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Abstract: The fluxgate magnetometer has the advantages of having a small volume and low power
consumption and being light weight and is commonly used to detect weak magnetic targets, including
ferrous metals, unexploded bombs (UXOs), and underground corrosion pipelines. However, the
detection accuracy of the fluxgate magnetometer is affected by its own error. To obtain more accurate
detection data, the sensor must be error-corrected before application. Previous researchers easily
fell into the local minimum when solving error parameters. In this paper, the error correction
method was proposed to tackle the problem, which combines the Dragonfly algorithm (DA) and
the Levenberg–Marquardt (LM) algorithm, thereby solving the problem of the LM algorithm and
improving the accuracy of solving error parameters. Firstly, we analyzed the error sources of the
three-axis magnetic sensor and established the error model. Then, the error parameters were solved
by using the LM algorithm and DA–LM algorithm, respectively. In addition, by comparing the results
of the two methods, we found that the error parameters solved by using the DA–LM algorithm
were more accurate. Finally, the magnetic measurement data were corrected. The simulation results
show that the DA–LM algorithm can accurately solve the error parameters of the triaxial magnetic
sensor, proving the effectiveness of the proposed algorithm. The experimental results show that the
difference between the corrected and the ideal total value was decreased from 300 nT to 5 nT, which
further verified the effectiveness of the DA–LM algorithm.

Keywords: three-axis magnetic sensor; weak magnetic target; DA–LM algorithm; parameter
estimation; error correction

1. Introduction

The Earth’s magnetic field is its inherent physical field. Although it cannot be seen or
felt, it is always there and closely related to human life [1].Magnetic objects or ferromagnetic
materials magnetized by the Earth’s magnetic field and moving conductors cutting through
the Earth’s magnetic field generate the eddy current magnetic field and cause disturbances
to the Earth’s magnetic field, which is called magnetic anomalies. Magnetic anomaly
detection can be used to detect and locate magnetic targets based on magnetic anomaly,
which is a passive detection method based on basic physical phenomena. It is widely used
in military antisubmarine [2], geological prospecting [3], unexploded ordnance detection [4],
underwater target detection [5], space magnetic field detection [6], and medical endoscopic
positioning [7] due to its excellent stability and versatility, which has extremely high
military significance and civilian value. A fluxgate magnetometer is the most widely-used
magnetic sensor at present, which can be used to measure a slowly moving magnetic field
with good robustness and high resolution [8,9]. The three-axis fluxgate sensor can be used
to obtain the total and the component information of the magnetic field simultaneously.
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Due to the limitation of processing and installation craft level, the three axes of the sensor
are not strictly orthogonal; the sensitivity of each axis is not exactly the same, and they
all have zero drift. Therefore, the measured values of the total and component magnetic
fields of the sensor are greatly different from the actual values. To obtain high-precision
measurements, it is necessary to correct the sensor before its application.

There are two common error correction methods for magnetic sensors, that is, the
vector correction and the scalar correction. The former is first to compare with the known
magnetic field vector [10,11] and then makes correction to the measured data. However,
it is difficult to obtain high-precision magnetic field vector in practical applications. The
scalar correction does not require a known magnetic field vector, which is performed
with a fixed value of the total magnetic field in a constant magnetic field as a constraint
condition. The scalar correction method has attracted the attention of many scholars due
to its advantage of easy operation in the actual environment. In [12,13], the least square
method was proposed to estimate the parameters that were then brought into the error
parameter model for correction. It was found that the error of the measured data was
significantly suppressed. In [14], the method of leastsquares combined with winding the
character “8” was proposed for rapid correction, which has the advantages of a small
amount of data required, simple correction process, and good correction effect. In [15], the
use of a genetic algorithm was proposed to solve the parameters in the error model, and
good results were achieved.

