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Abstract: Owing to the insufficient converter heat, IF steel is produced via the BOF–LF–RH–CC
process in Pangang Group Xichang Steel and Vanadium Co., Ltd. To clarify the evolution of inclusions
and the control strategy to improve the cleanliness of molten steel in Ti-bearing IF steel produced via
the long process, scanning electron microscopy with energy spectroscopy analysis and automatic
scanning electron microscopy were employed to analyze the number, size, type and morphology
of inclusions in IF steel from RH to tundish. The results show that the characteristics of inclusions
are similar in two heats during RH treatment. In the tundish sample of Heat 2, the number density
(ND) and area fraction (AF) of Al2O3 and Al2O3·TiOx inclusions increase significantly, and the size of
Al2O3 inclusions decreases obviously, which is closely related to the serious reoxidation of molten
steel caused by the slag with high oxidability during the holding process. Meanwhile, a new method
of determining the number of cluster inclusions is used to evaluate the cleanliness of IF steel in this
paper, and the obtained number of inclusion clusters is consistent with the trend of ND and AF
of inclusions. The effects of reoxidation on the morphology, number and other indexes of Al2O3

and Al2O3·TiOx inclusions are discussed in detail, and there are two ways of forming Al2O3·TiOx

inclusions in the case of serious reoxidation. To weaken the reoxidation process and enhance the
cleanliness of IF steel produced via the long process, reducing the oxygen content in molten steel
before Al deoxidation, minimizing the holding time and reducing the oxidability of slag after RH
are helpful.

Keywords: nonmetallic inclusion; cleanliness; Ti-bearing IF steel; reoxidation; long producing process

1. Introduction

Ti-bearing IF steel is widely used in automotive, home appliances, electronics and
other fields due to its good deep-drawing performance. With the market’s increasing
requirements for the surface and internal quality of final products, the demand for high-
quality IF steel is increasing [1,2]. The performance of IF steel is greatly affected by
the type, number and size distribution of nonmetallic inclusions [3–6]. Engine failure
caused by nonmetallic inclusions of tens of microns is a typical problem in the automotive
industry [7,8]. Clogging of the submerged entry nozzle is also a common problem in the
steelmaking process because of the presence of Ti [9–12]. Therefore, it is important to enhance
the potential for inclusion removal from molten steel during RH and tundish processes.

There are two routes for producing IF steel currently; one is the BOF–RH–CC short
process, and the other is the BOF–LF–RH–CC long process. The short process is more uni-
versally employed in this field owing to its simpler process and better refining effect [13–17].
In Pangang Group Xichang Steel and Vanadium Co., Ltd., the hot metal after extracting
vanadium with lower carbon content is smelted in BOF, resulting in the insufficient heat
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of molten steel after BOF. In order to produce smoothly, electric heating (LF) is used to
compensate for the heat of molten steel. Therefore, the Ti-bearing IF steel is produced via
the BOF–LF–RH–CC process.

At this plant, a high oxygen activity generally in the range of 500~900 ppm after BOF is
necessary to complete the deep decarburization task by the natural decarburization process
during RH treatment. Due to there being no pre-deoxidation operation before RH and
the longer reaction time between the molten steel and slag, the total mass fraction of the
FeO and MnO in the ladle slag is basically over 15% during RH treatment. Some scholars
have also studied the cleanliness control of IF steel produced via the long process [15,18,19].
However, there are few reports about the effect of the high oxidized slag on inclusions in
IF steel produced via the long process, and the influence of the reoxidation process on the
cleanliness of molten steel should not be ignored. In the industrial producing process, the
evolution of inclusions in Ti-bearing IF steel produced by the long process also needs to be
studied more deeply. Additionally, it is still not clear how to take measures to improve the
cleanliness of IF steel produced via the long process.

The main objective of this work is to clarify the evolution of inclusions in the long
process from RH to tundish and evaluate the influence of the reoxidation process and
the relevant process parameters on the cleanliness of molten steel. Theoretical guidance
obtained by these experiments is good for optimizing the long smelting process and
improving the cleanliness of Ti-bearing IF steel.

