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Abstract: The standard ASTM E900-15 provides an analytical expression to determine the transition
temperature shift exhibited by Charpy V-notch data at 41-J for irradiated pressure vessel materials as
a function of the variables copper, nickel, phosphorus, manganese, irradiation temperature, neutron
fluence, and product form. The 26 free parameters included in this embrittlement correlation were
fitted through maximum likelihood estimation using the PLOTTER—BASELINE database, which
contains 1878 observations from commercial power reactors. The complexity of this model, derived
from its high number of free parameters, invites a consideration of the possible existence of overfitting.
The undeniable goal of a good predictive model is to generalize well from the training data that was
used to fit its free parameters to new data from the problem domain. Overfitting takes place when a
model, due to its high complexity, is able to learn not only the signal but also the noise in the training
data to the extent that it negatively impacts the performance of the model on new data. This paper
proposes the resampling method of Monte Carlo cross-validation to estimate the putative overfitting
level of the ASTM E900-15 predictive model. This methodology is general and can be employed with
any predictive model. After 5000 iterations of Monte Carlo cross-validation, large training and test
datasets (7,035,000 and 2,355,000 instances, respectively) were obtained and compared to measure the
amount of overfitting. A slightly lower prediction capacity was observed in the test set, both in terms
of R2 (0.871 vs. 0.877 in the train set) and the RMSE (13.53 ◦C vs. 13.22 ◦C in the train set). Besides,
strong statistically significant differences, which contrast with the subtle differences observed in R2

and RMSE, were obtained both between the means and the variances of the training and test sets.
This result, which may seem paradoxical, can be properly interpreted from a correct understanding
of the meaning of the p-value in practical terms. In conclusion, the ASTM E900-15 embrittlement
trend curve possess good generalization ability and experiences a limited amount of overfitting.

Keywords: Monte Carlo cross-validation; maximum likelihood; overfitting; neutron embrittlement

1. Introduction

Several embrittlement trend curves (ETCs) have been developed to predict the ductile
to brittle transition temperature shift (TTS), ∆T41J, of RPV steels [1–4], which is required
when demonstrating the integrity of light water reactors. In 2015, the ASTM Standard
E900-15 [3] was approved, providing a correlation to predict the radiation-induced TTS
in reactor vessel materials developed from the statistical analysis of a large surveillance
database (1878 TTS measurements contained in the so-called BASELINE of the PLOTTER
database) obtained in the context of the surveillance programs of nuclear power reactors
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(test reactors were not considered) from 13 countries (Brazil, Belgium, France, Germany,
Italy, Japan, Mexico, The Netherlands, South Korea, Sweden, Switzerland, Taiwan, and
the United States). This dataset, therefore, represents the train set used to fit the 26 free
parameters of the model. The variables that influence the TTS in this correlation are copper,
nickel, phosphorus and manganese contents, irradiation temperature, neutron fluence,
as well as the product type (forgings, plates, and SRM plates, and welds) [5]. The form
of the correlation is semiempirical because even though the free parameters are fitted
using statistical procedures, it includes two major embrittlement terms mechanistically
guided that represent the hardening contribution from small microstructural defects and
copper-enriched clusters created during irradiation [3].

The predictive correlation provided by ASTM E900-15 [3] is an example of supervised
learning, this term being borrowed from the field of Machine Learning. Supervised learning
is used whenever a certain outcome (the TTS in this case) is to be obtained from a given
input (the set of variables previously mentioned that influence the TTS), and examples
of input/output pairs are available (the 1878 observations used to fit the parameters of
the formula). It is important to stress that the final goal of any model, either analytical or
numerical, is to generalize, i.e., to make accurate predictions for new, never-before-seen
data with the same characteristics as the training set [6]. As a matter of fact, complex models
can detect subtle patterns in the data but if the training set is noisy, or if it is too small, then
the model is likely to detect patterns in the noise itself. Obviously, these patterns will not
generalize to new observations, in which case, the model is said to incur overfitting [6–8].
Overfitting occurs when the model is too complex relative to the amount and noisiness of
the training data. As stated by Chollet [8], the fundamental issue is the tension between
optimization and generalization: “Optimization refers to the process of adjusting a model
to get the best performance possible on the training data, whereas generalization refers
to how well the trained model performs on data it has never seen before. The goal of the
game is to get good generalization, of course, but you don’t control generalization; you can
only adjust the model based on its training data”.

