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Abstract: Hot forming is an essential part of the manufacturing of most steel products. The hot
deformation behaviour is determined by temperature, strain rate, strain and chemical composition of
the steel. To date, constitutive models are constructed for many steels; however, their specific chemical
composition limits their application. In this paper, a novel artificial neural network (ANN) model
was built to determine the steel flow stress with high accuracy in the wide range of the concentration
of the elements in high-alloyed, corrosion-resistant steels. The additional compression tests for
stainless Cr12Ni3Cu steel were carried out at the strain rates of 0.1–10 s−1 and the temperatures of
900–1200 ◦C using thermomechanical simulator Gleeble 3800. The ANN-based model showed high
accuracy for both training (the error was 6.6%) and approvement (11.5%) datasets. The values of
the effective activation energy for experimental (410 ± 16 kJ/mol) and predicted peak stress values
(380 ± 29 kJ/mol) are in good agreement. The implementation of the constructed ANN-based model
showed a significant influence of the Cr12Ni3Cu chemical composition variation within the grade on
the flow stress at a steady state of the hot deformation.

Keywords: hot deformation; artificial neural network; thermomechanical simulator gleeble; Cr12Ni3Cu
steel; constitutive model

1. Introduction

Despite the stable development of new metallurgical directions such as additive
manufacturing [1,2], amorphous [3,4] and composite structuring [5,6] technologies, the
majority of critical steel products in the nuclear industry in the coming decades will
be manufactured using the traditional scheme, including steel melting and casting, hot
and cold plastic deformation and mechanical and heat treatment [7–9]. However, the
requirements for the microstructure and properties of the materials will be permanently
increased. In this regard, the optimisation of the chemical composition and manufacturing
technologies of the steels is required.

Hot deformation is one of the important manufacturing stages. The hot deformation
behaviour is significantly influenced not only by the deformation conditions such as temper-
ature, strain rate and strain but also by the chemical composition of the steel. The investiga-
tion and modelling of the hot deformation behaviour are necessary to optimise the forming
technologies using finite element simulation [10,11]. Most of the constitutive models were
constructed for materials with specific chemical compositions. At the last time, models
were constructed for the low-carbon [12], reduced activation ferritic/martensitic [13] and
1.4542 stainless [14] steels. However, even minor deviations within the same grade can
lead to significant changes in rheological properties. To date, there are no physical and
mathematical models linking these characteristics directly with the chemical composition.
The reason is a large number of alloying elements in industrial steel, which does not
allow revealing the complex effect of alloying elements on hot deformation behaviour.
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Unfortunately, limited human capabilities do not allow for analysing big data of properties
such complex objects as industrial steel. The problem may be solved by machine learning,
implemented through artificial neural networks (ANN).

The ANN provides a way to predict functional dependences without preliminary
known laws. Such a method shows a minimum calculation error; however, it requires a
big set of experimental data. Liu et al. have shown a high accuracy ANN-based model for
the determination of the 42CrMo steel hot flow behaviour compared to the Arrhenius-type
model [15]. Similar results were obtained by other scholars for API 5CT-L80 [16], AISI-
1045 [17], 9Cr-1Mo [18], 10Cr [19], 40Mn [20] and 33Cr23Ni8Mn3N [21] steels. K. Arun
Babu et al. have constructed a dynamic recrystallisation model in super austenitic stainless
steel [22] using an ANN-based approach. However, all the authors have used ANN-based
modelling for the steels with a specific composition and have not used the ability of the
ANN to find the dependences of the hot deformation behaviour on the alloying elements
concentration.

The purpose of the investigation is the construction and approbation of the ANN-based
model relating rheological properties with the chemical composition and hot deformation
parameters of high-alloyed, corrosion-resistant steels.

2. Materials and Methods
2.1. ANN Construction

The database of the hot deformation rheological properties of the steels with different
chemical compositions was collected to build the ANN-based model [23–59]. The ranges
of the alloying elements concentrations and the deformation conditions in the database
are presented in Table 1. The overall number of entries in the database was 7912. The
dataset was randomly mixed and divided into three groups: the group for the training
of the ANN (60% of the dataset), the cross-validation data (20%) and the testing entries
(20%). The hyperbolic tangent function was used as a transfer function in all neurons. The
strain, deformation temperature, strain rate and concentrations of the alloying elements
were chosen as inputs variables and the flow stress as an output of the model. The
architecture of the ANN is presented in Figure 1. The model’s training was made by the
static backpropagation algorithm using NeuroSolution software. The number of neurons
was proposed by the NeuroSolution. However, it fully follows the formula proposed by G.
Lachtermacher and G. Fuller [60]:

0.11P
I + 1

≤ N ≤ 0.11P
I + 1

, (1)

where I is the number of input parameters; P is the amount of data used for ANN training.
The formulas and the coefficients for using the constructed ANN-based model are presented
in the Supplementary Materials.