2. Materials and Methods
2.1. Industrial Investigations

At the steel plant of Pangang Group Xichang Steel and Vanadium Co., Ltd., IF steel
is typically produced in heat sizes of 200 tons via the basic oxygen furnace (BOF)–ladle
furnace (LF)–Ruhatahl–Hausen (RH)–continuous casting (CC) process. The processes
mainly include the following: (1) The BOF steelmaking is carried out after extracting
vanadium. (2) The temperature of molten steel is increased in LF. (3) After ending the
decarburization process, aluminum and sponge titanium are added for alloying. The
interval time between the added Al and Ti is about 4 min, and the pure circulation time
after Ti addition is usually around 6 min. (4) After the vacuum break, the holding time is
usually between 30 and 40 min. The steps are shown in Figure 1.
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Figure 1. Steps of producing IF steel during steelmaking processes.

The inclusion landscapes of two heats have been tracked from RH to tundish, and
4 standard lollipop samples were taken in different time steps after Al addition. The exact
time steps are listed in Table 1. The total oxygen (T.O) and nitrogen (N) contents of samples
were analyzed using the TCH-600 oxygen/nitrogen/hydrogen analyzer (LECO Company,
San Jose, CA, USA). The chemical compositions of the IF steel slab for two heats are shown
in Table 2. The chemical compositions were obtained with ICP-AES (Inductively Coupled
Plasma-Atomic Emission Spectrometer).
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Table 1. Time of sampling and chemical composition of lollipop samples.

Sample
Heat 1 Heat 2

Description T.O % N % Description T.O % N %

RH-1 2.0 min after Al addition 0.0080 0.0014 2.5 min after Al addition 0.0120 0.0011
RH-2 3.0 min after Ti addition 0.0027 0.0018 3.3 min after Ti addition 0.0052 0.0010
RH-3 6.0 min after Ti addition 0.0020 0.0018 5.0 min after Ti addition 0.0013 0.0010

Tundish - 0.0017 0.0020 - 0.0150 0.0014

Table 2. Chemical composition of Ti-bearing IF steel (wt%).

Heats C Si Mn P S Als Ti N

1 0.0018 0.0030 0.1300 0.0080 0.0060 0.0250 0.0550 0.0027
2 0.0022 0.0030 0.1300 0.0060 0.0060 0.0250 0.0540 0.0018

2.2. Experimental Methods

To analyze the inclusions in the IF steel, the standard samples
(15 mm × 15 mm × 15 mm) were cut from the lollipop samples. They were inlaid and
ground to 2000 grit and then polished with the diamond polishing agent. The number
and size distribution of nonmetallic inclusions (NMIs) were statistically analyzed by an
ASPEX Explorer scanning electron microscope (FEI Company, Hillsboro, OR, USA). An
area of about 83 mm2 was set as the standard area on samples for inclusion observation,
and the minimum detectable inclusion was 1.0 µm in equivalent circle diameter (ECD). The
number density and area fraction are two statistical parameters to characterize the amount
of nonmetallic inclusions, as shown in the following two Equations:

ND =
n

Atotal
(1)

AF =
Ainclusion

Atotal
(2)

where ND is the number density of inclusions, mm−2; Atotal is the sample detection area,
mm2; n is the number of detected inclusions on the area of Atotal; AF is the area fraction of
inclusions, 10−6; and Ainclusion is the total area of detected inclusions, µm2.

A Zeiss Sigma 500 field emission scanning electron microscope (ZEISS Company,
Oberkochen, Germany) was used to analyze the morphology and composition of inclu-
sions. The inclusions in the view field of metallographic samples were observed and
photographed, and energy dispersive spectroscopy (EDS) was used to determine the
chemical composition of inclusions by point or plane scanning.

In the present work, the effect of relevant process parameters on the cleanliness of
molten steel is further discussed. Besides Heat 1 and Heat 2, several industrial tests were
carried out, and the relevant process parameters are listed in Table 3. T.Fe content is the
total mass fraction of FeO and MnO in the ladle slag. The ND of inclusions in Table 3 was
also analyzed by the ASPEX method and calculated by Equation (1).

Table 3. Parameters of experimental heats during RH and tundish processes.

Heats [O] before Al
Deoxidation/10−6

Holding
Time/Min

T.Fe in Slag after
RH/%

Number Density of
Inclusions/mm−2

After RH Tundish
1 295 35.5 15.3 13.5 9.3
2 294 42.5 18.1 15.2 35.1
3 288 35.3 14.2 9.3 6.1
4 357 26.0 17.0 15.0 2.5
5 247 32.8 16.8 2.5 13.8
6 312 34.9 9.5 9.5 4.6
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3. Results and Discussion
3.1. Number and Size Distribution of Inclusions

To reveal the evolution process, the results of the ASPEX inclusion assessment for
Heat 1 and Heat 2 were employed to analyze the number and size changes of inclusions
from RH to tundish, as shown in Figure 2.
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Figure 2. Number and size of different inclusions in (a) Heat 1 and (b) Heat 2 during RH treatment
and tundish processes.