As mentioned above, the predictive formula proposed by ASTM E900-15 contains
26 free parameters that have been optimized through statistical procedures using all the
available information. This number of parameters suggests that it is an analytically complex
model, which creates the possibility of overfitting. The objective of this paper is therefore
to assess the degree to which the ASTM E900-15 ETC may be overfit by using advanced
statistical and data analytics techniques that were not available to the ASTM Committee at
the time E900-15 was developed. This paper proposes a simple resampling methodology
that enables quantification of the overfitting level of a predictive model. Here, we apply
the methodology to the ASTM E900-15 ETC, but it is general and can be applied to any
other model. We should note that our objective is restricted to assessing the E900-15
ETC for overfitting; we do not explore the more general question of finding a model that
optimally represents the data. As such, our study is restricted to the functional form of the
E900-15 ETC.

The remainder of the paper is organized as follows: the ASTM E900-15 ETC [3] and
the statistical methods are described in Section 2. Section 3 is devoted to presenting the
results of the analysis. Finally, the interpretation and significance of the results is discussed
in Section 4.

2. Methods
2.1. The ASTM E900-15 ETC

The mean value of the TTS depends on the variables copper, nickel, phosphorus, man-
ganese, irradiation temperature, neutron fluence, and product form. According to ASTM
E900-15 [3], the TTS (in ◦C) is expressed as the sum of two terms, B and M; see Equation (1).
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Equations (2) and (3) collectively provide the formula for B, while Equations (4)–(6) collec-
tively provide the formula for M.

TTS = B + M (1)

B = PFB
5
9

1.8943 · 10−12Φ0.5695
(

1.8T + 32
550

)−5.47

(
0.09 +

P
0.012

)0.216(
1.66 +

Ni8.54

0.63

)0.39( Mn
1.36

)0.3
(2)

PFB =

 1.011 f or f orgings
1.080 f or plates and SRM plates

0.919 f or welds

 (3)

M = PF2
5
9
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113.87
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ln(Φ)− ln
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4.5· 1020
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, 612.6

]
, 0
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550

)−5.45

(
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0.012

)−0.098(
0.168 +

Ni0.58

0.63

)0.73

(5)

PFM =

 0.738 f or f orgings
0.819 f or plates and SRM plates

0.968 f or welds

 (6)

In Equations (2), (4), and (5), Cu, Ni, P, and Mn are all expressed in weight percent,
neutron fluence Φ is in n/m2 (E > 1 MeV) and irradiation temperature T is in ◦C. A detailed
assessment of the conditions to which E900-15 [3] may be applied can be found in [9].
Besides, ASTM E900-15 [3] provides the range of material and irradiation conditions in
the BASELINE–PLOTTER database used in the embrittlement correlation. Specifically,
Cu < 0.4%, Ni < 1.7%, P < 0.03%, 0.55% < Mn < 2.0%, 255 ◦C < T < 300 ◦C, 1 × 1021 n/m2

< Φ < 2 × 1024 n/m2. This analytical model includes 26 free parameters that were fitted
using Maximum Likelihood Estimation (MLE) from the data. Relative to the calibration
dataset, the model provides unbiased predictions and has a root mean square error (RMSE)
of 13.32 ◦C and a coefficient of determination R2 = 0.875 (other alternative correlations
based on different datasets are introduced in [5]). ASTM E900-15 [3] adopts expression (7)
(W: welds, P: plates and SRM plates, F: forgings) for the standard deviation, SD, which
increases along with the predicted value of the TTS:

SD =

 W : 7.681
P : 6.593
F : 6.972

× TTS[ W : 0.181 P : 0.163 F : 0.199 ] (7)

The values adopted by ASTM E900-15 [3] for the 26 parameters are collected in Table 1.
For convenience and to facilitate the assessment included in Section 3.3, a descriptive
label has been adopted for each of the parameters in Table 1; the reader can identify each
of them without great difficulty by comparing the numerical values in Table 1 with the
corresponding ones in Equations (1)–(6).

