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Abstract: The deformation behavior of aluminum single crystals subjected to compression along the
[100] and [110] directions is numerically examined in terms of crystal plasticity. A constitutive model
taking into account slip geometry in face-centered cubic crystals is developed using experimental
data for the single-crystal samples with lateral sides coplanar to certain crystal planes. Two sets
of calculations are performed using ABAQUS/Explicit to examine the features of plastic strain
evolution in perfectly plastic and strain-hardened crystals. Special attention is given to the discussion
of mechanical aspects of crystal fragmentation. Several distinct deformation stages are revealed in
the calculations. In the first stage, narrow solitary fronts of plastic deformation are alternately formed
near the top or bottom surfaces and then propagate towards opposite ends to save the symmetry
of the crystal shape. The strain rate within the fronts is an order of magnitude higher than the
average strain rate. The first stage lasts longer in the strain-hardened crystals, eventually giving
way to an intermediate stage of multiple slips in different crystal parts. Finally, the crystal shape
becomes asymmetrical, but no pronounced macroscopic strain localization has been revealed at any
deformation stage. The second stage in perfectly plastic crystals relates to abrupt strain localization
within a through-thickness band-shaped region, accompanied by macroscale crystal fragmentation.
Stress analysis has shown that pure compression took place only in the first deformation stage. Once
the crystal shape has lost its symmetry, the compressive stress in some regions progressively decreases
to zero and eventually turns tensile.

Keywords: single crystal; aluminum; slip bands; strain localization; crystal plasticity; finite
element simulations

1. Introduction

Although most metallic materials have a polycrystalline structure, single-crystal re-
search plays a crucial role in understanding the basic deformation mechanisms operating at
different length scales. New knowledge of the inelastic deformation gives rise to the devel-
opment of physically based constitutive models, experimental methods, and, consequently,
physically sound deformation theories, which is of great importance for predicting the
deformation and fracture of real materials. Based on advanced experimental techniques,
modeling provides a bridge between the microstructure characterization, mechanical prop-
erties, and deformation response. It is highlighted that analyzing the strain-induced relief
with experimental techniques alone cannot provide us with an unambiguous interpretation
of shear patterns in the bulk of a single crystal [1]. Moreover, the contributions of individual
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factors that are difficult to evaluate experimentally can be analyzed numerically using
model representations.

The mechanical behavior of a single crystal lays the groundwork for the numerical
description of the co-deformation of multiple microstructure elements in a polycrystalline
aggregate. Several basic theories proposed to quantitatively describe the elasto-plastic
deformation of polycrystalline metals were formulated based on the generalization of a
large number of experiments on single crystals [2–6]. The most common strictly crystallo-
graphic schemes were proposed by Sachs [4], Taylor [5], and Bishop and Hill [6]. The Sachs
model assumes that each grain of a polycrystal is found in the same stress state, whereas
Taylor–Bishop–Hill theories follow this assumption in a somewhat opposite manner, treat-
ing plasticity from strain homogeneity. It is worth noting, however, that due to the rough
estimation of the overall material properties, these models are not reliable for complex
nonlinear structures despite the modifications proposed in many of them [7–9].

Two-dimensional studies of the tensile behavior of a single crystal were pioneered
by Peirce et al. [10]; they performed the first crystal plasticity (CP) finite element (FE)
simulations, while Becker et al. [11] were the first to employ the CP finite element method
(FEM) in 3D, considering 12 slip systems of a face-centered cubic (FCC) single crystal
subjected to channel-die deformation. Now, a number of plasticity models are available
ranging from simple Sachs and Taylor models and their modifications [2–9] to multiscale
approaches, involving, e.g., an atomistically informed flow rule incorporated into a CP
constitutive model [12–14]. These models enable research on the inelastic deformation
mechanisms and processes that are hard to see in the experiments.

Numerical investigations on single crystals under loading may be divided into two
groups. A large group of studies aims to calibrate material parameters and validate the
computational models employed for the analysis of loaded polycrystals [15–18]. Another
group develops new constitutive models and focuses on gaining valuable insights into
basic deformation mechanisms [9–14].

Senas [14] compared the static and dynamic properties of screw dislocations for tung-
sten, undertaking extensive atomistic simulations, and concluded that a purely static
consideration of the dislocation core was insufficient for predicting the dislocation dy-
namics. As the dislocation mobility functions obtained were found to be unsuitable in a
larger-scale CP model due to high strain rates commonly found in molecular dynamics
techniques, the constitutive information was obtained from kinetic Monte Carlo simulations
or analytically. The multiscale approach proposed by Cereceda et al. [12] incorporates
a comprehensive treatment of non-Schmid effects (twinning/anti-twinning asymmetry
plus the effects due to non-glide stress components), a flow rule relying on the thermally
activated screw dislocation mobility, and the usage of interatomic potentials for comput-
ing free parameters in a standard rate-dependent finite-deformation non-associated CP
model. Forest and Rubin [19] have offered a new rate-independent CP model incorporating
multi-criterion formulation, exact strain rate independence, the absence of a consistency
condition, and smooth elasto-plastic transition. They have validated the model, simulating
the cyclic behavior of pure copper and nickel-based superalloy single crystals.

Considerable attention has been paid to FCC single crystals. Roters et al. [20] examined
strain localization in an Al single crystal under simple shear experimentally and numer-
ically. Khan et al. [21] studied the strain rate and orientation effects on the deformation
response of aluminum single crystals under uniaxial compression using a one-element
CPFEM. Employing an elastoviscoplastic CPFE model, Trusov et al. [22] demonstrated
that a homogeneous single crystal subjected to uniaxial compression was divided into
subvolumes characterized by different plastic shear rate intensities and lattice orientations.
Considering 3D single crystals of different initial orientations, Schacht et al. [23] showed
that the growth and deformation of voids were closely related to crystal orientation. Re-
cently, Wang et al. [24] simulated substructure formation in a multi-pass rolled aluminum
single crystal at the micro- and macroscales using a submodeling technique.