It can be seen from Figure 2 that inclusions in molten steel are mainly divided into three
types, namely Al2O3, Al2O3·TiOx and other inclusions. Al2O3 and Al2O3·TiOx inclusions
account for almost 100% during the whole steelmaking process. The ND of Al2O3 inclusions
in molten steel is over 35 mm−2 within 3 min after Al addition, and the average size of
Al2O3 inclusions is about 2.3 µm. The number of Al2O3 inclusions decreases significantly
at about 3 min after Ti addition and then further decreases at the end of RH. During the
whole RH refining process, the size of Al2O3 inclusions changes a little. After adding the
sponge titanium, the formation of many small Al2O3·TiOx inclusions causes the reduced
size of all NMIs, and the size of Al2O3·TiOx inclusions in the pure circulation process shows
a growing trend. In the tundish sample of Heat 1, the mean size of all inclusions increases
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to about 2.7 µm owing to the notable increasing size of Al2O3·TiOx inclusions. On the
contrary to Heat 1, the number of various inclusions in the tundish sample of Heat 2 has
an increasing trend. In particular, the number of Al2O3 inclusions in tundish is more than
twice as much as that at the end of RH. The mean size of all inclusions shows a decreasing
trend, which is also related to the increase in small Al2O3 inclusions.

Figure 3 shows the change of the AF of inclusions during RH treatment and tundish
processes. In Figure 3, the AF of inclusions shows basically the same trend with the ND of
inclusions. In the tundish sample of Heat 2, the AF of Al2O3 and Al2O3·TiOx inclusions
also increases significantly. The process characteristics for producing IF steel in this steel
plant are the main reason for this phenomenon.
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IF steel in this plant is produced via the BOF–LF–RH–CC process, and the molten
steel is in a state of peroxidation at the end of BOF. The oxygen in molten steel is contin-
uously transferred to the ladle slag, resulting in the near-equilibrium conditions at the
steel/slag interface. Moreover, no pre-deoxidation measures are taken before the RH re-
fining. Consequently, the ladle slag oxidability is still at a high level despite taking the
slag denaturalization treatment, and the T.Fe content in the ladle slag after RH is basically
over 15%. Figure 4 shows the mean Ti percentage through the arithmetic average of Ti-
containing inclusions. In this figure, the mean Ti percentage in Ti-containing inclusions
increases gradually, especially more greatly from RH-end to tundish. It indicates that
the reoxidation of molten steel occurs during the holding process. Simultaneously, the
inclusion amount and the T.O content in molten steel for Heat 2 have a large increase in
the tundish sample, indicating that the reoxidation is relatively serious under the actual
producing conditions in this plant.
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The unstable oxides in slag or refractory materials, including FeO, MnO, SiO2 and
other oxides; a source of oxygen in the added Ti-Fe alloy or sponge titanium; and the air
inhalation into molten steel under the poor protection effect may all cause the reoxidation
of molten steel, resulting in the increased content of the dissolved oxygen and total oxygen
and a large loss of alloying elements in molten steel [14,19–21]. As can be seen from the
change of N content in Table 1, the increase in N content in molten steel from RH-end to
tundish is below 4 ppm. During the whole producing process, the N contents in molten
steel do not obviously increase and are all below 20 ppm. Consequently, the reoxidation
caused by the absorbed air is basically excluded.

In addition, the inclusion amount and the T.O content in molten steel for Heat 1 do not
increase when the same sponge titanium is added into steel. Hence, under this experimental
condition, the ladle slag with high oxidability is the main reason for the serious reoxidation
of molten steel. During the RH refining process, the molten steel driven by argon gas has
better stirring conditions. Even when the slag is highly oxidizing, inclusions can float up
more quickly. Therefore, the ND and AF of inclusions in two heats gradually decrease
during RH treatment. At the holding stage, compared with the alloying time in RH, the
holding time is usually more than 2 times as long, and the stirring strength of molten steel
becomes weak. Because of the worse conditions for the floating up of inclusions and the
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strong oxidized top slag, the molten steel may undergo serious reoxidation, leading to a
significant increase in the ND and AF of inclusions in the tundish sample. For Heat 2, the
T.Fe content in slag after RH reaches 18.1%, and the holding time is also more than 40 min.
Before arriving at tundish, the oxygen in the ladle slag will transfer into the molten steel
continuously, resulting in the deteriorated cleanliness of molten steel.