2.2. Programming Tools

The numerical analysis was developed and evaluated in Python 3, a general-purpose
open-source programming language that can be used for a wide variety of applications,
including data science. There are several advantages of Python that deserve to be men-
tioned. For example, Python includes thousands of third-party modules available in the
Python Package Index (PyPI). In this sense, this study has used libraries such as Numpy,
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Pandas, Scikit-Learn, Matplotlib, ScyPy, and Seaborn, among others. Most importantly,
Python has an enormous user community that shares code, documentation, tutorials, and
examples to help program a solution. For these reasons, it has been repeatedly selected by
programmers [10,11] as their favorite programming language.

Table 1. Values of the parameters in the ASTM E900-15 [3] ETC; see Equations (2)–(6) (the reader can
identify each parameter name in Equations (2)–(6) by comparing the numerical values).

Parameters in “M”
(Equations (4)–(6)) Value Parameters in “B”

(Equations (2) and (3)) Value

B_Weld 9.190 × 10−1 CuMAX 2.800 × 10−1

B_Plate 1.080 CuMIN 5.300 × 10−2

B_Forge 1.011 M_Weld 9.680 × 10−1

B_Const 1.894 × 10−12 M_Plate 8.190 × 10−1

B_Exp 5.695 × 10−1 M_Forge 7.380 × 10−1

B_Texp −5.470 M_slope 1.139 × 102

B_Pconst 9.000 × 10−2 M_Maxslope 6.126 × 102

B_Pexp 2.160 × 10−1 M_lnMinFlu 4.500 × 1020

B_Niconst 1.660 M_Texp −5.450

B_Niexp1 8.540 M_Pconst 1.000 × 10−1

B_Niexp2 3.900 × 10−1 M_Pexp −9.800 × 10−2

B_Mnexp 3.000 × 10−1 M_Niconst 1.680 × 10−1

- - M_Niexp1 5.800 × 10−1

- - M_Niexp2 7.300 × 10−1

2.3. The Method of Maximum Likelihood

The Method of Maximum Likelihood (MML), developed in the 1920s by the statistician
R. A. Fisher, is one of the preferred methods to obtain a point estimator of a parameter. The
central concept in this method is the likelihood function, L [12]. Let X be a random variable
with probability distribution f (x;θ), where θ is a single unknown parameter. Let (x1, x2, . . . , xn)
be the observed values of X in a random sample of size n. Then, the likelihood function of
the sample is (8):

L(θ) = f (x1; θ)· f (x2; θ)· . . . · f (xn; θ) (8)

Therefore, L(θ) represents the probability to obtain the sample values (x1, x2, . . . , xn).
Note that L is now a function of only the unknown parameter θ because (x1, x2, . . . , xn) are
actually observed values of X. The maximum likelihood estimator of θ is the value of θ that
maximizes the likelihood function L(θ), i.e., an estimator that maximizes the probability
of occurrence of the observed sample values. Mathematically, the maximization of L(θ)
corresponds to expression (9) but, in practice, for the sake of simplicity (the log-likelihood
maximum is the same as the likelihood maximum but the former is usually easier to
optimize since the logarithm of a product is the sum of the logarithms), the logarithm of
L(θ) is maximized instead, as in (10):

∂L(θ)
∂θ

= 0 (9)

∂ lnL(θ)
∂θ

= 0 (10)

The MML can be used in situations involving ‘k’ unknown parameters (θ1, θ2, . . . , θk)
to estimate, as in this study. In such cases, the maximum likelihood estimators would be
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found by equating the k (‘k’ being the number of parameters) partial derivatives to zero
and solving the resulting system of equations [12]; see Equation (11):

∂L(θ1,θ2, ..., θk)
∂θ1

= 0
∂L(θ1,θ2, ..., θk)

∂θ2
= 0

. . .