Metals 2022, 12, 397 3 of 21

To a large extent, the renewed interest in this kind of research is kindled by the de-
velopment of advanced manufacturing techniques producing metallic and/or composite
components characterized by a complex hierarchical microstructure. For instance, ad-
ditively manufactured aluminum alloys are characterized by much more pronounced
structural inhomogeneity and anisotropy of the physical and mechanical properties than
the traditional cast alloys of the same composition [25,26]. Friction stir welding creates
different microstructural zones in a processed material, including a quasi-uniform distri-
bution of grains in the base metal and a complex texture in the weld nugget and in the
adjacent regions with characteristic interfaces between intermixing zones [27,28]. Another
example is provided by surface-modified metals where a specific microstructure formed in
the surface layers suppresses or intensifies certain deformation mechanisms operating at
the micro- and mesoscales and thus affects the overall material response [29]. As a matter
of fact, in all cases considered, we have a new composite material whose deformation
behavior is controlled by its complex hierarchical microstructure. An accurate prediction of
the deformation behavior of advanced materials requires incorporating the deformation
mechanisms developing at low scales. In this context, there is stringent demand for experi-
mental and numerical studies of single crystals, which are elementary structural units of
most polycrystalline metals.

While extensive numerical data on FCC single crystals have been attained so far,
there are still issues that have not been appropriately addressed in the simulations. Of
particular interest are coupled effects of crystal orientation and strain hardening on the
evolution of inhomogeneous stress and strain fields resulting in crystal fragmentation
at micro- and macroscales. CPFEM analysis is a powerful tool to gain this kind of data,
although at high computational costs. Researchers commonly have to find a compromise
between the high mesh resolution and sufficiently small strain increments to reproduce the
fragmentation process with reasonable details. The problem is even more challenging for a
simultaneous description of micro- and macroscale deformation [24]. An effective way to
reduce computational costs is the simulation of quasistatic deformation in terms of explicit
dynamics. Each increment of the explicit calculation is computationally much cheaper than
that of the implicit solution. Another valuable opportunity the dynamic simulations offer
is reproducing the crystal deformation with a high temporal resolution.

In this contribution, we employ the dynamic approach to investigate the fragmentation
of aluminum single crystals under compression. The CPFEM calculations are performed
for four specific crystal orientations with the compression applied along the [001] or [110]
directions similarly to the experiments. The experiments on aluminum single crystals
providing the background for numerical modeling are reviewed in Section 2. The CPFE
models and their numerical implementation are discussed in Section 3. Section 4 is orga-
nized into two subsections where calculation results for aluminum single crystals with
and without strain hardening are presented. Along with an experimentally based model
of a strain-hardened crystal realistically reproducing the deformation behavior, a perfect
plasticity model is used to artificially enforce plastic strain localization. The comparison
of the two models enables separating the strain-hardening effects on the development of
plastic deformation, which cannot be attained experimentally. Finally, the stress analysis
related to crystal fragmentation is presented in Section 5.

2. Experimental

Bryhni Dæhli et al. [30] highlighted the inherent anisotropy of single crystals due to
the discrete nature of the plastic slip. The extensive literature reveals a tendency of loaded
single crystals towards strain localization and fragmentation [10,11,17,20,22,24,31–36]. The
former is related to the crystal’s ability to accumulate slip in narrow band-like zones whose
orientation is independent of the crystal lattice orientation [10,11,36–40]. This kind of plastic
instability referred to as non-crystallographic shear banding is particularly pronounced in
FCC crystals with low stacking fault energy [39,40]. The crystal fragmentation is related to
the tendency of plastic deformation in different regions of an initially homogeneous crystal
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to proceed in different ways, resulting in the formation of specific zones with different sets
of active slip systems. This phenomenon is most clearly observed in single crystals with
relatively high stacking fault energy under compressive loading [24,31–34,41]. Basson and
Driver [42] and Petryk and Kursa [43] distinguished deformation banding as a specific
mode of single-crystal deformation. In contrast to localized shear bands, the deformation
bands covered the entire crystal, with the crystal lattice within the bands being rotated
relative to the rest of the material.

Numerous experimental data on aluminum single crystals under compression are
presented in a series of publications [11,21,31,33,34,37,41,42,44–46]. Let us briefly review the
experimental results taken as a basis for constructing the numerical model; the experimental
procedure is detailed elsewhere [31–34].

Aluminum single crystals were grown using the Bridgeman method. Their orienta-
tions were controlled by backscattering patterns to the accuracy of 2 degrees on an IRIS-3
XRD instrument (Moscow, Russia). The samples of 3 × 3 × 6 mm3 were compressed at a
constant strain rate of 3·10−4 s−1 at room temperature on an Instron ElektroPuls E100000
universal testing machine (Instron, Norwood, MA, USA), with the compression axis aligned
with the [001] or [110] crystal directions found within the corners of the standard stere-
ographic triangle. Two sets of experiments were performed in the former case, where
the sample’s lateral faces were parallel to the (100) and (010) or (110) and

(
110

)
crystal

planes. In the latter case, the opposite lateral faces were coplanar to the
(
110

)
and (001)

planes or
(
112

)
and

(
111

)
planes, respectively. The four sets of experimental schemes

(hereinafter referred to as Orientations I–IV) are listed in Table 1 and shown schematically
in Figures 1a,d and 2a,d.

Figure 1a–c presents the results for a single crystal compressed along an axis of
symmetry of the fourth order, [001]; its lateral faces also have a cubic orientation (Ori-
entation I). Single crystals of FCC metals and alloys in the chosen orientation have the
highest symmetry among all possible combinations of orientations of the loading axis and
single-crystal faces.