To sum up, in order to improve the cleanliness of molten steel, it is crucial to weaken
the reoxidation by reducing the oxidability of slags and optimizing the steelmaking process
during RH refining and tundish processes.

Figure 5 shows the size distribution of inclusions in Heat 1 and Heat 2 during RH
treatment and tundish processes. From the figure, it can be seen that the ND of inclusions
within 3 µm is the largest and the ND of inclusions above 5 µm has dropped to less than
2 mm−2. Besides, the number of various inclusions appears to decrease with the increase in
inclusion size. The number of Al2O3 and Al2O3·TiOx inclusions in Heat 1 keeps decreasing
from the RH to tundish. However, in the tundish sample of Heat 2, the number of inclusions
within 2 µm increases significantly owing to the serious reoxidation, which is also the main
reason for the decrease in the mean size of Al2O3 inclusions. Meanwhile, it can be seen
from the cumulative frequency distribution of inclusions that small-sized inclusions below
3 µm increase from around 77% before Ti addition to more than 81% after Ti addition. The
long holding time between the removal of the ladle and the start of continuous casting
gives inclusions the chance to grow and agglomerate. This results in a relatively strong
increase in the percentage of the inclusions above 8 µm in tundish, which is a consequence
of the maturation of the inclusion population. In other processes, the number of inclusions
within 8 µm makes up almost 100%.

The Al2O3 cluster inclusions in IF steel are considered to be more harmful because of
their larger size [22]. In the analyzing process of using ASPEX, many large-sized cluster-
like inclusions may be defined as several inclusions, which will affect the accuracy of
calculating the number of inclusions. In this study, a new method of determining the
number of cluster inclusions is used to evaluate the cleanliness of IF steel. All Al2O3 and
Al2O3·TiOx inclusions in the total detected area of a sample are assumed to be spherical, and
then they are positioned on a map according to the location information of every inclusion.
The relative size of the spherical dimension in the figure is determined depending on the
size of inclusions, and multiple inclusions overlapping each other are considered as a
cluster inclusion, and then the number of cluster inclusions can be counted.

The distribution of inclusions in the total sample detection area for Heat 1 and Heat 2
during RH treatment and tundish processes is shown in Figure 6. In the sample of RH-1,
there are many small-sized inclusions aggregated together to form a cluster, including
38 clusters in Heat 1 and 21 clusters in Heat 2. During the period after Ti addition, the
number of cluster inclusions decreases significantly because some larger inclusions have
floated up and been removed. The single inclusion of forming the cluster is also larger
in size, and even some inclusions are over 10 µm. After finishing the holding stage,
compared with Heat 1, the number of cluster inclusions in the tundish sample of Heat 2
reaches 19, indicating that there are many cluster inclusions existing in the molten steel
when the molten steel undergoes serious reoxidation. In the meantime, for Heat 1, the
number of single inclusions in the tundish sample decreases obviously from Figure 6.
However, the number of single inclusions below 4 µm in the tundish sample of Heat 2 has a
significant increase, so the size of inclusions decreases significantly, as described in Figure 2.
Additionally, the number of clusters obtained by this method is in good agreement with
the ND and AF of inclusions in Figures 2 and 3, indicating that it is relatively reasonable.
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Figure 6. Distribution of inclusions in the total sample detection area for Heat 1 and Heat 2 during
RH treatment and tundish processes.

3.2. Morphological Evolution of Inclusions

The morphological evolution of Al2O3 inclusions in molten steel from RH to tundish
is depicted in Figure 7. Once the Al is added into the molten steel during the RH process, a
large number of small-sized Al2O3 inclusions with different shapes are formed in molten
steel, including spherical, bar-like, polygonal and other irregular shapes. These inclusions
begin to aggregate together to form large Al2O3 clusters as shown in Figure 7 (RH-1). At
around 3 min after Al addition, these small-sized Al2O3 inclusions cannot float up rapidly,
and the ND of Al2O3 inclusions reaches more than 35 mm−2. This indicates that it will take
a longer time to further polymerize and grow to be removed for these inclusions.
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After Ti addition, there is still a certain amount of Al2O3 clusters in molten steel, as
shown in Figure 7 (RH-2 and RH-3). Few Al2O3 inclusions can react with Ti in molten steel
to form Al2O3·TiOx inclusions, and most of the clusters are still pure Al2O3 inclusions. The
size of the Al2O3 cluster decreases significantly at the end of RH, and the ND of Al2O3
inclusions in molten steel drops to less than 15 mm−2, which is a combined result of the
larger inclusions being removed more rapidly from molten steel through floatation and
smaller inclusions precipitating. The decreasing trend of the T.O content in molten steel is
consistent with the above evolution characteristic of inclusions, and it can be speculated
that the Al deoxidation process at about 6 min after Ti addition could be completed because
the oxygen level is close to the equilibration at the end of RH.

