-Al2O3 composite inclu-

sion. 

3.3.3. After Soft Blowing 

The morphology and composition of typical inclusions in steel after soft blowing are 

shown in Figure 6. As shown in Figure 6a, after calcium treatment and soft blowing, the 

mass fraction of CaO in the inclusions increased to 29.82% on average, and the mass frac-

tion of CaO in some inclusions reached 41.09%. Most of the inclusions transformed into 

the spherical CaO-MgO-Al2O3-SiO2 composite inclusions. This inclusion was usually gener-

ated by steel–slag reactions and molten steel–refractory reactions. At the same time, CaS 

inclusions were observed after soft blowing. As shown in Figure 6b. Ca addition beyond 

what was needed to modify the oxide inclusions led to CaS formation, which keeps the 

added Ca in the liquid steel (rather than it simply boiling off). The CaS serves as a reservoir 

of Ca that can absorb additional O upon reoxidation. Excess CaS is a buffer against reoxi-

dation downstream. This requires precise control of several process variables, including 

steel S content, total O at Ca treatment, Ca addition, Ca yield, and the extent of reoxidation 

after Ca treatment [22]. The formation of CaS was closely related to the degree of calcium 

modification of Al2O3 inclusions. In addition, calcium in high-Si ferroalloys (especially 

FeSi75) can be harmful because of the formation of solid CaS that can clog the molten 

nozzle during casting. The presence of a large number of CaS inclusions hindered the 

formation of calcium aluminate, which significantly deteriorated the modification effect 

of calcium treatment. The formation of CaS-based solid inclusions was due to excessive 

denaturation of Al2O3 inclusions by calcium treatment. In addition, some Ca reacted di-

rectly with S in the steel to form CaS when Al2O3 inclusions were treated with calcium, 

which was shown in Equation (5). Such CaS aggregated with inclusions, such as calcium 

aluminate, or collided with other inclusions to form composite inclusions. CaS-based solid 

inclusions not only consumed Ca, which was used to modify Al2O3 inclusions to form CaS 

and other high melting point inclusions, which reduced the casting performance of steel, 

but they also deposited on the inner wall of the submerged nozzle during pouring, result-

ing in nozzle clogging. Therefore, in order to ensure the effect of calcium treatment, on 

the one hand, the feeding amount should be adjusted according to the element content 

(calcium, sulfur, oxygen, etc.) and the temperature of molten steel; on the other hand, the 

yield of calcium should be stabilized. 

Figure 5. Compositions and morphologies of typical inclusions before Ca addition, (a) Al2O3
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inclusion.

3.3.3. After Soft Blowing

The morphology and composition of typical inclusions in steel after soft blowing
are shown in Figure 6. As shown in Figure 6a, after calcium treatment and soft blowing,
the mass fraction of CaO in the inclusions increased to 29.82% on average, and the mass
fraction of CaO in some inclusions reached 41.09%. Most of the inclusions transformed
into the spherical CaO-MgO-Al2O3-SiO2 composite inclusions. This inclusion was usually
generated by steel–slag reactions and molten steel–refractory reactions. At the same time,
CaS inclusions were observed after soft blowing. As shown in Figure 6b. Ca addition
beyond what was needed to modify the oxide inclusions led to CaS formation, which
keeps the added Ca in the liquid steel (rather than it simply boiling off). The CaS serves
as a reservoir of Ca that can absorb additional O upon reoxidation. Excess CaS is a buffer
against reoxidation downstream. This requires precise control of several process variables,
including steel S content, total O at Ca treatment, Ca addition, Ca yield, and the extent of
reoxidation after Ca treatment [22]. The formation of CaS was closely related to the degree
of calcium modification of Al2O3 inclusions. In addition, calcium in high-Si ferroalloys
(especially FeSi75) can be harmful because of the formation of solid CaS that can clog the
molten nozzle during casting. The presence of a large number of CaS inclusions hindered
the formation of calcium aluminate, which significantly deteriorated the modification effect
of calcium treatment. The formation of CaS-based solid inclusions was due to excessive
denaturation of Al2O3 inclusions by calcium treatment. In addition, some Ca reacted
directly with S in the steel to form CaS when Al2O3 inclusions were treated with calcium,
which was shown in Equation (5). Such CaS aggregated with inclusions, such as calcium
aluminate, or collided with other inclusions to form composite inclusions. CaS-based solid
inclusions not only consumed Ca, which was used to modify Al2O3 inclusions to form
CaS and other high melting point inclusions, which reduced the casting performance of
steel, but they also deposited on the inner wall of the submerged nozzle during pouring,
resulting in nozzle clogging. Therefore, in order to ensure the effect of calcium treatment,
on the one hand, the feeding amount should be adjusted according to the element content
(calcium, sulfur, oxygen, etc.) and the temperature of molten steel; on the other hand, the
yield of calcium should be stabilized.