Figure 1a shows the lines of intersection of the {111} slip planes with the surface of a
[001] single crystal with the {100} lateral faces. Analytically, eight of twelve slip systems
possessing the same Schmid factor equal to 0.408 should become simultaneously active
under the same stress. The other four slip systems possessing a zero Schmid factor remain
inactive under this kind of loading. In a single crystal with Orientation I, four close-packed
slip planes intersect with vertical faces along two mutually perpendicular lines coinciding
with close-packed slip directions. Due to the symmetry of the octahedral slip systems with
respect to the [001] loading axis, the intersection of the {111} planes with the lateral faces
of the sample should lead to the formation of the same sets of slip bands on all four faces,
with each set forming an angle of 45◦ with a corresponding face.

The corresponding experimental images of the deformation relief on the lateral faces
of the single crystal with Orientation I are presented in Figure 1b,c. A pack of slip bands
clearly observed in Figure 1b,c are typical elements of the strain-induced relief seen on the
two adjacent crystal faces. An analysis of slip band patterns on the free surfaces of the single
crystal compressed to a strain of 0.07 showed that, as expected, two sets of slip bands are
formed on each lateral face and are closely oriented to the intersections of the {111} planes
with the faces. However, a nonhomogeneous deformation breaks the expected symmetry
of the slip band patterns observed on the crystal sides. As can be seen from Figure 1b,c,
slip bands of one set are more often observed on the face. In other words, compression of a
highly symmetric single crystal is accompanied by strain asymmetry clearly observed in
the morphology of the deformation relief.

Orientation II is formed by the rotation of the crystal frame by 45◦ relative to the
loading axis (Figure 1d). As in the previous case, this orientation is characterized by eight
equally loaded octahedral slip systems. Figure 1d schematically shows the traces of the slip
planes on the {110} crystal surfaces of the [001] sample.
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Table 1. Single-crystal geometry.

Orientation Crystal Faces Loading Axis

I (100), (010) [001]
II (110),

(
110

)
[001]

III
(
110

)
, (001) [110]

IV
(
112

)
,
(
111

)
[110]

Figure 1. Single crystals with the {100} (a–c) and {110} (d,e) lateral faces compressed along the [001]
direction: crystallographic schemes of {111} slip planes and lines of their intersection with crystal
surface (a,d); optical images of crystal lateral faces coplanar with the {100} planes at a strain of 0.07
(b,c) and with the (110) plane at a strain of 0.05 (e).
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Figure 2. Single crystals with the
(
110

)
and (001) (a–c) or

(
112

)
and

(
111

)
lateral faces (d–f) com-

pressed along the [110] direction: Crystallographic schemes of slip planes and directions (a,d) and
optical images of the

(
110

)
(b), (001) (c),

(
112

)
(e),

(
111

)
(f) lateral faces at ε = 0.06.

If the deformation were homogeneous, one would expect the formation of uniformly
distributed horizontal and intersecting slip bands on the lateral faces of the sample. How-
ever, despite the high symmetry of the single crystal relative to the loading axis, one of the
two intersecting macroscopic bands of localized strain seen on the (110) lateral face is much
more pronounced than the other (Figure 1e) [32,34,41]. The former has a higher density of
slip bands than the latter, and both appear as macroscopic bands of localized deformation.
There is also a third set of slip bands localized predominantly in the top and bottom parts
of the {110} faces. Note that, once appeared, the strain asymmetry is clearly observed in
the morphology of strain-induced relief: One band of localized deformation hinders the
development of the others.

Figure 2a presents the crystallographic scheme for the single crystal with the [110]
compression axis and the

(
110

)
and (001) lateral faces (Orientation III). The corresponding
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deformation patterns formed on two adjacent lateral faces at a strain of ε = 0.06 are shown
in Figure 2b,c. Theoretical estimates suggest that the slip occurs on the equally loaded
(111) and

(
111

)
planes, both characterized by two active slip directions. As a result, the

deformation of a single crystal of this orientation is fully ensured by four active slip systems.
Following the schematics in Figure 2a, the active planes come up to the

(
110

)
lateral

faces of the sample in the form of intersecting slip bands tilted at an angle to the loading
axis, while the traces of the {111} planes on the (001) faces are horizontal. Thus, the slip
bands observed in the surface images in Figure 2b,c are mostly formed by slip on the (111)
and

(
111

)
slip planes. Theoretically, two equivalent systems of intersecting slip bands are

to form on the
(
110

)
faces. However, an asymmetric deformation pattern observed on the

crystal faces (Figure 2b) suggests that the slip systems at work in different crystal parts
are no longer equally loaded. Notably, two sets of slip bands originating near the top and
bottom corners intersect at an angle, bordering the weakly deformed regions in the vicinity
of punches. Logically, it is the stress concentration in the vicinity of the punches that causes
this kind of nonuniform deformation.

The optical images in Figure 2e,f show slip band patterns on the faces of a single
crystal with Orientation IV at ε = 0.06. Similar to Orientation III, there is macroscopic
fragmentation of the sample. The fragmentation morphology correlates with the theoretical
predictions of the slip evidence on the crystal surface (cf. Figure 2d,e). However, the
rotation of the crystal frame about the [110] axis to change the orientation from III to IV
results in a pronounced asymmetry of the slip band pattern. The asymmetric pattern is
well defined on the

(
112

)
crystal face, where the

(
111

)
slip planes emerge onto the surface

(Figure 2e). This allows us to conclude that the
(
111

) [
101

]
slip system is active, where the

slip direction is parallel to the
(
111

)
faces. Accordingly, no localized slip bands caused by

the slip in this slip system are identified on the
(
111

)
face (Figure 2f). In other words, in

those parts of the single crystal where the slip is active on one family of octahedral planes,
it is weak on the conjugate family. In the family of the (111) slip planes, slip predominantly
occurs on the (111)

[
101

]
slip system. The shear bands caused by this kind of slip prevail

on the
(
111

)
face (Figure 2f), where they are nearly uniformly distributed. However, a

slightly higher density of slip bands is observed near the sample corners, which could be
caused by geometrically induced stress concentrations in the vicinity of the punches.