In the tundish sample, few cluster-like Al2O3 inclusions in molten steel of Heat 1 are
found, and the Al2O3 inclusions mostly exist as single particles. Meanwhile, many Al2O3
clusters still exist in molten steel of Heat 2, as shown in Figure 7 (tundish). According to
the analysis results in Section 3.1, this is mainly due to the serious reoxidation of molten
steel caused by the ladle slag with high oxidation and the long holding time.

Figure 8 shows morphologies of Al2O3·TiOx inclusions during RH treatment and
tundish processes, indicating that there are mainly three types of Al2O3·TiOx inclusions.
The first type is similar to the shape of Al2O3 inclusions, including spherical and polygonal
shapes, and the size is usually smaller than 5 µm, as shown in Figure 8a–d. The other
two types of Al2O3·TiOx inclusions are substantially spherical and relatively large in
size, as shown in Figure 8e–l. Figure 9 shows the elemental mapping of Al2O3·TiOx
inclusions during RH treatment and tundish processes. In the first type, an Al-Ti-O corner
is distributed on the surface of the Al2O3 inclusion, and the morphology and composition
are nearly identical to pure alumina inclusions, as shown in Figure 9a,b. In the second type,
inclusions with traces of Al and Ti are homogeneously distributed, as shown in Figure 9c–e,
and some inclusions such as those in Figure 9c,e are surrounded by an Al2O3 layer with an
Al-Ti-O core. In the third type, there are heterogeneous Al-Ti-O inclusions with an irregular
Al2O3 core and an Al-Ti-O or TiOx surrounding layer, as shown in Figure 9f,g, and the size
is the largest of the three types.
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Similar morphologies of the first two types of Al2O3·TiOx inclusions were observed
by Dorrer [19], Yang [23], Wang [24], Bai [25] and Yang [26]. The third type of Al2O3·TiOx
inclusions, in which the Al-Ti-O is distributed in the outer part and the Al2O3 is distributed
in the inner part, was also reported by Basu [14], Park [20], Wang [27], Doo [28], Qin [29]
and Sun [30]. Furthermore, it is worth discussing the formation mechanism of different
types of inclusions later.

The percentage of various Al2O3·TiOx inclusions during RH treatment and tundish
processes is shown in Figure 10. From the figure, it can be seen that there are mainly two
types of titanium-containing inclusions, namely Type 1 and Type 2, after Ti addition during
the RH refining process. At 3 min after Ti addition, Type 1 of Al2O3·TiOx inclusions in two
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heats accounts for 83.8% and 93.2%, respectively. At the end of RH refining, the percentage
of Type 1 inclusions decreases, and the percentage of Type 2 inclusions begins to increase.
In the two tundish samples, Type 3 of Al2O3·TiOx inclusions appears, but the number of
Type 3 inclusions is significantly lower than that of the other two types. Meanwhile, the
proportion of Type 1 inclusions further decreases, and the proportion of Type 2 inclusions
further increases. This is mainly because under the good-stirring conditions in molten
steel after Ti addition, the process of Ti reducing Al to form Al2O3·TiOx inclusions has
been proceeding, and thus more and more Al2O3·TiOx inclusions with relatively uniform
composition are generated. In addition, for the tundish samples, the total amount of
inclusions in Heat 2 is larger, and the number of Type 1 and Type 2 inclusions in Heat 2 is
significantly more than that in Heat 1, which is caused by the serious reoxidation process
of molten steel. Therefore, the types of Al2O3·TiOx inclusions generated in molten steel
are not only related to the existence of Ti in molten steel, but also closely related to the
reoxidation process of molten steel caused by the excessively high oxidability of top slag.
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The Ti/Al ratio in various Al2O3·TiOx inclusions during RH treatment and tundish
processes is presented in Figure 11. During the whole steelmaking process, the Ti content
in Type 2 and Type 3 inclusions is significantly larger than that in Type 1 inclusions, and
the Ti and Al contents in Type 1 inclusions almost keep constant. During RH treatment,
the Ti and Al contents in Type 2 inclusions have a small fluctuation. After arriving at
tundish, the Ti/Al ratio in Type 2 inclusions increases significantly owing to the increase
in Ti content. In the tundish sample, the Ti/Al ratio of Type 3 inclusions among the three
types of Al2O3·TiOx inclusions reaches the maximum, indicating that the relative Ti content
in Type 3 inclusions is at the largest level. Additionally, the Ti/Al ratio of Type 2 and Type
3 inclusions in the tundish sample of Heat 2 is larger than that in the tundish sample of
Heat 1. This indicates that the Ti content in Type 2 and Type 3 inclusions will increase
obviously when the molten steel encounters serious reoxidation.
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3.3. Formation Evolution of Inclusions