Although the above algorithms were able to achieve good correction effects, the least
square method for solving parameters in [12,13] had a great impact on the parameter
compensation of abnormal points in the sensor sampling process. The angle coverage of the
method of least squares combined with “8”, as shown in literature [14], must be above 1.3
to obtain more accurate correction parameters. The parameters in the error model solved by
using genetic algorithm in [15] are only in the simulation stage at present, and the setting
of the geomagnetic field range value of the algorithm has a great influence on parameter
estimation. Aiming at the shortcomings of the above error correction algorithms, this
paper proposes a correction method combining the DA algorithm and the LM algorithm.
The Dragonfly algorithm (DA) is a kind of bionics algorithm, which simulates the static
and dynamic behavior of dragonflies in nature [16]. The Levenberg–Marquardt algorithm
(LM) is an optimization method used to solve nonlinear least squares problems. It is
insensitive to the overparameterization problems and can effectively deal with redundant
parameters [17].

This paper is organized as follows. Section 1 analyzes the error sources of three-axis
sensor and gives the error correction objective function. Section 2 introduces the basic
principles of the DA algorithm and the LM algorithm and the steps of their combination.
In Section 3, the simulation results show that the algorithm is accurate in determining the
error parameters and has a good correction effect on the total magnetic field and the three
components of the magnetic field. In Section 4, experimental data are used to verify the
correction effect of the algorithm. Finally, conclusions are discussed in Section 5.

2. The Analysis of Error Model

Currently, the three-axis magnetic sensor is widely used due to its ability to obtain three
components of the magnetic field and the total magnetic field simultaneously. However,
due to the limitation of processing and installation technology, no axis of the three-axis
sensor is strictly orthogonal, and the sensitivity is not exactly the same. In addition, each
axis has zero drift [18]. Therefore, the error between the measured value and the actual one
is large.

A three-axis magnetic sensor is composed of three probes that are perpendicular to
each other, but the processing and installation technology cannot guarantee the complete
orthogonality of the probes. As shown in Figure 1, O−XYZ represents the ideal coordinate
system of the three-axis magnetic sensor, and O− X′Y′Z′ stands for the actual coordinate
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system. To simplify the calculation, it is assumed that the Z axis recombines with the Z′

axis, and Z−O−Y is coplanar with Z′ −O−Y′.
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Figure 1. Nonorthogonal schematic diagram of three-axis magnetic sensor.

Where α refers to the angle between the y axis and the y′ axis, β represents the angle
between the x′ axis and the xoy plan, and γ stands for the angle between the projection of
the x′ axis in the xoy plan and the x axis. If only the nonorthogonal error is considered,
then

Hm = AHe =

 cos β cos γ cos β sin γ sin β
0 cos α sin α
0 0 1

He (1)

where Hm =

 Hmx
Hmy
Hmz

 refers to the measured value of the three-axis magnetic sensor,

He =

 Hex
Hey
Hez

 represents the actual value of the three-axis magnetic sensor, and A stands

for the nonorthogonal error matrix.
The magnetic core of the three-axis magnetic sensor is made of soft magnetic material

with high permeability and low coercivity, which reaches its saturation state under external
excitation that is then converted to the voltage value. After that, it collects the change in
the measured magnetic field. The sensor contains detector circuit, integral filter circuit, and
signal feedback circuit, etc. Different characteristics of electronic components in the circuit
lead to differences in the sensitivity of the three axes. If only the sensitivity factor error is
considered, then

Hm = LHe =

 Lx 0 0
0 Ly 0
0 0 Lz

He (2)
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where Lx refers to the sensitivity factor of the x axis, Ly stands for the sensitivity factor of
the y axis, Lz represents the sensitivity factor of the z axis, and L is the error matrix of the
sensitivity factor.

Ideally, the sensor output should be zero in an absolutely zero magnetic field. However,
the output is not zero because of the conversion zero drift of the signal processing circuit
inside the sensor. If only this error is considered, then

Hm = He + h0 (3)

where h0 =

 h0x
h0y
h0z

 refers to zero drift.