3. Numerical Model
3.1. Boundary-Value Problem, Geometry, and Loading Conditions

Finite element simulations were performed for model single crystals of the same
geometry and orientations as those of the experimental samples. A 3 × 6 × 3 mm3

rectangular geometrical model (Figure 3a) was approximated by a regular mesh consisting
of 432,000 hexahedral elements (C3D8R).

The boundary-value problem (BVP) was solved numerically in a dynamic formula-
tion [47–49] to study the evolution of the stress–strain fields in the single crystals under
compression. Formulated in a strong form, the BVP includes the governing equations of
mass and momentum conservation

.
VV−1 − .

ui,i = 0 (1)

ρ
..
ui = σij,j (2)

completed by kinematic relations

.
εij =

1
2
( .
ui,j +

.
uj,i

)
=

.
ε

e
ij +

.
ε

p
ij (3)

and constitutive equations in the form of Hooke’s law

.
σij = Cijkl

.
ε

e
kl (4)
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where ui is the displacement vector, V = ρ0ρ−1 is the relative volume, ρ0 and ρ are the
initial and current mass density values, σij and

.
εij are the stress and strain rate tensor

components,
.
ε

e
ij and

.
ε

p
ij are the elastic and plastic strain rate tensors, and Cijkl is the matrix

of elastic moduli. The upper dot denotes a time derivative, and the Einstein notation is
used for repeated indices.

The kinematic boundary conditions were set on the model top surface ST to simulate
compression along the Y-axis (Figure 3a)

.
uy

∣∣
ST

= −vy (5)

where vy is the loading velocity. In order to eliminate wave effects unphysical for quasistatic
processes, the loading velocity was linearly increased up to its peak value and then kept
constant. The surface displacements on the model bottom surface SB were constrained in
the Y-direction

.
uy

∣∣
SB

= 0 (6)

and were not constrained in the two other directions. The model lateral faces SL were free
of any external load

σijnj
∣∣
SL

= 0 (7)

where nj is the surface normal.

Figure 3. Schematic of a FE model with the applied boundary conditions (a) and stress–strain curves
for single crystals with lateral faces

(
110

)
(001) (Orientation III) and

(
112

) (
111

)
(Orientation IV)

compressed along [110] direction (b).

3.2. Constitutive Model

It is reasonable to describe the elasto-plastic behavior of aluminum single crystals
in terms of crystal plasticity to consider mechanical anisotropy attributed to the crystal
structure. Let us formulate the CP constitutive equations relative to a local frame with the
axes coinciding with the [100], [010], and [001] crystal directions.

Taking into account the decomposition of the strain rate tensor into elastic and plastic
components (Equation (3)), Hooke’s law (4) takes the form

.
σij = Cijkl

( .
εkl −

.
ε

p
kl

)
(8)

where
.
εkl is related to the velocity vector by kinematic Equation (3). Due to the symmetry

inherent in the FCC crystal lattice, Cijkl has twelve non-zero components, with three of
them being independent.

In the CP framework, the plastic strain under external load is thought to be realized by
means of shear deformation due to a slip of close-packed atomic planes along each other.
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The components of the plastic strain rate tensor
.
ε

p
ij are related to the shear strain rate in the

active slip systems by the geometrical equations

.
ε

p
ij =

1
2 ∑

α

.
γ
(α)(simj + sjmi

)(α) (9)

where s(α)i and m(α)
i are the components of slip direction and slip plane normal vectors

determining the orientation of the slip system α in the crystal frame. Twelve <111>{110}
slip systems are potentially active in the FCC crystals. The shear strain rate

.
γ for all slip

systems follows a power law

.
γ =

.
γ
∗
∣∣∣∣ τ

τCRSS

∣∣∣∣νsign(τ) (10)

where the reference shear strain rate
.
γ
∗ and the exponent ν are the parameters controlling

the strain rate sensitivity. A slip system is assumed to be active when the resolved shear
stress τ is equal to or greater than the critical resolved shear stress (CRSS) τCRSS. Of primary
importance is the CRSS description with a proper account of the strengthening mechanisms.
A large number of phenomenological and physically based CRSS models are reported for
aluminum alloys (see, e.g., [17]). The more effects are taken into account, the more fitting
and physically based parameters have to be determined. Moreover, iterative methods
employed in CP calculations additionally increase the computational costs. Therefore, it
is reasonable to use simplified constitutive models with a reduced number of parameters
where possible. In this paper, an isotropic hardening of aluminum single crystals is
calculated as

τ
(α)
CRSS = τ0 + f

(
ε

p
eq

)
(11)

where τ0 is the initial CRSS value, the same for all slip systems, and the second term of the
sum describes the strain hardening as

f
(

ε
p
eq

)
= a1

(
1− exp

(
−ε

p
eq/a2

))
+ b1

(
1− exp

(
−ε

p
eq/b2

))
(12)

where a1, a2, b1, and b2 are chosen to fit the experimental stress–strain curves (Figure 3b).
The model parameters and material constants used in the simulations are C1111 = 108 GPa,
C1122 = 61 GPa, C2323 = 28 GPa, τ0 = 2 MPa, a1 = 73 MPa, a2 = 0.07, b1 = 16 MPa, and
b2 = 0.002 [50]. In perfect plasticity calculations, f

(
ε

p
eq

)
was set to zero and τ0 = 30 MPa.

3.3. Numerical Implementation

The BVP problem (1)–(7) is solved numerically using an ABAQUS/Explicit FE soft-
ware package (Dassault Systèmes, Velizi, France), where the constitutive model (8)–(12)
is implemented through a VUMAT User Subroutine. ABAQUS software is widely em-
ployed for numerical research of aluminum single crystals, including the analysis of hard-
ness anisotropy [51], deformation behavior in simple compression [22] and multi-pass
rolling [24], the validation of new CP lattice particle method [52], etc., although for the
most part the static formulation of BVPs is considered.