Most research studies in this field have focused on the formation evolution of Al2O3
inclusions created in the laboratory through small furnace trials [31–33]. However, the
formation of Al2O3 clusters in the industrial steelmaking process should be studied more
completely. It is well known that nucleation, growth and removal of inclusions during
the deoxidation process determine the size distribution of the inclusion population. The
formation and removal mechanisms of Al2O3 inclusions during RH refining and tundish
processes are depicted in Figure 12. Al2O3 inclusions below 1 µm can nucleate quickly
after starting deoxidation. At around 3 min after Al addition, these tiny Al2O3 particles in
molten steel grow, collide with each other and aggregate to form the large Al2O3 cluster as
shown in Figure 7 (RH-1).
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During the pure circulation period after Ti addition, many large-sized Al2O3 inclusions
have been removed, and some small-sized Al2O3 clusters still exist in molten steel, as shown
in Figure 7 (RH-2 and RH-3). When the slag oxidability is relatively low with the weak
reoxidation process during the holding process, the cleanliness of molten steel will not
deteriorate, and most of the Al2O3 inclusions form single inclusion particles, as shown in
the tundish sample of Figure 7a. Nevertheless, when the unstable oxide contents (FeO,
MnO, SiO2) in the ladle slag are large and the holding time is also relatively long, the molten
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steel will undergo serious reoxidation and the cleanliness of molten steel will deteriorate.
There are many small-sized Al2O3 inclusions formed by the reoxidation process, so it can
be seen in Figure 7b that there are still some Al2O3 clusters in the tundish sample.

The mechanism of the reoxidation process of molten steel by the top slag during
the holding stage is shown in Figure 13. When the unstable oxide contents (FeO, MnO,
SiO2) in the top slag are at a high level, the oxygen can transfer continuously into molten
steel at the steel/slag interface. Thus, the [Al] in molten steel combines with the oxygen
at the steel/slag interface to form Al2O3 inclusions, according to Reaction (R1). In the
meantime, the [Al] and [Ti] in molten steel may also react with the oxygen at the steel/slag
interface, resulting in the formation of Al2O3·TiOx inclusions, based on Reaction (R2). The
morphologies of Al2O3·TiOx inclusions formed by the reoxidation process are mainly the
Type 1 and Type 2 inclusions as shown in Figure 8. The number of Type 3 Al2O3·TiOx
inclusions is relatively low as described in Figure 10, and the formation conditions are
fairly limited during the reoxidation process, which will be explained in detail below. In
addition, the formation of TiOx inclusions is possible at the steel/slag interface based on
Reaction (R3).

2[Al] + 3[O]∗ = Al2O3 (R1)

2[Al] + [Ti] + (x + 3)[O]∗ = Al2O3 · TiOx (R2)

[Ti] + x[O]∗ = TiOx (R3)
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Figure 13. Mechanism of the reoxidation process of molten steel by the top slag during the hold-
ing stage.

Many scholars [23–30] have studied the formation mechanism of Al2O3·TiOx in-
clusions, and their studies are good for analyzing the formation mechanisms of vari-
ous Al2O3·TiOx inclusions. The schematic of the process is depicted in Figure 14. The
Al2O3·TiOx inclusions formed by mechanisms I and II usually exist in the melt away from
the steel/steel interface. After Ti feeding into molten steel, the formation of a local high
[Ti] region provides the possibility of generation of Al-Ti-O or TiOx inclusions based on
Reactions (R4) and (R5). The reaction area between the high [Ti] region and the inclusion
surface determines the final morphology of Al2O3·TiOx inclusions. When only part of the
area around Al2O3 inclusions is a high [Ti] region, the Al2O3 inclusion is only partially
reduced by [Ti] with time, thus forming the Type 1 inclusions in Figure 8a–d, and the
formation mechanism is depicted in Figure 14I.
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When the Al2O3 inclusion is completely covered by the high [Ti] region, the Al2O3
inclusion will gradually be reduced from the outside to the inside, thus forming the Type 2
inclusions as shown in Figure 8e–h. The formation mechanism of the inclusions is depicted
in Figure 14II. After that, with the progress of reduction of Al2O3, a low [Ti] region around
the inclusion exists. Thus, the Al2O3·TiOx inclusion may transfer to Al2O3 from the surface
to the inner part of the inclusion according to Reactions (R4) and (R5). As a result, the
inclusion with an Al-Ti-O core surrounded by a Al2O3 layer forms finally, as shown in
Figure 8e,h.