Considering the above three errors, the error model of the three-axis magnetic sensor
can be obtained as follows:

Hm = LAHe + h0 (4)

According to Equation (4), the comprehensive error calibration model of the three-axis
magnetic sensor can be obtained as follows:

He = A−1L−1(Hm − h0) (5)

Replacing the A−1L−1 by P, and A−1L−1h0 by Q, we can obtain:

He = PHm −Q (6)

Assumption P =

 m1 m2 m3
m4 m5 m6
m7 m8 m9

, Q =

 m10
m11
m12

, where



m1 = 1
Lx ·cos β·cos γ

m2 = − sin γ
Ly ·cos α·cos γ

m3 = −(cos α·sin β−cos β·sin α·sin γ)
Lz ·cos α·cos β·cos γ

m4 = 0

m5 = 1
Ly ·cos α

m6 = − sin α
Lz ·cos α

m7 = 0

m8 = 0

m9 = 1
Lz

m10 = m1 · hox + m2 · hoy + m3 · hoz

m11 = m4 · hox + m5 · hoy + m6 · hoz

m12 = m7 · hox + m8 · hoy + m9 · hoz

(7)

The total magnetic field is invariable when the three-axis magnetic sensor changes its
attitude in the uniform field. Therefore, the objective function can be expressed as

∧
y = min

N

∑
i=1

(
∣∣∣Hpredicte

∣∣∣2−∣∣∣Htheory

∣∣∣2 )2 (8)

where Hpredicte refers to the predicted magnetic field with 9 unknowns, and Htheory rep-
resents the ideal magnetic field. The 9 unknowns are calculated by using the DA–LM
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algorithm. After that, the parameters of the nonorthogonal angle, scale factor, and zero bias
are solved according to Equation (7). Finally, the error compensation process is completed.

3. Correction Algorithm
3.1. DA Algorithm

The DA algorithm is a bionics algorithm proposed in 2016 by Mirjalili, an Australian
scholar [16].The main idea comes from the static foraging behavior and dynamic migration
behavior of dragonflies in nature. In a static group, to search for other flying prey, the
dragonflies made up of small parts fly back and forth over a small area. The local motion
during flight and the temporary mutation in the flight path are the characteristics of static
groups. In dynamic groups, for a better living environment, large groups of dragonflies
fly long distances to migrate or fly in a common direction [19]. According to dragonfly
behavior, the algorithm can be divided into: separation, queuing, alliance, hunting for
prey, and avoiding natural enemies. The separation weight, alignment weight, cohesion
weight, prey weight factor, and natural enemy weight factor in the algorithm are used as
the behavior degrees of dragonflies to update their position. The algorithm can improve
the initial random parameters of a given problem and make it converge to the global
optimum [20].

The mathematical expression of the DA algorithm is expressed as follows:

∆Xt+1 = (s · Si + a · Ai + c · Ci + f · Fi + e · Ei) + ω′ · ∆Xt (9)

where s refers to the separation weight, a represents the alignment weight, c denotes
cohesion weight, f stands for the prey weight factor, e is the natural enemy weight factor,
t refers to the current iteration number, ω′ represents the inertia weight, Si refers to the
position vector of the separated behavior between the ith dragonfly, Ai represents the
position vector of the queuing behavior of the ith dragonfly, Ci denotes the position vector
of the alignment behavior of the ith dragonfly, Fi represents the position vector of the
hunting behavior of the ith dragonfly, and Ei is the position vector of the avoidance
behavior of the ith dragonfly.

In nature, dragonflies are in motion most of the time for survival. Therefore, their
positions have to be updated in real time. Therefore, we obtain:

Xt+1 = Xt + ∆Xt+1 (10)