∂L(θ1,θ2, ..., θk)
∂θk

= 0

(11)

The MML has prevailed among mathematical statisticians over other alternatives (such
as least squares or Bayesian estimation) because of its good statistical properties. As stated
by Montgomery and Runger [12], under very general and not restrictive conditions, when
the sample size n is large and if Θ̂ is the maximum likelihood estimator of the parameter θ:

(1) Θ̂ is an approximately unbiased estimator for θ;
(2) The variance of Θ̂ is nearly as small as the variance that could be obtained with any

other estimator;
(3) Θ̂ has an approximate normal distribution.

Some complications may arise in using the MML. For example, it may not always be
possible to use calculus methods directly to maximize the likelihood function L(θ). Statistical
computer programs based on numerical techniques have been specifically developed to
solve for the maximum likelihood estimates when no simple closed solutions exist [12].
In this study, the Python library SciPy [13], which provides algorithms for mathematics
and statistics, including optimization, has been implemented. The tools in the module
scipy.optimize enable minimizing or maximizing objective functions (in this case, the
minus logarithm of the likelihood function has been minimized). The numerical method of
Nelder–Mead, based on the Simplex algorithm [14,15], which has been proven robust in
many applications, has been selected.

2.4. Resampling

Statistical resampling methods are designed to estimate the precision of sample statis-
tics or to validate models. The two most widely preferred methods for estimating the
sampling distribution of an estimator are Bootstrapping and Jackknife. Bootstrap uses sam-
pling with replacement to estimate the distribution of the desired target variable. Jackknife
works by sequentially deleting one observation in the dataset and repeatedly recalculating
the parameter of interest. The main purpose of these methods is to evaluate the variance of
an estimator, its confidence interval, and standard error. Cross-validation (CV) methods
are aimed at testing the ability of a model to predict new data that was not used to fit
the free parameters of the model in order to flag problems like overfitting and to assess
how the model will generalize to an independent dataset [16]. K-fold and Monte Carlo
cross-validation (MCCV, also known as repeated random sub-sampling validation) tech-
niques are widely used in data analytics [6,7]. Each method has its own advantages and
disadvantages. Under K-fold CV, each observation is tested once; however, K-fold only
explores a small subset of the possible partitions while MCCV explores a much larger set of
combinations. Besides, MCCV defines the distributions of the parameters in the E900-15
equation. For this reason, MCCV has been adopted so that the parameter distributions can
be compared to the point-estimates of the parameters provided in ASTM E900-15 [17,18].
This method not only provides an estimation of the sampling distribution of the parameters
of the ASTM E900-15 ETC but also provides, at the same time, an unbiased measure of the
actual prediction capacity of the model. To reduce variability, a CV analysis typically in-
volves multiple rounds/iterations. Each round consists of randomly splitting the available
sample of data into two complementary subsets, namely the training and testing sets. For
each split, the model is fit to the training data, and predictive accuracy is assessed using the
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validation data. Finally, all training data and testing data are respectively combined. Using
the common jargon for design of experiments in fields such as biology or economics [19],
the train set can be considered as the control group, while the test set can play the role of
the treatment group.

2.5. Strategy of the Analysis

The flowchart in Figure 1 describes the strategy followed in the study. The analysis
is based on the MCCV method and includes 5000 iterations; in each of them, the dataset,
consisting of 1878 observations, has been randomly split into a train set containing 75% of
the observations (1407) and a test set with the remaining 25% (471). This train/test separa-
tion has been stratified with respect to the product type, that is, the relative proportions of
forgings, plates and SRM plates, and welds in the total dataset (1878 instances) has been
maintained in the train and test sets. The observations of the train set have been used to
recalibrate through MLE the 26 free parameters of the ASTM E900-15 ETC [3]. Subsequently,
this recalibrated model has been used to predict the TTS values in both the train and test
sets and the results have been stored. After completing the iterative process, a comparison
between these sets was conducted in order to identify possible differences.
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3. Results
3.1. Descriptive Statistics