The governing Equations (1)–(3) and boundary conditions (5)–(7) are formulated with
respect to the sample frame, while the constitutive Equations (8)–(12) are written relative
to the crystal frame associated with [100], [010], and [001] crystal directions [26,49]. The
advantage of numerical implementation in ABAQUS/Explicit is that the tensor and vector
components are automatically rotated from the global to the local coordinate system before
they are imported to VUMAT and vice versa after the constitutive behavior is calculated.
The stress change due to a rigid rotation is eliminated through the Naghdi–Green derivative.

The time step is chosen to satisfy the Courant–Friedrichs–Lewy condition ∆t = kC·hmin/Cl,
where hmin is the minimum step of the mesh, Cl is the longitudinal velocity of sound, and
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kC is the Courant ratio. The stability condition implies that an elastic wave within one time
step would not cover the distance longer than the minimum mesh step.

A simultaneous solution of Equations (8)–(12) at each time increment calls for an
iterative procedure. We employed the method of simple iterations, which provided fast
solution convergence with reasonable accuracy. An important condition for the dynamic
and static solutions to converge is the use of rate-independent constitutive models in dy-
namic simulations, where load velocities are artificially increased. The strain-rate sensitivity
parameters ν and

.
γ
∗ appearing in Equation (10) were chosen to meet this requirement.

A material is assumed to be quasi-rate-independent for large ν values [47], which may,
however, have an adverse effect on the iteration convergence. Based on the results for
various strain rates [49], the ν value was set 10. Test calculations showed that for ν = 10 the
strain rate sensitivity was effectively eliminated in the range of strain rates up to 103 s–1.

The reference shear strain rate was calculated individually for each finite element as
.
γ
∗
= k

.
εeq, where

.
εeq is the local equivalent strain rate and k = 0.8 [26,49]. Keeping in mind

that the strain rate in the strain localization regions can deviate from the average value by
several orders of magnitude, the equation for

.
γ
∗ ensures a sufficient shear strain rate in

any region to fit plastic strain.

4. Calculation Results
4.1. Perfect Plasticity

It is known from experimental observations that aluminum single crystals possessing
high stacking fault energy do not exhibit strong localization at a low strain but demonstrate
rather diffuse necking [31–34]. In order to artificially enforce plastic strain localization, we
began with the analysis of single-crystal deformation in terms of perfect plasticity. While
the perfect plasticity behavior is rather unrealistic for FCC metals, this study is useful
in validating the numerical model. Particularly, the yield stress values and geometrical
features of slip in crystals with different orientations can be directly compared to analytical
estimates. Moreover, perfect plasticity simulations enable separating the effects of strain
hardening on the plastic strain localization, which is impossible to perform experimentally.

The yield stresses initiating slip in the single crystals with Orientations I–IV (Table 1)
were compared with analytical σy values obtained from Schmid’s law:

σy =
τ0

cos ω cos β
(13)

where ω and β represent the angles between the compression axis and the slip plane normal
vector and the slip direction vector, respectively.

In the model crystals, the octahedral slip systems are characterized by the same set of
ω and β. All potentially active slip systems are equally loaded and, thus, expected to be
simultaneously involved in plastic deformation at the same level of applied stress. Table 2
compares the stresses initiating slip in the model single crystals with different orientations
with the analytical estimates obtained by Equation (13) with τ0 = 30 MPa. The value of
〈σeq〉 is calculated as von Mises stresses averaged over the computational volume. The
discrepancy between the analytical and calculated values of the yield stresses does not
exceed 2%, which validates the model and its numerical implementation.
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Table 2. Analytical and calculated yield stresses in aluminum single crystals with
different orientations.

Orientation
Number of
Active Slip

Systems

Schmid
Factor

Analytical Yield
Stress

σy, MPa

Calculated
Yield Stress
〈σeq〉, MPa

I 8 0.408 73.48 72.1
II 8 0.408 73.48 72
III 4 0.408 73.48 71.8
IV 4 0.408 73.48 72

Recall that Orientations I and II are identical in terms of the slip system activation
since they are obtained from one another by rotating the crystal frame around the [001] axis
by an angle of 45◦. Since the compression axis coincides with the [001] direction, angles ω
and β in Equation (13) and the set of potentially active slip systems remain unchanged after
rotation. However, orientations of the slip systems with respect to the crystal faces change,
thus affecting the nonuniform deformation patterns formed on the crystal faces due to their
intersection with the active slip planes. Similarly, Orientations III and IV are identical to
each other in terms of the slip system activation, while anticipated slip band patterns on the
crystal faces would be different. Active slip systems of all orientations are characterized by
the same Schmid factor, while the number of potentially active slip systems in the crystals
loaded along the [001] axis is two times larger than that in the crystals loaded along the
[110] direction.

In the absence of strain hardening, equivalent plastic strain fields demonstrate abrupt
localization in narrow through-thickness band regions (Figures 4 and 5). Generally, plas-
tic strain instability obtained in calculations in the form of strain localization can result
from different kinds of nonlinearity, i.e., a mathematical nonlinearity of constitutive equa-
tions, geometrical features (notches, holes, variable cross-section, etc.), interface asperities,
microstructural inhomogeneity, nonuniform loading conditions, and so on. The insta-
bility of plastic flow in CPFEM simulations has been thoroughly discussed by many
researchers [10,20,26,39,53,54].

Figure 4. Equivalent plastic strain fields in model single crystals with {100} (a,b) and {110} lateral
faces (c) compressed along the [001] axis up to a strain of 0.003 (a) and 0.05 (b,c).
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Figure 5. Equivalent plastic strain fields in model single crystals with the
(
110

)
and (001) (the

crystal view in (b) is rotated by 90◦ with respect to (a)) (a,b) and
(
112

)
and

(
111

)
lateral faces

(c,d) compressed along the [110] axis up to a strain of 0.0035 (a,c) and 0.06 (b,d).