[Ca] + [S] = (CaS)
∆Gθ = −530900 + 116.2T

(5)
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3.3.4. Tundish and Casting Round Billet

The morphology and element distribution of typical inclusions in tundish steel are
shown in Figure 7. In the tundish casting stage, the main inclusions in molten steel were
the spherical CaO-MgO-Al2O3-SiO2-CaS composite inclusions and CaS inclusions. The
spherical CaO-MgO-Al2O3-SiO2-CaS composite inclusions showed the form of collision
with oxides, which were mainly formed after calcium treatment. In the continuous casting
process, on the one hand, because of the secondary oxidation phenomenon, oxygen first
reacts with CaS in molten steel, causing CaS to decompose. On the other hand, CaO in
inclusions collides with sulfur to form CaS, which can be expressed by Equation (6). At
the same time, the oxygen entering the molten steel also reacts with [Al] in molten steel to
generate a large amount of Al2O3. The increase in the mass fraction of Al2O3 and MgO in
inclusions accelerates the phase transformation of CaO-MgO-Al2O3-SiO2-CaS composite
inclusions and further precipitates the MgO-Al2O3 phase so that CaO-Al2O3-SiO2-CaS
phase inclusions are wrapped on the surface of the MgO-Al2O3 phase.

3(CaO)inclusion+3[S] + 2[Al] = 3(CaS) + (Al 2O3)inclusion
∆Gθ = −879760 + 298.73T

(6)Metals 2022, 12, x FOR PEER REVIEW 9 of 13 
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3.4. Evolution Mechanism of Inclusions

The morphology, type, and size of typical inclusions in 27SiMn steel in the LD-LF-
CCM process were analyzed by SEM + EDS, and the composition of inclusions in steel at
different stages was counted, as shown in Table 2. In the LF refining process, the inclusions
were affected by many factors (deoxidation, corrosion resistance, slag entering molten steel,
silicon brought into alloy, calcium brought in by feeding the silicon–calcium wire reacting
with the molten steel and inclusion, and inclusions reacting with molten steel) to change
their composition. The evolution route and mechanism are shown in Figure 8.

Table 2. Inclusion composition in 27SiMn steel (wt.%).

Process Component
(wt.%) Al2O3 SiO2 MnO MnS MgO CaO TiO2 CaS FeO

LF inbound

a 20.07 0.66 0.99 - - - - - 78.28
b 34.84 0.72 0.54 - - - - - 63.09
c 65.19 - 0.37 - - - 0.45 - 33.98
d 22.31 30.95 - 6.71 - - - - 40.03

Before calcium
treatment

a 64.76 - - - - - - - 35.24
b 63.25 - - - - 3.63 - - 33.13
c 8.12 5.6 3.14 - - - - - 83.14
d 52.16 1.18 - 0.59 36.11 - - 6.29 3.68

After Soft
Blowing

a 9.16 7.9 - - 3.57 16.98 - 20.08 42.31
b 28.35 14.84 - - 22.59 30.39 - 0.11 3.17
c 53.19 11.38 - - 3.28 30.83 - - 1.33
d 50.68 - - 18.49 2.7 - - - 28.13
e 11.39 14.54 - - 1.74 41.09 - 4.42 26.82

Tundish
a 11.39 14.54 - - 1.74 41.09 - 4.42 26.82
b 1.57 - - - - - - 78.8 19.64

Casting Round
Billet

a 48.66 14.71 - - 4.37 30.6 - - 1.66
b - - - - 3.2 - - 58.11 38.69
c 3.18 - - - 1.47 - - 84.47 10.88
d 9.65 3.65 - - 5.3 - - 75.61 5.86
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Figure 8. Mechanism of inclusion evolution of 27SiMn steel.

In the process of converter tapping, deoxidation alloying was carried out according to
the addition order of aluminum block, ferrosilicon, and silicon manganese alloy. Because
the aluminum block with the strongest reduction was first added, the inclusions in the
steel were mainly Al2O3 rather than MnO when LF entered the station. The inclusion
was accompanied by the formation of MnS and FeO inclusions because of incomplete
deoxidation during the solidification process. With the refining process, Al2O3 inclusions
are transformed into calcium aluminate inclusions or CaO-MgO-Al2O3 inclusions by the
reaction between refractory steel and refining slag steel. The reaction is shown in the
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Equations (1)–(4). In addition, the addition of Si-Ba alloy leads to the formation of silicate
inclusions. After soft blowing, because of the increase in CaO content in inclusions after
calcium treatment, the inclusions change into CaO-MgO-Al2O3-SiO2 under the influence of
refining slag and refractory materials. Excessive silicon-calcium wire leads to the formation
of CaS inclusions, as shown in Equation (5). In addition, the residual ferroalloy with high
silicon (especially FeSi75) in molten steel also promotes the formation of CaS inclusions. In
the continuous casting process, CaO-MgO-Al2O3-SiO2 inclusions collide with CaS to form
CaO-MgO-Al2O3-SiO2-CaS composite inclusions. With the continuous casting process,
Al2O3 in the inclusion reacts with sulfur and aluminum in the steel, which increases the
Al2O3 content in the inclusion, as shown in Equation (6). At the same time, the erosion of
refractory materials leads to an increase in MgO in the inclusion, as shown in Equations (1)
and (2), and finally leads to the precipitation of MgO-Al2O3 in the CaO-MgO-Al2O3-SiO2-
CaS phase, as shown in Figure 8.