Two large datasets were generated after the 5000 iterations of MCCV: a train set with
7,035,000 samples (7,035,000 = 5000 × 1407, where 1407 = 0.75 × 1878) and a test set
including 2,355,000 instances (2,355,000 = 5000 × 471, with 471 = 0.25 × 1878). Differences
in the distribution of residuals (i.e., the difference between the predicted values of the
dependent variable and the observed values) between these sets would be symptomatic of
overfitting. The basic statistical scores used to compare the performance in the train and
test sets (the mean values of the residuals, the RMSE, and the R2 obtained comparing the
experimental values with the MLE predictions), which are included in Table 2, exhibit a
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limited amount of loss of generalization in the test set, compared with the train set. Thus,
the RMSE increases by 2.34%, from 13.22 ◦C to 13.53 ◦C (remember that 13.32 ◦C is the RMSE
obtained by the expression of ASTM E900-15 [3]) while the coefficient of determination R2

decreases by 0.68%, from 0.877 to 0.871 (R2 = 0.875 for the ASTM E900-15 [3]). In addition,
the mean value of the residuals is included in Table 2 and, as can be seen, the bias in both
sets is negligible.

Table 2. Statistical summary showing the differences in the distribution of residuals in the train
and test sets. These figures were calculated on the sets obtained after the MCCV (which included,
respectively, 7,035,000 and 2,355,000 instances).

Set Mean (◦C) RMSE (◦C) R2

Train set 1.3 × 10−3 13.22 0.877

Test set 2.6 × 10−2 13.53 0.871

∆ (%) N/A 2.34 −0.68

Some figures have been composed to visually appreciate the possible differences
between the prediction capacity of the model on the train and test sets. In Figure 2, two
scatterplots can be seen where the experimental TTS is compared with the value obtained
through MLE for the train (a) and test (b) sets; the data are represented as a color map based
on the density of points, and iso-density contour lines have been superimposed. Similarly,
Figure 3 shows the distributions of residuals obtained in the train and test sets. However,
none of these figures enables identification of differences between both sets that could be
associated with overfitting: Figure 2b are indistinguishable in practice and the distributions
of residuals in Figure 3 are virtually overlapping.

3.2. Inferential Statistics

Hypothesis tests were employed to detect statistically significant differences in the
mean and variance between the train and test groups. The two-sample t-test was selected to
compare the means of these two groups. This is a parametric method that assumes that data
are independent, approximately normally distributed, and have similar variance within
each group (homogeneity of variance). The condition of independence was guaranteed
through the random splitting carried out as a part of the MCCV. The t-test assumes that the
means of the different samples (not the samples themselves) are normally distributed; by
virtue of the central limit theorem, means of samples from a population with finite variance
approach a normal distribution, regardless of the distribution of the population. As a rule
of thumb, sample means are normally distributed, provided that the sample size is at least
30 [20]. The equal variance condition was assessed through the Levene test, obtaining a
p-value (which represents the probability of obtaining a test results at least as extreme as
the results actually observed, under the assumption that the null hypothesis is correct),
p ≈ 0, which enables rejecting the null hypothesis of equal variances (see Table 2, where
the RMSEs obtained for the train and test sets are included). If variances are unequal, the
library scipy [13] performs the Welch’s t-test [21], rather than the conventional Student’s
t-test, because it does not assume equal population variance. In this case, the p-value
was p = 9.581 × 10−3, which enables rejecting the null hypothesis of equal means at the
0.05 significance level. According to these results, there is a robust statistical evidence
to reject both the hypothesis of means equality and variances equality of the sampling
distributions of the residuals in the train and test sets. This outcome, which is in apparent
contradiction with the visual inspection of Figures 2 and 3, is explained in Section 4.
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Figure 2. Scatterplots showing a comparison between experimental values of the TTS and the
predictions obtained after fitting the free parameters by means of MLE using the data contained in
the train set. Due to the impossibility of representing, respectively, 7,035,000 and 2,355,000 points
in a figure, random subsets with 28,140 and 9420 observations, were represented. Notice that the
proportions between sample sizes have been respected (28140/9420 = 7,035,000/2,355,000). (a) Train
subset, (b) testing subset.
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tions contain 5000 observations.