xAl2O3 + 3[Ti] = 3TiOx + 2x[Al] (R4)

5Al2O3 + 3[Ti] = 3Al2TiO5 + 4[Al] (R5)

4[Al] + 3Al2TiO5 = 3[Ti] + 5Al2O3 (R6)

2x[Al] + 3TiOx = 3[Ti] + xAl2O3 (R7)

The third type of Al2O3·TiOx inclusions mainly exists in the tundish process. Previous
studies [14,20,28,30] have pointed out that these inclusions are closely related to the reoxi-
dation of molten steel, and the top slag with strong oxidability in this steel plant during
the smelting process also provides conditions for the formation of such inclusions. The
formation mechanism of the inclusions is depicted in Figure 14III. The ladle or tundish
slag with high unstable oxide contents keeps transferring oxygen into molten steel, and
the oxygen reacts with [Al] and [Ti] in molten steel to form the Al-Ti-O inclusion on the
surface of the irregular Al2O3 inclusions according to Reaction (R2). Finally, the spherical
inclusions partially or completely wrapped by the Al-Ti-O inclusion on the surface of pure
Al2O3 inclusions appear in molten steel. Because of the continuous reoxidation process,
newly formed Al-Ti-O inclusions accumulate constantly on the surface, so the size is also
larger than the previous two types.

Interestingly, these irregular Al2O3 inclusions in Type 3 inclusions are usually larger
in size as shown in Figure 8i–l, and they are unlikely to be generated from the reoxida-
tion process. It is more likely that the Al2O3 inclusions accumulate and grow in the melt,
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then float up to the steel/slag interface and finally become the nucleation core of Type 3
inclusions. However, the number of Type 3 inclusions is relatively small, indicating that
most of the mature Al2O3 inclusions have been absorbed by the top slag. According to
the above analysis results, the number of Al2O3 inclusions formed by the reoxidation is
significantly larger than that of Al2O3·TiOx inclusions formed by the reoxidation. Combin-
ing Figure 13 with Figure 14, the Al2O3·TiOx inclusions can not only form directly at the
steel/slag interface, but also there is an indirect way of forming Al2O3·TiOx inclusions in
the case of serious reoxidation of molten steel. Specifically, the Al2O3 inclusions formed by
the reoxidation form at the steel/slag interface firstly, and then these new Al2O3 particles
scatter in the melt. Eventually, these Al2O3 particles may be transferred into Al2O3·TiOx
inclusions under the action of the high [Ti] region.

The equilibrium phase diagram for the Fe-Al-Ti-O system at 1873 K was calculated
by using Factsage 7.2 with the FactPS, FToxid and FSstel databases in September 2020,
as depicted in Figure 15. The black dot in Figure 15 represents the IF steel composition
in the current work, indicating that Al2O3 is the only thermodynamically stable phase
under the experimental conditions. From the figure, it can be seen that different types
of Al-Ti-O inclusions have various modification mechanisms. The Type 1 and Type 2 of
Al-Ti-O inclusions can be formed by the increase in the local [Ti] concentration, and the red
solid arrow can represent the formation mechanisms of I and II in Figure 14. Meanwhile,
the reoxidation of molten steel by the ladle or tundish slag leads to an increase in the
dissolved oxygen and total oxygen in molten steel, and thus it is possible to generate
directly or indirectly three types of Al-Ti-O inclusions, as presented by the blue solid
arrow in Figure 15. In addition, with the uniformity of the molten steel composition, the
Al-Ti-O inclusion may eventually be partially or fully turned into the Al2O3 inclusion by
Al reducing, as shown by the green dashed arrow in Figure 15.
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3.4. Influence of Process Parameters on the Cleanliness of Molten Steel

