
 
 

 
 

 
Metals 2022, 12, 355. https://doi.org/10.3390/met12020355 www.mdpi.com/journal/metals 

Article 

Deep Learning Approaches to Image Texture Analysis in  
Material Processing 
Xiu Liu 1,* and Chris Aldrich 1,2 

1 Western Australian School of Mines, Minerals, Energy and Chemical Engineering, Curtin University,  
P.O. Box U1987, Perth, WA 6845, Australia; chris.aldrich@curtin.edu.au 

2 Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland,  
Stellenbosch 7602, South Africa 

* Correspondence: xiu.liu@curtin.edu.au 

Abstract: Texture analysis is key to better understanding of the relationships between the micro-
structures of the materials and their properties, as well as the use of models in process systems using 
raw signals or images as input. Recently, new methods based on transfer learning with deep neural 
networks have become established as highly competitive approaches to classical texture analysis. In 
this study, three traditional approaches, based on the use of grey level co-occurrence matrices, local 
binary patterns and textons are compared with five transfer learning approaches, based on the use 
of AlexNet, VGG19, ResNet50, GoogLeNet and MobileNetV2. This is done based on two simulated 
and one real-world case study. In the simulated case studies, material microstructures were simu-
lated with Voronoi graphic representations and in the real-world case study, the appearance of ul-
trahigh carbon steel is cast as a textural pattern recognition pattern. The ability of random forest 
models, as well as the convolutional neural networks themselves, to discriminate between different 
textures with the image features as input was used as the basis for comparison. The texton algorithm 
performed better than the LBP and GLCM algorithms and similar to the deep learning approaches 
when these were used directly, without any retraining. Partial or full retraining of the convolutional 
neural networks yielded considerably better results, with GoogLeNet and MobileNetV2 yielding 
the best results. 

Keywords: texture analysis; Voronoi diagrams; local binary patterns; grey level co-occurrence ma-
trix; textons; AlexNet; VGG19; ResNet50; GoogLeNet; MobileNet; transfer learning; convolutional 
neural networks; particle size analysis; microstructure 
 

1. Introduction 
Texture analysis in images is important in a wide range of industries. It is not pre-

cisely defined, since image texture is not precisely defined, but intuitively, image texture 
analysis attempts to quantify qualities such as roughness, smoothness, heterogeneity, reg-
ularity, etc., as a function of the spatial variation in pixel intensities. 

In materials, image texture analysis can be used to derive quantitative descriptors of 
the distributions of the orientations and sizes of grains in polycrystalline materials. Al-
most all engineering materials have texture, which is strongly correlated with their prop-
erties, such as mechanical strength, resistance to stress corrosion cracking and radiation 
damage, etc. In this sense, image textures and textures in materials are closely related.  

In the case of metalliferous ores or rocks, image texture provides critical information 
with regard to the response of the materials during mining and mineral processing [1,2]. 
For example, more energy is generally required to liberate finely disseminated minerals 
from ores, i.e., ores with fine textures, than is the case with ores with coarse textures.  

Characterization of the textural characteristics of materials, whether related to the 
microstructures of metals, mineral ores or the surface properties of materials, requires 
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steps beyond simple qualitative descriptions of material textures to quantitative descrip-
tions that can be used in models that can predict the behavior of the metals or ores in a 
given process or system [2].  

A variety of such methods to quantify the textural appearance of materials has been 
proposed, as discussed comprehensively in a recent review by Ghalati et al. [3]. This in-
cludes a review of traditional approaches, as well as more recent approaches based on the 
use of learned features, as opposed to engineered features.  

Few studies have been reported where some comparative assessment of methods 
was made. For example, Kerut et al. [4] reviewed quantitative texture analysis applied to 
the images generated by echocardiography. These were categorized as statistical methods, 
fractal methods, frequency domain methods and methods based on the use of wavelets. 
The latter was still an emerging approach but was considered to be a state-of-the-art 
method at the time, with 2D Haar dyadic wavelets recommended in particular.  

In mineral processing, Kistner et al. [5] considered the application of grey level co-
occurrence methods, local binary patterns, wavelets, steerable pyramids and textons and 
found that the latter approach was best able to capture patterns associated with flotation 
froth images, particulate solids and slurry flows.  

More recently, transfer learning by use of convolutional neural networks has 
emerged as a strong contender as a state-of-the-art method in texture analysis [6]. Fu and 
Aldrich [7] found that AlexNet provides better flotation froth descriptors than methods 
based on the use of grey level co-occurrence matrices, wavelets and local binary patterns. 
Authors, such as Mormont et al. [8] and Xiao et al. [9], have conducted texture analysis 
with transfer learning methods. Mormont et al. [8] found that DenseNet and ResNet mar-
ginally yielded the best features for classification of histological images. Xiao et al. [9] con-
cluded that transfer learning methods outperformed traditional methods, with Incep-
tionV3 performing the best overall. 