Let us analyze plastic strain patterns in the crystals loaded along the [001] axis
(Figure 4). The specimen regions adjacent to the top and bottom surfaces and located
in the middle part of the crystal are loaded in different ways, which gives rise to the crystal
fragmentation into several parts moving relative to each other under compression. The
symmetry of potentially active slip systems with respect to the axis of loading would
lead to the same symmetrical plastic strain patterns observed on the crystal lateral faces.
However, the calculation results show that this is true at the onset of plastic deformation
only, which is illustrated for the crystal with {100} faces in Figure 4a. On further loading,
plastic deformation develops nonuniformly, breaking the symmetry of the strain patterns
and leading to rapid crystal fragmentation. Further plastic deformation mostly localizes
within narrow through-thickness regions evident on the surface as macroscopic bands of
localized plastic strain (Figure 4b,c). We believe that this is the dynamic formulation of the
BVP that enables reproducing the nonsymmetrical mode of single-crystal fragmentation,
much similar to the experimental evidence, while the static problem ensures a symmetrical
solution to the plastic strain distributions [22]. The wave effects unavoidable in dynamic
simulations give rise to small perturbations of the local stress, strain, and kinematic fields.
Being neglected in the macroscopic sense, these local perturbations break the symmetry of
the stress–strain fields. Once a primary band-like region of strain localization is formed,
further plastic deformation develops there in an abrupt manner.

The orientations of the macroscopic bands of localized strain coincide with the traces of
one of the active slip planes on the crystal faces. Particularly, in the crystal with {100} faces,
the macroscopic bands seen on two adjacent lateral sides are tilted at an angle to the loading
axis as it is predicted theoretically and observed experimentally (cf. Figures 1a–c and 4b).
Accordingly, the localized strain regions in the crystal with {110} faces are formed at an
angle to the loading axis on two opposite sides and lie horizontally on two other sides
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(cf. Figures 1d,e and 4c). The same band pattern was observed in compressed [001] Ni3Fe
alloy single crystals with {110} lateral faces by Kunitsyna et al. [55].

While similar conclusions are generally made for crystals loaded along the [110]
axis, some distinct features of strain localization should be mentioned. The equivalent
plastic strain distributions calculated for the two crystals are shown in Figure 5 for two
degrees of compressive strains. In order to show the deformed crystal shape in a better
way, the view in Figure 5b is rotated by an angle of 90 degrees relative to that in Figure 5a.
Theoretically, the strain patterns have to be similar on the opposite faces characterized
by the same crystallographic orientations and differ on the adjacent sides coplanar with
different crystal planes. Anticipated slip distributions on the

(
110

)
and (001) crystal faces

would be symmetrical relative to the loading axis, which is observed in the onset of plastic
strain (Figure 5a). The symmetry, however, is violated shortly after the plastic strain begins,
followed by rapid strain localization as it is in the crystals with the [001] loading axis.
Again, the orientation of the band of localized plastic strain coincides with the lines of
the surface intersection with one of the active slip planes. In accordance with theoretical
predictions, the band lies horizontally on the (001) faces and is tilted at an angle on the(

110
)

face (cf. Figures 2 and 5).
A change in the orientation from III to IV leads to a pronounced asymmetry of the

strain distributions already in the initial stage of plastic deformation (Figure 5c). In contrast
to case III, four potentially active slip systems, remaining equally loaded, intersect each
other and the crystal faces asymmetrically about the loading axis. Now, the bands seen on
all lateral faces are tilted at a certain angle to the axis of compression (Figure 5d).

Summarizing the results calculated in terms of perfect plasticity, we can distinguish
two stages of plastic deformation common for all crystal orientations. These stages are
most clearly evident on the evolution of strain-rate patterns illustrated in Figure 6 for the
crystal with {100} faces. The equivalent strain-rate fields in Figure 6 are normalized to
the strain rate provided by the boundary conditions. It is worth noting that the strain
rate in the plastic fronts is an order of magnitude higher than the average value. In the
first stage (Figure 6a–d), the deformation develops in a macroscopically quasi-uniform
manner where different crystal regions are subsequently involved in plastic deformation
to save the symmetry of the crystal shape. Several slip systems at work in the plastically
deformed regions make roughly equal contributions to accommodate the strain. The
second stage of macroscopically localized deformation comes to play shortly after the first
stage. The transition from the first to the second stage is illustrated in Figure 6e–h. The
formation of a through-thickness band-like region of localized strain is accompanied by
strong perturbations of the strain-rate field (Figure 6g). Further plastic deformation is
mainly localized within a narrow layer covering the entire crystal section and seen as bands
on the crystal surface. The band orientations specific for each crystal geometry coincide
with the traces of one of the active slip systems on the crystal faces.

Additional series of calculations are performed to evaluate the mesh sensitivity
that is a commonly discussed issue in CPFEM simulations of strain localization (see,
e.g., [10,47,56]). Needleman [56] showed that the strain localization patterns obtained in
rate-independent CPFEM simulations were rather sensitive to the mesh resolution. Hare-
wood and McHugh [47] reported that the rate-dependent CP models were able to provide
mesh-independent localization patterns in single-crystal models approximated with suf-
ficiently detailed meshes. Generally, researchers have to find a compromise between the
solution’s accuracy and high computational costs.

The mesh sensitivity effect was estimated on the example of a single crystal with Orien-
tation I approximated by the 30× 60× 30, 60× 120× 60, 100× 200× 100, 150 × 300 × 150,
and 200 × 400 × 200 meshes. Localization patterns obtained for four different meshes
are shown in Figure 7. Their comparison suggests a qualitative similarity. In all models,
plastic deformation developed in a similar way, exhibiting two stages. The orientation of
macroscopic bands of localized deformation was nearly mesh-independent for all models
(Figure 7a–d), and their width was weakly affected by the mesh resolution for the meshes
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finer than 60 × 120 × 60 (Figure 7b–d). However, the mesh density still influenced the tran-
sition from the first stage of plastic deformation to the second one: The finer the mesh, the
later the macroscopic localization took place. Respectively, lower strain in the localization
region was accumulated in the model approximated by the finest mesh (Figure 7d).