Table 1. The ranges of the alloying elements concentration, deformation temperatures, strain rates
and strains in the database (wt. %).

C Si Mn Cr Ni Cu Mo V N

0–0.19 0–2.2 0–2.06 0–28 0–33 0–1.96 0–5.06 0–1.25 0–0.041

Ta W Nb Al Temperature, ◦C Strain rate, s−1 Strain

0–0.097 0–2.37 0–1.1 0–2.6 700–1250 10−4–50 0–1.3
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Figure 1. The structure of the constructed ANN.

2.2. Additional Compression Tests for ANN-Based Model Approbation

The additional hot compression tests of the 13Cr3NiCu steel were carried out to
approve the workability of the constructed model. This steel belongs to stainless and
cavitation-resistant chromium steels. The level of Ni concentration is sufficient for forming
a martensitic microstructure during the quenching even of massive products. The indus-
trial technology of hot forming of the 13Cr3NiCu steel ingots consists of eight more hot
deformation stages. Therefore, it is very important to precisely determine the steel’s hot
deformation behaviour to optimise the forming technology.

The ingots of the steel were obtained by vacuum induction melting with raw materials
of commercial purity. The nominal chemical composition of the alloy is presented in Table 2.
Cast ingots with a diameter of 250 mm and a height of 500 mm were annealed for 8 h at the
temperature of 1200 ◦C and then were pressed with the deformation rate of 0.01 mm/s to
the strain of 60% at the temperature of 1200 ◦C. The samples for the compression test were
cut in the pressing direction.

Table 2. Chemical composition of the 13Cr3NiCu steel (wt. %).

C Si Mn Cr Ni Cu Fe

0.05 0.2 0.4 12.2 3.1 1.1 Balance

Axisymmetric compression tests were performed using a Gleeble 3800 thermomechan-
ical simulator (Figure 2). The specimens with a diameter of 10 mm and a height of 15 mm
were heated at a rate of 5 ◦C/s to the deformation temperature (900, 980, 1050, 1130 and
1200 ◦C), held for 2 min and compressed in a single hit to a true strain of 1.3 at a constant
true strain rate of 0.1, 1 and 10 s−1. The true stress-strain curves were treated to consider
the friction and adiabatic heating during the deformation [61,62]. The error of the stress
determination using Gleeble is low because of the high accuracy temperature and strain
rate control. Due to this fact, only one sample for each hot compression condition was used
for obtaining the stress-strain curve. To approve the reproducibility of the compression
tests, we repeat two more times the compression at the temperature of 1050 ◦C and the
strain rate of 1s−1. As shown in Figure A1 (Appendix A), the reproducibility of Gleeble
tests is high. The error is increased only at high strain values due to potential significant
differences in friction conditions.
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Figure 2. The image of the camera of the Gleeble 3800 system.

A Tescan-VEGA3 LMH scanning electron microscope (SEM) was used for the initial
microstructural investigation. Thermodynamic calculations of high-temperature phase
states were carried out using Thermocalc software with TCFe7 database.

3. Results
3.1. Results of ANN Modelling

Results of the calculations using the ANN-based model are presented in Figure 3. The
accuracy of the model was determined using average relative error (ARE) and Pearson’s
correlation coefficient (R) [63]:

ARE(%) =
100
N

N

∑
i=1

|Ei − Pi|
Ei

(2)

R =
∑N

i=1

(
Ei −

=
E
)(

Pi −
−
P
)

√
∑N

i=1 (Ei −
=
E)

2
∑N

i=1 (Pi −
−
P)

2
(3)

Figure 3. A comparison between predicted using ANN-based model and experimental stress values
for (a) training, (b) cross-validation and (c) testing datasets.
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Here, E, P,
=
E and

−
P are the experimental, predicted stress and those mean values,

correspondently. N is the number of entries in the dataset.
The ARE has a 6.6–7.3% value for all datasets. Such a low error and a high Pearson’s

correlation coefficient value show the constructed model’s good accuracy. However, the
presented results show the model’s accuracy only for the hot deformation curves used for
the ANN teaching, and an additional independent check is required.