While these studies serve as a guide to the comparative merits of different texture 
analytical methods, the relative merits of different approaches are still not well docu-
mented in the literature. This study reviews developments in quantitative image texture 
analysis, and assesses the feasibility of state-of-the-art methods, with a focus on textures 
associated with material processing. This includes an assessment of different variants of 
transfer learning, based on zero, partial and full retraining of the feature layers of convo-
lutional neural networks.  

In the following section, image texture analysis in metal processing is briefly re-
viewed. This is followed by an explanation of the analytical methodology of the study. In 
Sections 4–6, the methodology is applied to case studies and in Sections 7 and 8, the results 
are discussed, and the conclusions of the study are summarized.  

2. Application of Texture Analysis in Metallurgical Engineering 
2.1. Geometallurgical Models 

Quantitative analysis of ore textures has seen exponential growth in the wake of re-
cent developments in modern analytical instrumentation, such as the quantitative evalu-
ation of minerals by Mineral Liberation Analyzer (MLA) [10–12], scanning electron mi-
croscopy (QEMSCAN) [10,13,14], and X-ray computer tomography [2,15]. These tech-
niques are used to analyze ore textures on a microscale, with the ultimate goal to use this 
information in geometallurgical models that can be used to predict the performance of 
downstream process systems [11,16].  

Textural descriptors recently considered include association indicator matrices [17], 
grey level co-occurrence matrices [18,19], continuous wavelet transforms [20,21] and local 
binary patterns [21], as well as descriptors obtained with convolutional neural networks 
[22]. These descriptors are not designed to identify the physical characteristics of the ma-
terial directly, e.g., the grain size in polycrystalline materials. Instead, they indirectly 
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represent such structures, considering that finer grain sizes would give rise to different 
textural appearances in images than coarser grain sizes would. 

2.2. Microstructural Predictors of Metal Properties 
Renzetti and Sortia [23] used grey level co-occurrence (GLCM) methods to character-

ize the microstructures in duplex stainless steels. Webel et al. [24] likewise made use of 
GLCM features to characterize the microstructures of low alloy steels. Velichko et al. [25] 
extracted morphological features from cast iron that could be used with support vector 
machines to classify cast iron microstructures. DeCost et al. [26] investigated the classifi-
cation of the microstructures in a single ultrahigh carbon steel generated by different heat 
treatment conditions based on pixel-wise segmentation and fully connected neural net-
works. Azimi et al. [27] used deep neural networks to classify the microstructures of steel, 
specifically martensite, tempered martensite, bainite and pearlite. Gola et al. [28] made 
use of support vector machines using a combination of morphological parameters and 
textural features for classification of low carbon steels. Similarly, Beniwal et al. [29] pro-
posed a general approach based on deep learning to predict material properties based on 
microstructural features. 

2.3. Metal Surface Quality 
Metal surface quality is an important element of the overall quality assessment of the 

production of metal components. As a consequence, the application of computer vision 
systems as a means to automate assessment continues to attract significant interest. Tex-
ture analysis in particular has recently been studied by a number of authors. For example, 
Trambitckii et al. [30] found a strong correlation between surface roughness and image 
features extracted with various algorithms.  

Medeiros et al. [31] focused on the surface textures and appearance of corroded sur-
faces based on the evaluation of color and texture, with the latter represented by GLCM 
features. Guo et al. [32] showed that GLCM features can be used to classify defects in steel 
strip. Luo et al. [33] used local binary pattern (LBP) features to accomplish a similar objec-
tive on hot rolled steel strips.  

Mao et al. [34] proposed a new algorithm, referred to as order-less scale invariant 
gradient local auto-correlation (OS-GLAC), for metal surface texture characterization. 
Their satisfactory results were even better when these features were combined with fea-
tures obtained with a convolutional neural network. Luo et al. [33] made use of selectively 
dominant local binary patterns to detect surface defects in hot rolled steel strips. 

2.4. Failure Analysis of Metals 
Metal fractography is another area that can be cast as a problem in material texture 

analysis. For example, Das et al. [35] extracted GLCM features and ran length statistics 
from fractographs of 7075 Al alloys generated by impact tests under different processing 
conditions. These features were strongly correlated with the impact toughness of the al-
loys. Dutta et al. [36,37] used fractal analysis based on box counting, GLCM and run length 
statistics on fractographs of stainless steel for automatic characterization of fracture sur-
faces. The run length statistics yielded the best results in terms of accuracy and computa-
tional cost. Naik and Kiran [38] used LBPs to characterize and identify fracture in metals. 
Müller et al. [39] made use of GLCM for surface crack detection in fracture experiments. 
Bastidas-Rodriguez et al. [40] applied Haralick’s features (GLCM) texture energy laws and 
fractal dimension as descriptors to optical images of metals to discriminate between three 
different failure modes, using multilayer perceptrons and support vector machines. Dutta 
et al. [41] took a different approach based on geometric texture analysis. Using Voronoi 
tessellation on fractographs of 304LN stainless steel, they extracted four features, viz. Vo-
ronoi edges, mean area, mean elongation and mean perimeter of Voronoi polygons, which 
could, among other things, reliably predict the ductility of the steel. 
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The results from the literature indicate that a wide range of methods have been in-
vestigated for material texture analysis. GLCM methods appear to be the most popular, 
while deep learning approaches have only just started to emerge. 