3.2. LM Algorithm

The LM is a modification of the Newton algorithm, which can be used to solve the
problems that the Newton algorithm cannot guarantee, namely, that the search direction is
always downward, and the Hessian matrix is always positively definite. The main idea
of the Newton method is to use the first and second derivatives of iteration at Point xk
to make a quadratic approximation to the objective function. Then, using the minimum
point as the new iterative point, the process is repeated until the approximate minimum
point satisfying the requirements of accuracy is obtained. When the objective function
f : Rn → R is second-order continuously differentiable, during the Taylor expansion of

the function f at point xk, the terms are ignored more than three times, and the quadratic
approximation function can be obtained as follows:

f (x) ≈ f (xk ) + (x− xk)g(xk) +
1
2

H(xk)(x− xk)
2 (11)

where g(xk) = ∇ f (xk) represents the first derivative of function f at point xk, and
H(xk) = ∇2 f (xk) stands for the second derivative of function f at point xk. If the first-order
necessary condition of the local minimum is applied here, then we obtain:

∇ f (x) = g(xk) + H(xk)(x− xk) = 0 (12)
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If H(xk) > 0, the minimum of function of f is

xk+1 = xk − H(xk)
−1g(xk) (13)

which is the iterative formula of the Newton method. In case of univariate, if the second
derivative of the function f ′′ < 0, the Newton method cannot converge to a minimum.
While in case of multivariate, if the Hessian matrix H(xk) of the objective function is not
positively definite, the search direction determined by using the Newton method is not
necessarily going to be the direction in which the value of the objective function decreases.
To solve this problem, the damping coefficient µ ≥ 0 is introduced, then the revised iteration
formula is expressed as follows:

xk+1 = xk − (H(xk) + µk I)−1g(xk) (14)

As long as µ is large enough, the search direction dk = −(H(xk) + µk I)−1g(xk) is
ensured to be descending. Equation (14) is the iterative equation of the LM algorithm.

The goals and steps of the Algorithm 1: LM algorithm are as follows:

Algorithm 1. LM algorithm.

Goals : based on the function relationship x = f (p), given the function f and noisy
observation vector x, p can be estimated.

Step 1 : select the initial point p0 and termination control constant ε and calculate
ε0 =||x− f (p0)||, k := 0, µ0 = 10−3, and v = 10.

Step 2 : calculate the Jacobi matrix and Nk = Jk Jk + µk I and construct incremental
normal equations Nk•dk = JT

k εk.
Step 3 : obtain the dk from the incremental normal equations.

(1) If ||x− f (pk + dk)||< εk , then let pk+1 = pk + dk if ||dk||< ε , stop iteration, and
output the result. Otherwise, go back to Step 2.

(2) If ||x− f (pk + dk)||≥ εk , then let µk+1 = µkv, obtain the dk again, and go back to
Step 3 (1).

3.3. The Combination of DA and LM Algorithm

In solving the error parameters, we found that the number of least squares solutions
were limited, while the LM algorithm can be used to solve multiple parameters simulta-
neously. However, the disadvantage of the LM algorithm is that it may fall into the local
minima if the initial value is not appropriately selected, which has a serious impact on the
accuracy of problem solving. To overcome this drawback, we used a global optimization
algorithm to find the suitable initial value for the LM algorithm. As a global optimization
algorithm, the DA algorithmhas the advantages of its strong global optimization ability.
However, it has low accuracy in local optimization. To tackle this problem, this paper
proposes to combine the DA algorithm and the LM algorithm. Firstly, this paper usedthe
DA algorithm’s global optimization ability to find the global minimum point. Then, it took
the output parameter value of the DA algorithm as the initial value of the LM algorithm
for local optimization. The Figure 2 shows the flow chart of DA–LM algorithm.
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4. Simulated Analysis

Matlab is used for data simulation to verify the correctness and effectiveness of the
proposed method based on the DA–LM algorithm in this paper. In the simulation analysis,
the total magnetic field was set as 50,000 nT. Using the random function of Matlab to
generate 96 groups of different angles, the rotation of the sensor was simulated, and then,
the 96 groups of the ideal three-axis sensor rotation data H were obtained. The measured
value was simulated by using Equation (4). The error parameter of the three-axis sensor is
shown by the preset value in Table 1. The H1 three components of the magnetic field and
the H1 total magnetic field are shown in Figure 3. The abscissa axis indicates the sampling
points. The ordinate axes of (a), (b), and (c) indicate the components of the measured
values H1 in x, y, and z, and the vertical axis of (d) represents the total magnetic field of the
measurement H1. In addition, the red line refers to the ideal total magnetic field.
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Table 1. Comparison of preset and estimate parameters.