The secondary refining process is considered to be the main place for the removal of
inclusions in molten steel, and the percentage of inclusions removed accounts for more
than 70% [34]. Recently, to improve the cleanliness of molten steel, reducing the number of
endogenous inclusions, improving the removal efficiency of inclusions and lessening the
external inclusions caused by the reoxidation are dominant ways during the RH refining
process. For this reason, studying the influence of relevant process parameters on the
removal efficiency of inclusions is vital to improve the quality of the products.
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The [O] content in molten steel before Al deoxidation is a key parameter that de-
termines the amount of Al added and the number of inclusions in molten steel [15,34].
Figure 16 shows the relationship between the number of inclusions after RH and [O] content
in molten steel before Al deoxidation. As shown in the figure, with the increase in the [O]
content in molten steel, the number of inclusions in molten steel after RH tends to increase,
and the cleanliness of molten steel becomes worse.
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According to the research of Wakoh [35], all dissolved oxygen was consumed for
forming spherical inclusions, and the relationship between the oxygen content in molten
steel and the number of inclusions in molten steel was obtained, as shown in Equation (3).

4
3

πr3ρiNi(
3MO
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) = (

CO
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where r is the radius of inclusion, m; ρi is the density of inclusion, kg·m−3; the density of
Al2O3 inclusions is taken as 3.97 × 103 kg·m−3 [27]; MO is the molar weight of oxygen,
g·mol−1; Mi is the molar weight of inclusion, g·mol−1; CO is the concentration of oxygen,
10−6; and WFe is the total weight of molten steel, kg.

The relationship between the number of Al2O3 inclusions and [O] content in molten
steel before Al deoxidation is depicted in Figure 17. From the figure, it can be seen that
the number of Al2O3 particles formed in molten steel increases gradually with the gradual
increase in dissolved oxygen in molten steel before Al deoxidation, and the increased
amplitude is more obvious with the decreased radius of Al2O3 inclusions. In this paper,
the average diameter of Al2O3 inclusions in these samples at 3 min after Al addition is only
about 2 µm. Therefore, reducing the dissolved oxygen content before Al deoxidation has a
significant effect on reducing the number of Al2O3 inclusions. Combining Figure 16 with
Figure 17, it can be seen that reducing the dissolved oxygen content before Al deoxidation
is beneficial to improve the cleanliness of molten steel.
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Figure 17. Relationship between the number of Al2O3 inclusions and [O] content in molten steel
before Al deoxidation.

Figure 18 shows changes in the ND of inclusions, T.Fe content after RH and holding
time in different heats. When the T.Fe content is above 15% and the holding time is
more than 30 min, the ND of inclusions in molten steel is more than 9 mm−2. However,
when the holding time is less than 30 min or the T.Fe content of slag is below 15%, the
number of inclusions in molten steel is relatively low. Therefore, it is beneficial to weaken
the reoxidation process of molten steel and improve the cleanliness of molten steel by
minimizing the holding time and reducing the oxidability of slag after RH.
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4. Conclusions

Considering Ti-bearing IF steel produced via the BOF–LF–RH–CC process, the evo-
lution of inclusions in molten steel during RH refining to tundish was analyzed through
a systematic sampling experiment, and the influence of reoxidation process and process
parameters on the cleanliness of molten steel was also studied. The results are summarized
as follows:

(1) During RH treatment, the ND and AF of Al2O3 and Al2O3·TiOx inclusions decrease
gradually. In the tundish samples, when the ND and AF of Al2O3 and Al2O3·TiOx in-
clusions especially from 1 to 2 µm increase significantly, the mean size of all inclusions
shows a decreasing trend.

(2) The deteriorated cleanliness of molten steel is closely related to the serious reoxidation
of molten steel caused by the slag with high oxidability during the holding process.
Meanwhile, the number of clusters counted by the location maps shows basically the
same trend with the ND and AF of inclusions.

(3) During the whole steelmaking process, Type 1 and Type 2 inclusions are the main two
types of titanium-containing inclusions. In the tundish sample with serious reoxidation,
there are still some small-sized Al2O3 clusters, and the number of Type 1 and Type 2
inclusions and Ti content of Type 2 and Type 3 inclusions will increase obviously.

(4) In the case of serious reoxidation, Al2O3·TiOx inclusions can not only form directly
at the steel/slag interface, but also form indirectly: Al2O3 particles generated from
reoxidation may be transferred into Al2O3·TiOx inclusions under the action of a local
high [Ti] region.

(5) It is beneficial to weaken the reoxidation process and improve the cleanliness of
molten steel by reducing the oxygen content in molten steel before Al deoxidation,
minimizing the holding time and reducing the slag oxidability after RH.
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