3.5. Thermodynamic Analysis of Calcium Treatment

Ca treatment of 27SiMn steel is performed to convert solid Al2O3 and spinel inclusions
to liquid calcium aluminates (for better castability), and for control of sulfide shape. The
activity values of CaO and Al2O3 in inclusions are shown in Table 3. The activity coefficients
of Al and Ca in 27SiMn steel at 1873 K were calculated by the element interaction coefficients
provided in the literature [23]: f Al = 0.72 and f Ca = 0.00219.

Table 3. Activity values of CaO and Al2O3 inclusions at 1873 K, reprinted from Ref. [24].

Calcium
Aluminate

3CaO·Al2O3 12CaO·7Al2O3 CaO·Al2O3

aCaO aAl2O3 aCaO aAl2O3 aCaO aAl2O3

Activity 1 0.0057 0.42 0.041 0.080 0.39

During calcium treatment, calcium and Al2O3 in molten steel mainly occur as follows:

3[Ca]+Al2O3= 3CaO + 2[Al] (7)

lgK = lg
a2

Ala
3
CaO

a3
CaaAl2O3

=
36,890

T
− 3.17 (8)

The data in Table 3 and the values of f Al and f Ca were substituted into Equation (8)
for the Al-Ca equilibrium curves of different inclusions at 1873 K, as shown in Figure 9.
The area between the equilibrium lines between 3CaO·Al2O3 and 12CaO·7Al2O3 is the
production area of liquid inclusions. It can be seen in Figure 9 that Al2O3 inclusion can be
modified by only a small amount of calcium in the steel. When w[Al] = 0.022% in the actual
production, theoretically, in order to achieve the ideal calcium treatment effect, w[Ca] in
the steel should be controlled between 1.085 × 10−6 and 4.986 × 10−6, which can improve
the fluidity of the molten steel and reduce the nozzle clogging. The average value of w[Ca]
in actual steel is 0.0037%, and w[Ca]/w[Al] = 0.17. According to the actual production,
w[Ca]/w[Al] is generally controlled between 0.09 and 0.14, and the calcium content and
calcium–aluminum ratio are higher than the theoretical value.
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4. Conclusions 

• The evolution law of inclusions in 27SiMn steel during the smelting process was re-

vealed as follows: Al2O3-FeO inclusions (-MnS), silicate, calcium aluminate, CaO-

MgO-Al2O3 composite inclusions, and CaO-MgO-Al2O3 -SiO2 (-CaS) inclusions. 

• The new form of CaO-MgO-Al2O3-SiO2-CaS five-element composite inclusions was 

found, and the evolution mechanism of inclusions was proposed. It is considered that 

after CaO collided with sulfur to form CaS, the MgO-Al2O3 phase was precipitated 

by phase transformation. 

• From the LF inlet to calcium treatment, the mass fraction of T.O. had little change, 

and the secondary oxidation was not serious. After soft blowing, the mass fraction of 
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4. Conclusions

• The evolution law of inclusions in 27SiMn steel during the smelting process was
revealed as follows: Al2O3-FeO inclusions (-MnS), silicate, calcium aluminate, CaO-
MgO-Al2O3 composite inclusions, and CaO-MgO-Al2O3 -SiO2 (-CaS) inclusions.

• The new form of CaO-MgO-Al2O3-SiO2-CaS five-element composite inclusions was
found, and the evolution mechanism of inclusions was proposed. It is considered that
after CaO collided with sulfur to form CaS, the MgO-Al2O3 phase was precipitated by
phase transformation.

• From the LF inlet to calcium treatment, the mass fraction of T.O. had little change,
and the secondary oxidation was not serious. After soft blowing, the mass fraction
of T.O. increased significantly. During the process from the LF outlet to the tundish
station, the N content increased significantly, and the change trend of N content in
steel was basically consistent with that of T.O. content. It was necessary to prevent the
secondary oxidation of molten steel during calcium treatment and casting.

• In order to achieve the ideal calcium treatment effect, when w[Al] = 0.022%, w [Ca] in
steel should be controlled between 1.085 × 10−6 and 4.986 × 10−6 at 1873 K, and the
Al2O3 inclusion modification effect is good.

• MnO is usually produced in Si-Mn-killed steel during the ladle furnace (LF) refining
process. However, Al was first added for strong deoxidation, and then ferrosilicon
alloy and ferrosilicon alloy were added. Therefore, Al2O3 inclusions were first formed.
Additionally, MnO is not stable thermodynamically under the highly reduced condi-
tions imposed by the high [Al]. The conclusion is that the MnO concentration in oxide
inclusions is zero or negligible.
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