Error Term Preset Value LM Estimated Value DA–LM Estimated
Value

Nonorthogonal
/(◦)

α 0.000622 0.031693 0.000622
β 0.000332 −0.014156 0.000332
γ −0.000076 0.035489 −0.000076

Scale Factor
Lx 1.002685 1.002685 1.002685
Ly 1.002853 1.002853 1.002853
Lz 1.002964 1.002964 1.002964

Zero Offset
/(nT)

hx −23.210025 −23.210029 −23.2100249999997
hy −44.730353 −44.744776 −44.7303529999983
hz −170.944506 −170.962902 −170.9445060000002
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By substituting, the ideal magnetic field and H1 into the objective function (Equation (8))
and using the LM and DA–LM respectively, the comprehensive parameters P and Q were
solved. According to the relations among P, Q and the error parameters of the three-axis
magnetic sensor, the error parameters were inversely solved. Table 1 shows the comparison
between the error parameters obtained by inverse solution and the preset values. Finally,
the magnetic field was corrected. The errors of the components and total magnetic field
before and after correction are shown in Figure 4 where the abscissa axis represents the
sampling point, and the ordinate axes of (a), (b), (c), and (d) stand for the errors of the
x-axis, y-axis, z-axis, and the total magnetic field, respectively. The black lines show the
errors before correction. And the blue lines represent the errors after correction.

Seen from Figure 4, the errors of the x-axis, y-axis, z-axis, and the total magnetic field
between the measured and ideal values are 200 nT, 200 nT, 350 nT, and 350 nT, respectively.
After the DA–LM algorithm correction, all the errors were reduced to 0 nT.The parameter
estimates are shown in Table 1.

It can be seen from the comparison among the preset parameter values, LM estimate
values, and DA–LM estimate values in Table 1 that the LM algorithm alone cannot ac-
curately estimate the error parameters, especially when the nonorthogonal angle is very
small. The reason is that the initial value is given empirically when the LM algorithm is
used alone. If the initial value is given improperly, the minima will be trapped in the local
minimum. The error parameters calculated by using the DA–LM algorithm were almost
the same as the preset value, with the error accuracy of estimation of 10−6 magnitude.
The simulation results show that the global optimization ability of the DA algorithm can
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help the LM algorithm find the most suitable initial value and effectively prevent the LM
algorithm from falling into the local minimum.

Metals 2022, 12, x FOR PEER REVIEW 8 of 13 
 

 

is shown by the preset value in Table 1. The H1 three components of the magnetic field 
and the H1 total magnetic field are shown in Figure 3. The abscissa axis indicates the 
sampling points. The ordinate axes of (a), (b), and (c) indicate the components of the 
measured values H1 in x, y, and z, and the vertical axis of (d) represents the total mag-
netic field of the measurement H1. In addition, the red line refers to the ideal total mag-
netic field. 

  

Figure 3. The components and total magnetic field of H1 before correction. (a) The component of 
the measured values of x–axis; (b) The component of the measured values of y–axis; (c) The com-
ponent of the measured values of z–axis; (d) The total magnetic field of measured values and ideal 
values. 

By substituting, the ideal magnetic field and H1 into the objective function (Equa-
tion (8)) and using the LM and DA–LM respectively, the comprehensive parameters P 
and Q were solved. According to the relations among P, Q and the error parameters of 
the three-axis magnetic sensor, the error parameters were inversely solved. Table 1 shows 
the comparison between the error parameters obtained by inverse solution and the preset 
values. Finally, the magnetic field was corrected. The errors of the components and total 
magnetic field before and after correction are shown in Figure 4 where the abscissa axis 
represents the sampling point, and the ordinate axes of (a), (b), (c), and (d) stand for the 
errors of the x-axis, y-axis, z-axis, and the total magnetic field, respectively. The black 
lines show the errors before correction. And the blue lines represent the errors after cor-
rection. 