3.3. Assessment of Parameters

As an additional result derived from this research, the 5000 iterations of MCCV enable
obtaining not only a point estimate for the 26 parameters of the ASTM E900-15 [3] ETC,
but also the distribution of each one of them and, therefore, their confidence intervals. In
this way, it is possible to assess the adequacy of the specific numerical values present in the
ASTM E900-15 [3] standard and to consider possible improvements. From the distribution
of parameters obtained through MCCV, some selected statistics (mean, standard deviation
(SD)) and several quantiles (2.5%, 25%, 50%, 75%, and 97.5%) have been obtained for each
of them, as can be seen in Table 3 (the labels of the parameters shown in Table 3 were
introduced for Table 1; see Section 2.1). Comparing Table 3 with Table 1, it can be seen that
all but one of the parameters of ASTM E900-15 [3], B_Niconst, belong to the 95% confidence
interval provided by the MCCV procedure.

To provide a more detailed description, Figure 4 shows the histogram obtained by
means of MCCV for each of the 26 parameters. The red dotted line superimposed on each
figure corresponds to the actual value in ASTM E900-15 [3]. In the majority of cases, the
distributions exhibit a smooth unimodal histogram and the red dotted lines are close to
the mode. In some parameters (CuMAX, CuMIN, M_lnMinFlu), bimodal distributions
can be seen. This reflects the existence of close local maxima in the likelihood hyperspace.
One of the advantages of the MCCV method implemented in this study is precisely the
possibility of examining the distributions of the parameters, something that is not available
if a conventional point estimate is carried out, as in ASTM E900-15.

In order to assess the margin for improvement derived from the MCCV method used
in this research, the parameters of the ASTM E900-15 [3] ETC (collected in Table 1) have
been replaced, respectively, by the mean and median values of the distributions shown
in Figure 4 (the results of the MCCV analysis). Then, the TTS of the 1878 observations
in the PLOTTER database have been re-estimated. In both cases, the results are basically
the same, namely, RMSE = 13.24 ◦C and R2 = 0.876 (there are no differences when the
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means or medians are used). Considering that the uncertainty scores of ASTM E900-15 [3]
are RMSE = 13.32 ◦C and R2 = 0.875, it can be concluded that the improvement of these
parameters compared to the ones adopted in ASTM E900-15 is absolutely negligible.

Table 3. Relevant statistics of the distributions of the parameters of the ASTM E900-15 [3] ETC. These
values were calculated from the distributions obtained by means of the MCCV method.

Mean SD 2.5% 25% 50% 75% 97.5%

CuMAX 2.765 × 10−1 1.071 × 10−2 2.532 × 10−1 2.734 × 10−1 2.772 × 10−1 2.836 × 10−1 2.921 × 10−1

CuMIN 5.415 × 10−2 2.193 × 10−3 4.880 × 10−2 5.299 × 10−2 5.418 × 10−2 5.539 × 10−2 5.765 × 10−2

M_Weld 9.740 × 10−1 1.579 × 10−1 6.515 × 10−1 8.781 × 10−1 9.747 × 10−1 1.071 1.290

M_Plate 7.924 × 10−1 1.276 × 10−1 5.305 × 10−1 7.153 × 10−1 7.939 × 10−1 8.708 × 10−1 1.046

M_Forge 7.462 × 10−1 1.258 × 10−1 4.938 × 10−1 6.686 × 10−1 7.465 × 10−1 8.242 × 10−1 9.983 × 10−1