Figure 6. Normalized equivalent strain rates in a perfectly plastic single crystal with the {100} lateral
faces compressed along the [001] axis for compressive strains of 0.008 (a), 0.009 (b), 0.01 (c), 0.011 (d),
0.038 (e), 0.039 (f), 0.04 (g), and 0.044 (h). Video S1 is available online in Supplementary Materials.

Figure 7. Equivalent plastic strain fields in the {100} single crystal models approximated by
30 × 60 × 30 (a), 60 × 120 × 60 (b), 100 × 200 × 100 (c), and 150 × 300 × 150 meshes (d) for
the compression strain of 0.05.

4.2. Strain-Hardening Effects

In order to study the strain-hardening effects on the plastic strain localization and crys-
tal fragmentation, a series of calculations are performed for single crystals with Orientations
I–IV, using the strain-hardening function given by Equation (12).

As in the perfect plasticity case, several stages of plastic deformation, common for
all crystal orientations, can be distinguished. The first stage in the strain-hardened crystal
where plastic deformation develops in a quasi-uniform manner is similar to that in the
perfect plasticity case, though lasts longer. In this stage, different crystal regions are
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alternatively involved in plastic deformation. Octahedral slip systems become active one
by one, and their activation in different crystal parts occurs in switching mode. Due to the
strain hardening in the active slip system, the critical stress necessary to maintain the slip
increases. As a result, the slip system may become inactive in this region for a while. Further
plastic deformation may occur due to the slip intensification in another crystal region to
accommodate the plastic deformation of the crystal. Thus, plastic deformation in the
strain-hardened crystal propagates as a front back and forth from the top to bottom loading
surfaces (see video S2, available online in Supplementary Materials). This conclusion
is illustrated in Figure 8 for the crystal with Orientation IV where the strain rate and
equivalent plastic strain fields are presented for subsequent loading steps and in Figure 9a
for Orientation II by the strain rate field at a compressive strain of 0.005.

Figure 8. Normalized strain rate (a–c) and equivalent plastic strain fields (d–f) in the crystal with(
112

)
and

(
111

)
lateral faces in the initial stage of compression along the [110] axis for compressive

strains of 0.002 (a,d), 0.005 (b,e), and 0.008 (c,f).

In contrast to the perfect plasticity case, an intermediate stage preceding macroscopic
strain localization can be distinguished in the strain-hardened crystals. This stage is
characterized by multiple slips developing simultaneously in several crystal regions. As an
illustration, the normalized strain-rate fields corresponding to the intermediate stage are
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shown in Figure 9b for the single crystal compressed along the [001] axis. In this stage, the
crystal still saves its symmetrical shape about the loading axis.

The final deformation stage is associated with the macroscale crystal fragmentation
into several parts (Figure 9c). However, the strain localization in all strain-hardened crystals
is much less pronounced than in those calculated with perfect plasticity model. The regions
adjacent to crystal edges are more involved in plastic deformation than the central part in
contrast to the perfect plasticity case where the narrow through-thickness bands of localized
strain are formed. This is clearly seen in Figure 10, where isosurfaces of the equivalent
plastic strain fields obtained in terms of perfect plasticity and strain-hardening models are
compared for the crystals loaded along the [001] direction. This result is consistent with the
experimental data [41,57] and simulation results obtained using molecular dynamics [1].
A common conclusion is that strain hardening reduces the material’s ability of plastic strain
localization in all stages of loading. Overall, the results obtained support the experimental
conclusion drawn in [41] that the shape of macrofragmentation elements is uniquely
determined by the mutual orientation of the loading axis and single crystal faces.

Figure 9. Normalized strain rates in a single crystal with the {110} lateral faces compressed along
the [001] axis in three stages of plastic deformation for compressive strains of 0.005 (a), 0.02 (b), and
0.06 (c). Video S3 is available online in Supplementary Materials.

Figure 10. Isosurfaces of equivalent plastic strains in perfectly plastic (a,c) and strain-hardened single
crystals (b,d) with the {100} (a,b) and {110} lateral faces (c,d) under compression along the [100]
direction at a strain of 0.05.
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5. Discussion

The phenomenon of single-crystal fragmentation is widely discussed among re-
searchers, with many experimental examples presented in the literature. Wonsiewicz
and Chin [35] found that an FCC single crystal with a {111}<112> orientation subjected
to constrained compression undergoes fragmentation about the transverse direction. The
same tendency was characteristic of single crystals with a Cube orientation [36,37,42,45,46],
where fragmentation about the transverse direction was complemented with a set of quasi-
periodic bands lying along the normal direction [45]. This behavior was reported to be
typical of the high-symmetry Cube orientation due to its instability under compression at
room temperature [42].

Teplyakova and Kozlov [44] revealed key elements of macrolocalization, including
shear, bending-torsion, and rotation fragments. Each fragment was associated with a spe-
cific surface pattern where plastic strain manifested itself as shear bands, thin folds parallel
to the shear bands, deformation bands, or bending regions [31]. On further loading, some
fragments tended to form larger groups belonging to mesoscale phenomena. Apparently,
the larger the deformation element size, the larger the scale of strain localization [31].

Lychagin et al. [58] showed for nickel single crystals compressed along the
[
111

]
direction that the largest strain occurs at the deformation band junctions rather than within
the bands themselves. Prior to the formation of deformation bands, a set of rectilinear shear
bands appeared in the regions of the highest stress concentration at the beginning of plastic
deformation. On further loading, the deformation bands originating near the primary
stress concentrators were united into a larger set of similarly oriented bands, resulting in
crystal fragmentation at a larger scale.

Among the main factors of crystal fragmentation, Alfyorova and Lychagin [57] and
Lychagin [32] noted (1) different stress states realized in different regions of the loaded
crystal, (2) geometrically induced stress concentrations near the rectangular-shaped crystal
edges, and (3) the slip ability to emerge onto the crystal faces.