3.2. Initial Microstructure and Hot Deformation Behaviour of the 13Cr3NiCu Steel

Additional hot deformation tests were carried out to check the accuracy of the con-
structed ANN-based model. Figure 4a shows an initial microstructure of the investi-
gated steel. The microstructure consists of lath martensite with an average grain size of
10 ± 2.6 µm. Accordingly thermodynamic calculations, the microstructure of the inves-
tigated steel at elevated temperatures may contain austenite (fcc), ferrite (bcc), carbide
(M23C6) and liquid phases (Figure 4b). In the current investigation, the deformation of the
steel was carried out in the austenitic region.

Figure 4. Initial microstructure (a) and high-temperature phase composition (b) of 12Cr3NiCu steel.

The typical true stress-true strain curves of the 12Cr3NiCu steel are shown in Figure 5a,b.
The steel demonstrates a usual hot deformation response to the change of the testing condi-
tions: the stress increases with a strain rate rise and decreases with a temperature increase.
Moreover, the true stress achieves a maximum value on the curve at all deformation condi-
tions. The softening after peak proceeds due to the dominance of the dynamic recovery and
recrystallisation of the work hardening during the deformation. The stress-strain curves reach
a steady state at temperatures higher than 1050 ◦C. At lower temperatures, the process of
dynamic recrystallisation does not finish despite a large strain value of 1.3.

3.3. Approbation of the ANN-Based Model

A comparison between calculated and experimental stress–strain curves for the
12Cr3NiCu steel is shown in Figure 6a–c. The ARE of the ANN-based model for the
additional hot deformation test was 11.5%. The maximum values of ARE up to 40% were
obtained at lower hot deformation temperatures (lower than 980 ◦C) and the high strain
value. However, in the range of the temperatures of 1050–1200 ◦C, the ANN-based model
shows very high accuracy for most of the deformation conditions, allowing the analysis of
the influence of different factors on the true stress value.
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Figure 5. Hot compression curves for the 12Cr3NiCu steel at a strain rate of 0.1 s−1 (a) and at a
temperature of 1050 ◦C (b). The image of the samples before and after compression (inset on (b)).

Figure 6. A comparison of the experimental and predicted hot deformation curves for the 12Cr3NiCu
steel at a strain rate of 0.1 s−1 (a), 1 s−1 (b) and 10 s−1 (c). The ln

[
sinh

(
ασp

)]
vs. ln(Zp) (d).

The correlation between the experimental (σexp
p ) and predicted (σpr

p ) peak stress was
checked by constitutive modelling using the Zener-Hollomon parameter [64]:

Z =
.
εe

Q
RT , (4)

where
.
ε is the strain rate (s−1), T is the temperature (K) and Q is the apparent effective

activation energy (J/mol). The relationship between the hot deformation response and Z
may be described by the following sets of equations:

Z = A3
[
sinh

(
ασp
)]n2 f or all σp (5)

Z = A1σn1
p , i f ασp < 0.8 (6)
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Z = A2eβσp , i f ασp > 1.2 (7)

The stress multiplier α can be described as follows:

α ≈ β

n1
(8)

The material constants A1, A2, A3, n1, n2, β, α and Q were determined using the least
square method. The comparison of the constitutive models is shown in Figure 6d. The
values of the effective activation energy for experimental and predicted stresses are in
good correspondence within the confidence interval, which shows a high accuracy of the
constructed model for the prediction of the hot deformation behaviour.

4. Discussion

The difference between experimental and calculated stress–strain curves for low
deformation temperatures and high strain values is larger than the experimental error of
the Gleeble testing. However, for industrial hot deformation processes, high temperatures
and strain below 1 are usually used. The error of the constructed ANN-based model in
such conditions is significantly lower, and its accuracy is enough for the prediction of the
flow stress and optimisation of the hot deformation technology.

The constructed model was used to determine the possible influence of chemical
composition variations of the 12Cr3NiCu steel within the grade (Table 3) on the stress value.
As shown in Figure 7, the true stress value may be significantly influenced by changing
the alloying elements’ concentration. Increasing the Ni and Cr concentrations from low to
high limit leads to a rise of the flow stress on 20–30 MPa dependently on the deformation
temperature. Copper influences more intensively on the stress and may change its value on
90 MPa at a deformation temperature of 1150 ◦C. A similar result was previously obtained
experimentally by Li et al. [65]: adding copper to 304L stainless steel significantly decreased
the true stress due to increasing the stacking fault energy and, consequently, inhibiting
the dynamic recrystallisation. Previously, the significant influence of the minor variations
of the 25CrMo steel chemical composition on the hot fracture behaviour was shown by
Zheng et al. [66]. The changes in the mechanical properties of the hot-deformed low-carbon
microalloyed steels with the change of the chemical composition within the steel grade
were also shown in [67]. However, information about the significant influence of the
minor chemical composition changes on the hot deformation behaviour was not shown for
high-alloyed, corrosion-resistant steel.