M_slope 1.156 × 102 18.70 78.57 1.042 × 102 1.152 × 102 1.267 × 102 1.546 × 102

M_Maxslope 6.274 × 102 1.000 × 102 4.290 × 102 5.663 × 102 6.251 × 102 6.837 × 102 8.304 × 102

M_lnMinFlu 4.212 × 1020 7.031 × 1019 2.983 × 1020 3.707 × 1020 4.109 × 1020 4.781 × 1020 5.503 × 1020

M_Texp −4.968 6.024 × 10−1 −6.174 −5.355 −4.978 −4.575 −3.763

M_Pconst −2.034 ×
10−2 1.073 × 10−1 −1.250 ×

10−1
−1.248 ×

10−1
−3.974 ×

10−2 5.518 × 10−2 2.107 × 10−1

M_Pexp −1.669 ×
10−1 4.227 × 10−2 −2.490 ×

10−1
−1.942 ×

10−1
−1.679 ×

10−1
−1.408 ×

10−1
−7.904 ×

10−2

M_Niconst −2.147 ×
10−2 1.780 × 10−1 −4.188 ×

10−1
−1.305 ×

10−1 4.851 × 10−3 1.092 × 10−1 2.604 × 10−1

M_Niexp1 4.257 × 10−1 1.843 × 10−1 1.656 × 10−1 2.893 × 10−1 3.978 × 10−1 5.239 × 10−1 8.665 × 10−1

M_Niexp2 1.013 3.740 × 10−1 4.613 × 10−1 7.530 × 10−1 9.436 × 10−1 1.210 1.909

B_Weld 7.754 × 10−1 1.697 × 10−1 4.266 × 10−1 6.638 × 10−1 7.880 × 10−1 8.903 × 10−1 1.089

B_Plate 9.141 × 10−1 2.009 × 10−1 5.046 × 10−1 7.841 × 10−1 9.308 × 10−1 1.049 1.283

B_Forge 8.479 × 10−1 1.864 × 10−1 4.650 × 10−1 7.270 × 10−1 8.611 × 10−1 9.763 × 10−1 1.185

B_Const 1.360 × 10−12 4.274 × 10−13 6.130 × 10−13 1.019 × 10−12 1.362 × 10−12 1.678 × 10−12 2.167 × 10−12

B_Exp 5.725 × 10−1 5.673 × 10−3 5.634 × 10−1 5.687 × 10−1 5.715 × 10−1 5.758 × 10−1 5.859 × 10−1

B_Texp −5.787 4.408 × 10−1 −6.715 −6.062 −5.782 −5.494 −4.938

B_Pconst 1.891 × 10−1 1.092 × 10−1 3.516 × 10−2 1.161 × 10−1 1.686 × 10−1 2.392 × 10−1 4.596 × 10−1

B_Pexp 2.957 × 10−1 6.033 × 10−2 1.957 × 10−1 2.557 × 10−1 2.890 × 10−1 3.279 × 10−1 4.343 × 10−1

B_Niconst 4.075 1.385 1.943 3.073 3.866 4.878 7.294

B_Niexp1 9.727 1.912 6.752 8.415 9.476 10.71 14.28

B_Niexp2 4.452 × 10−1 1.022 × 10−1 0.2749 0.3770 0.4327 0.5009 0.6821

B_Mnexp 2.191 × 10−1 6.646 × 10−2 9.460 × 10−2 1.743 × 10−1 2.185 × 10−1 2.621 × 10−1 3.562 × 10−1
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Figure 4. Histograms showing the distributions (blue shaded region) of the ASTM E900-15 [3] parame-
ters obtained in the train subset through MCCV. Each of these distributions contain 5000 observations.
The figures also show the E900-15 point estimates (red vertical dotted line).