  

Figure 4. The errors of components and total magnetic field before and after correction. (a) The 
errors of the x–axis; (b) The errors of the y–axis; (c) The errors of the z–axis; (d) The errors of 
measured total magnetic field before and after correction. 

Figure 4. The errors of components and total magnetic field before and after correction. (a) The errors
of the x-axis; (b) The errors of the y-axis; (c) The errors of the z-axis; (d) The errors of measured total
magnetic field before and after correction.

5. Experimental Verification

In addition to its own error, the sensor is also susceptible to many factors, for instance,
magnetic diurnal variation. To mitigate the influence of the magnetic diurnal variation on
the magnetic field, experiments were carried out after 12 p.m. The ideal total magnetic
field H was measured by using an optical pump magnetometer with high precision, as
shown in Figure 5. The actual measurement value H1 was obtained by using the three-axis
magnetometer MAG648. The experiment platform is as shown in Figure 6. In Figure 7,
the abscissa axis represents the sampling point of the measured data, and the ordinate
axis stands for the total value of the magnetic field. The red line refers to the ideal total
magnetic field modulus, while the black line shows the measurement total magnetic field
H1 before correction. The blue line refers to the total magnetic field after LM correction,
and the green line denotes the total magnetic field after DA–LM correction. It is obvious
that the DA–LM correction effect outperforms that of LM correction.
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In Figure 8, the abscissa axis refers to the sampling point, and the ordinate axis
represents the error between the total value measured data and the ideal total value. In
addition, the value is reduced from 300 nT to 5 nT and 20 nT after DA–LM and LM
correction, respectively. We drew a conclusion that the steering error was significantly
suppressed. The parameters shown in Table 2 were solved by using the DA–LM method
and LM method, respectively. Table 3 shows the comparison between the mean value and
the root mean square error. It can be seen from the Table that the mean value and root mean
square error were reduced after DA–LM correction.
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Table 2. The parameters obtained by calculation.

Error Term LM Estimated Value DA–LM Estimated Value

Nonorthogonal
α 0.002632 −0.000478
β −0.004717 −0.000390
γ 0.019320 −0.000028

Scale Factor
Lx 1.002880 1.002692
Ly 1.003050 1.002862
Lz 1.002985 1.002974

Zero Offset
hx −23.365514 −23.382624
hy −45.282038 −45.178011
hz −171.458722 −171.802028

Table 3. Comparison of statistical characteristics before and after DA–LM correction.

Evaluation Item RMS (nT/m) RMSE (nT/m)

Before Correction −131.807381 109.523401
After Correction 0.000247 2.285982

6. Conclusions

Geomagnetic error correction is the key to obtaining high-precision geomagnetic
information and the premise of magnetic anomaly location. Error correction has always
been the focus of research on magnetic measurement, and many correction algorithms have
been proposed under different application backgrounds. This paper analyzed the error
sources of magnetic sensors, proposed a method combing the DA algorithm and the LM
algorithm to iteratively solve the parameters in the error model, and finally completed the
error compensation. The following conclusions are drawn: (1) The method combining the
DA and LM algorithms can accurately calculate the error parameters, which solves the
problem that it may easily fall into the local minimum in the iterative process by using
the LM algorithm alone; (2) The simulation results show that the proposed method can
accurately estimate the error parameters and has a good correction effect on the components
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and total magnetic field, thereby proving the effectiveness of the proposed algorithm. It can
be seen from the experimental results that this method can estimate the error parameters of
sensors well, with the RMS value reduced from −131.807381 nT/m to 0.000247 nT/m and
the RMSE value from 109.523401 nT/m to 2.285982 nT/m. The experimental data were only
calibrated for the total magnetic field due to the unavailability of the ideal three-component
values with high accuracy. In the event the ideal three-component can be obtained, this
method can also be applied to three-component correction.
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