Table 3. Variation of the concentration of the alloying elements within the 13Cr3NiCu steel grade (wt. %).

C Si Mn Cr Ni Cu Fe

≤0.06 ≤0.3 ≤0.6 11.8–13.7 2.7–3.3 0.8–1.1 Balance

Even concentration of the one element may change the deformation response of the
steel. However, during the steel melting process, all the concentrations may achieve the
grade limits, which significantly changes the flow stress. Pair influences of the different
alloying elements on the flow stress of the 12Cr3NiCu steel at a steady state during the
deformation at a strain rate of 1 s−1 and a temperature of 1130 ◦C are shown in Figure 8.
As seen, maximum differences in true stress in pairs Cr–Ni, Cr–Cu and Ni–Cu are 30
(±20% of average experimental stress value in Figure 8b), 33 (±22%) and 57 MPa (±38%),
correspondently, which may sufficiently influence the hot deformation in the industrial
conditions.
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Figure 7. Calculated values of the 12Cr3NiCu steel true stress at steady state (a strain of 1) at a strain
rate of 1 s−1 at different temperatures and concentrations of Cr (a), Ni (b) and Cu (c).

Figure 8. Dependence of the 12Cr3NiCu steel true stress at steady state (a strain of 1) on Cr and Ni (a),
Cr and Cu (b) and Ni and Cu (c) concentrations at a strain rate of 1 s−1 and a temperature of 1130 ◦C.

The presented approach of the ANN-based model construction and approvement may
be useful for modelling the hot deformation behaviour not only for different groups of
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steels but also for other metallic material such as magnesium, aluminium and titanium alloy
due to a large number of published experimental data and the increased computational
possibility of the computers. Besides, the constructed models may be applied not only
to optimise the industrial processes but also let to find the dependencies between high-
temperature response and the microstructure by coupling the developed approach with
the thermodynamic calculations.

5. Conclusions

1. An artificial neural network model for predicting flow stress of the high-alloyed,
corrosion-resistant steel during the hot deformation was constructed. The model
shows high accuracy for the training and testing datasets. An average relative error is
in the range of 6.6–7.3%.

2. The other series of hot compression tests of the 12Cr3NiCu steel was carried out to
approve the predictability of the constructed ANN-based model. The comparison of
the experimental and predicted stress–strain curves shows a high model accuracy at
temperatures higher than 1050 ◦C at all investigated strain rates.

3. The constitutive models for predicted and experimental peak stress values were con-
structed using the Zener–Hollomon parameter. Obtained values of the effective activa-
tion energy for experimental (410 ± 16 kJ/mol) and predicted data (380 ± 29 kJ/mol)
are in good agreement that allow the use of constructed ANN-based model for analysis
of the steel’s hot deformation behaviour.

4. The approbation of the constructed model shows that the hot deformation behaviour
may be significantly influenced by the fluctuation of the chemical composition within
the grade of the steel. Usage of the ANN-based model allows for optimisation of the
industrial hot deformation technology depending on the real chemical composition of
the steel.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met12030447/s1. Table S1. The values of the neuron’s biases in
the hidden layers. Table S2. The values of the synapses between j-th neuron in the first hidden layer
and i-th input parameter (w1h). Table S3. The synapse values between k-th neuron in the second
hidden layer and j-th neuron in the first hidden layer (w2h).

Author Contributions: Conceptualization, A.C.; methodology, A.C.; validation, A.C. and T.C.; in-
vestigation, A.K.; resources, A.C.; data curation, T.C.; writing—original draft preparation, A.C.;
supervision, A.C.; project administration, A.C.; funding acquisition, A.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation (project №18-79-10153-P).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/met12030447/s1
https://www.mdpi.com/article/10.3390/met12030447/s1


Metals 2022, 12, 447 10 of 12

Appendix A

Figure A1. The comparison of the stress–strain curves of three samples test at the temperature of
1050 ◦C and the strain rate of 1 s−1.
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