4. Discussion

This paper describes the results obtained after applying the MCCV resampling tech-
nique on the samples of the PLOTTER database that were used to adjust the 26 parameters
of the ASTM E900-15 [3] embrittlement trend curve that enables estimating the TTS ex-
perienced by nuclear vessel subjected to neutron irradiation as a function of their nature
and exposure conditions. The hypotheses of our study were, on the one hand, that an
analytical model as complex as the expression of the ASTM E900-15 [3] standard could be
prone to overfitting and, on the other hand, that the parameters currently present in that
expression would be susceptible to improvement using appropriate resampling techniques.
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An overfitted model of any type, either analytical or numerical, works very well with the
sample data used to train its internal parameters but often provides disastrous results on
new observations completely undermining the usefulness of the prediction model. The
resampling technique used in this study is completely general since it can be used in any
type of model to flag overfitting and to obtain confidence intervals of the fitted parameters.

After 5000 iterations of MCCV, large training and test datasets was generated con-
taining 7,035,000 and 2,355,000 instances. The first can be considered as the control group
of the experiment while the second plays the role of the treatment group. The statistical
metrics used for the comparison of both groups exhibit subtle differences. Thus, in the
training set, RMSE = 13.22 ◦C and R2 = 0.877, while in the test set, RMSE = 13.53 ◦C and R2

= 0.871. The distributions of residuals in both samples were compared using inferential
statistics. Statistically significant differences at the 0.05 significance level were obtained
between both the means (p = 9.581 × 10−3 in the Welch’s t-test) and the variances (p ≈ 0
in the Levene test). This strong statistical outcome contrasts with the subtle differences
mentioned above regarding the predictive capacity in both sets. However, this result, which
may seem paradoxical, can be properly interpreted from a correct understanding of the
meaning of the p-value in statistics. In 2016, the American Statistical Association released a
statement [22] warning against the misuse of statistical significance and p-values. As stated
by Amrhein et al. [23], “bucketing results into ‘statistically significant’ and ‘statistically
non-significant’ makes people think that the items assigned in that way are categorically
different”, which is a mistake. Moreover, they recommend authors to describe the practical
implications of all values inside the confidence interval. In our case, we detected statistically
significant differences (at the customary 0.05 significance level) between the means and
variances of the distributions of residuals in the train and test sets but, at the same time,
reported, based on descriptive statistical considerations, that these differences are of minor
magnitude and can be neglected on practical terms.

In addition, we used the results derived from the MCCV procedure to recalibrate the
parameters of the ASTM E900-15 standard [3]; however, the improvement was negligible
(RMSE = 13.24 ◦C and R2 = 0.876 compared to the original scores, RMSE = 13.32 ◦C and
R2 = 0.875). The MCCV procedure made it possible to estimate the sampling distributions
of the 26 parameters involved. In most cases, these follow a smooth, unimodal distribution
but, in some cases, bimodal distributions suggesting the existence of close local maxima of
the likelihood function have been observed. In general, these values deserve an individual
analysis; however, the very slight differences in practical terms on the final result (less than
0.1 ◦C in the RMSE) indicate that their influence is negligible.

5. Conclusions

Based on the evidence reported in this study, we consider that the expression cur-
rently included in the ASTM E900-15 [3] standard can be expected to generalize well to
new observations, provided they have the same characteristics as those of the training
set [6]. Moreover, its parameters can hardly be improved in practical terms. These results
demonstrate that E900-15 is not overfit relative to the multi-national data set defined by
the ASTM “PLOTTER” database and compel us, therefore, to reject our initial hypotheses
and turn our research into a negative study. Nonetheless, we believe that negative results
may also be important, provided they contribute to our knowledge of the topic. Several
compelling arguments are given in a recent editorial in Nature [24] in favor of publishing
negative results. In this specific case, the outcome of our study deserves consideration
since, to the best of the authors’ knowledge, no previous study had addressed the issue
of the possible overfitting of the ASTM E900-15 [3] embrittlement trend curve and this
could have motivated wrong and potentially dangerous decisions in the assessment of the
structural integrity of nuclear vessels. In addition, it is always desirable in statistical terms
to obtain confidence intervals rather than a point estimate of a parameter. We also believe
that the methods introduced in this paper should be implemented for future improvements
in the current prediction model provided by ASTM.
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