Let us support these assumptions numerically on the example of perfectly plastic
crystals where localization patterns are not affected by strain hardening (Figures 11 and 12).
In the elastic stage of loading, crystals of all orientations demonstrate nearly homogeneous
stress and strain distributions symmetrical about the axis of compression. Let us analyze
the evolution of the stress tensor component σyy associated with the load direction, which
makes the largest contribution to the material’s resistance to compression. In the elastic
stage, this stress is negative all over the crystal volume, which means that all regions
undergo compression along the loading axis. Once plastic deformation comes to play, the
symmetry is rapidly violated due to strain localization. In the first stage of plasticity, the
σyy stresses still increase throughout the crystal volume, but it changes once the crystal
shape has lost its symmetry. On further loading, the σyy stresses continue increasing in
some regions but start to decrease in others, reaching to zero and then increasing to positive
values, as seen in Figure 11. The stress values in Figure 11 are normalized to the yield stress
σy (see Table 2).

At the end of compression, the positive (tensile) and negative (compressive) stresses
σyy occupy comparable regions. It is not surprising that the highest stresses take place near
the crystal edges adjacent to the loaded surfaces. It is noticeable that all stress components
in the stage of macrolocalization demonstrate quasi-symmetrical distributions about the
load direction, thus bringing the crystal to a balance. Accordingly, the equivalent stress
demonstrates an inhomogeneous distribution with the unloaded (red) and overloaded
(blue) regions with respect to the average level (green regions in Figure 11c).

In accordance with the experimental observations [37,46,59] and theoretical predic-
tions [17,32,60], the macroscale plastic strain localization in all single crystals is accompa-
nied by relative shifts and rotations of crystal fragments. Analyzing the CPFEM simulation
results, Trusov et al. [22] highlight that due to inhomogeneous lattice rotation, the lattice
of a single crystal becomes curved in some regions. Let us analyze the contribution of
rotation in terms of Euler (Bunge) angles. The Euler angles define three successive rotations
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bringing the crystal frame to the sample frame. Representative Euler angle distributions
in the developed stage of strain localization are shown in Figure 12. The distributions
are strongly inhomogeneous, with the highest amount of rotation taking place within the
macroscopic localized band, where φ and φ2 angles deviate from their initial values in
the undeformed crystal up to 10 and 20 degrees, respectively. These results are consistent
with experimental observations for FCC single crystals under compression reported by Ha
and Kim [37], Han et al. [59], and Wert et al. [46] and CPFEM calculations presented by
Kuroda [60] and Roters et al. [17].

Figure 11. Normalized stress fields in the single crystal with the {100} faces under compression along
the [001] axis: σyy at strains of 0.005 (a) and 0.05 (b) and von Mises stress at a strain of 0.05 (c).

Figure 12. Distributions of Euler angles φ1 (a), φ (b), and φ2 (c) in the single crystal with {100} faces
under compression along the [001] axis at a strain of 0.05.

6. Conclusions

The mechanical aspects of plastic strain localization and fragmentation in FCC single
crystals under compression have been addressed in the present study. Experimental data
for aluminum single crystals compressed along the [001] and [110] directions were used to
construct a numerical model in terms of crystal plasticity. Two series of crystal plasticity
finite element simulations have been performed for perfectly plastic and strain-hardened
crystals to estimate the strain-hardening effects on the development of strain localization.

The calculations have shown that the development of plastic deformation in single
crystals is characterized by staging. Two distinct stages of plastic deformation were iden-
tified for perfectly plastic single crystals. In the first stage, deformation developed in a



Metals 2022, 12, 397 19 of 21

macroscopically quasi-uniform manner where different crystal regions were subsequently
involved in plastic deformation to save the symmetry of the crystal shape. In this stage,
narrow solitary fronts of plastic deformation propagated back and forth between the top
and bottom punches. The strain rate in the plastic fronts was an order of magnitude higher
than the average strain rate. The second stage was associated with the abrupt localization
of plastic strain within a through-thickness band region. Subsequent plastic deformation
was accompanied by the relative shift and rotation of crystal fragments, with the highest
amount of rotation observed within the region of localized strain. The transition from
the first stage of solitary front propagation to the second stage of macrolocalization was
accompanied by strong perturbations of the strain rate fields. In all perfectly plastic crystals,
orientations of the macroscopic bands of localized deformation coincided with the traces of
one of the active slip systems on the crystal faces.

In the strain-hardened crystals, three stages of plastic deformation were revealed. The
first stage, associated with the propagation of solitary fronts of localized deformation, lasted
longer than in perfectly plastic crystals, eventually giving way to an intermediate stage
related to the formation of multiple plastic fronts in different crystal parts. In both defor-
mation stages, the crystal shape maintained its symmetry about the compression axis and
became asymmetrical at the final stage, where macroscale crystal fragmentation occurred.
However, there was no evidence of pronounced strain localization in all deformation stages,
much like in the experiments.

Stress analysis for a perfectly plastic crystal showed that the specimen underwent
pure compression only in the first deformation stage. Once the crystal shape had lost its
symmetry, the compressive stress in some regions progressively decreased to zero and then
increased to positive values corresponding to tensile loading. In the final stage, the tensile
and compressive stresses occupied comparable areas, with the highest stresses taking place
near the crystal edges adjacent to the loaded surfaces.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/met12030397/s1, Video S1: Evolution of the normalized equivalent
strain rate in a perfectly plastic single crystal with the {100} lateral faces compressed along the [001]
axis, “ESM_0.avi”; Video S2: Plastic strain rate evolution in a strain-hardened single crystal with the(
112

)
and

(
111

)
lateral faces compressed along the [110] axis, “ESM_2.avi”; Video S3: Evolution of

the normalized equivalent strain rate in a strain-hardened single crystal with the {110} lateral faces
compressed along the [001] axis.
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