3. Analytical Methodology 
Evaluation of the feature extraction algorithms was based on the following steps in 

each of three case studies, as schematically illustrated in Figure 1.  
(a) Generation of two sets of textures A and B that were similar, but not identical. These 

textures were generated by Voronoi tessellation of random data with user-controlled 
parameters, and the diagrams were stored as JPG images.  

(b) Extraction of features from data textural image sets A and B with each of the algo-
rithms, i.e., GLCM, LBP, textons, AlexNet, VGG19, ResNet50, GoogLeNet and Mo-
bileNetV2, described in more detail below.  

(c) Use of random forest models to discriminate between the textures using the GLCM, 
LBP, textons, AlexNet, VGG19, ResNet50, GoogLetNet and MobileNetV2 features as 
predictors. An exception was made with the trained convolutional neural networks, 
which were used end-to-end to classify the textures directly. 

 
Figure 1. Analytical methodology based on the extraction of features from labelled textural images 
of materials, followed by assessment of the ability of a random forest model to discriminate between 
textures using the features as the input. 

3.1. Grey Level Co-Occurrence Matrices 
The grey level co-occurrence matrix, 𝐴𝐴𝐼𝐼(𝐷𝐷,𝐺𝐺), of an image 𝐼𝐼 with parameters 𝐷𝐷 and 

𝐺𝐺, where 𝐷𝐷 is the distance between each pair of pixels in the image and 𝐺𝐺 is the number 
of grey levels considered in the image, as indicated in Figure 2.  

 

Figure 2. A partial image of a chessboard (left) with binary co-occurrence matrices (right) showing 
the frequency of pairs of two grey levels (black and white), separated by a distance and direction, 
as specified by Cartesian coordinates (u,v). 

Each entry 𝑎𝑎𝑖𝑖𝑖𝑖 , in the 𝐺𝐺 × 𝐺𝐺 matrix denotes the number of times that a grey level is 
associated with a pair of pixels at displacement 𝐷𝐷 in the image. 
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The Haralick [42] set of image descriptors extracted from GLCM images is often used 
in image analysis. In this investigation, the following four features, namely energy (ENE), 
contrast (CON), correlation (COR) and homogeneity (HOM), were used.  

ENE = �𝑎𝑎�𝑖𝑖𝑖𝑖2

𝑖𝑖𝑖𝑖

 (1) 

CON = �|𝑖𝑖 − 𝑗𝑗|2𝑎𝑎�𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖

 (2) 

COR = �
(𝑖𝑖 − 𝑚𝑚𝑖𝑖)(𝑗𝑗 − 𝑚𝑚𝑗𝑗)𝑎𝑎�𝑖𝑖𝑖𝑖

𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗𝑖𝑖𝑖𝑖

 (3) 

HOM = �
𝑎𝑎�𝑖𝑖𝑖𝑖

1 + |𝑖𝑖 − 𝑗𝑗|
𝑖𝑖𝑖𝑖

 (4) 

In Equations (1)–(4), a�ij is the (I,j)th element of the normalized GLCM and 𝑚𝑚𝑖𝑖 and 
𝑚𝑚𝑗𝑗, and 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 are the means and standard deviations of matrix rows and columns. 

The energy (ENE) is a measure of the local uniformity of the grey levels in the image. 
The contrast (CON) is a is a measure of the grey level variations between the reference 
pixels and their neighbors. The correlation (COR) is indicative of the linear dependency 
of grey levels in the GLCM. Homogeneity (HOM) is usually inversely related to the con-
trast and is an indication of the similarity of the off-diagonal elements in the GLCM is to 
the diagonal elements of the GLCM. 

GLCM methods were some of the very first to be used in froth image analysis [43–
45] and have since been considered extensively in a range of applications in mineral pro-
cessing and material science. 

3.2. Local Binary Patterns 
Local binary patterns are generated from greyscale images by comparing the inten-

sity of each pixel in the image to the intensities of pixels in its neighborhood [46]. The 
differences in the intensities between neighboring pixels (𝑔𝑔𝑝𝑝) and center pixels (𝑔𝑔𝑐𝑐) under 
consideration is set to either 0 or 1, by applying a binary thresholding function s: 

s�𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐� = 0
s�𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐� = 1

� , if 
𝑔𝑔𝑐𝑐 < 𝑔𝑔𝑝𝑝
𝑔𝑔𝑐𝑐 ≥ 𝑔𝑔𝑝𝑝

 (5) 

Following that, the local binary pattern (LBP) is computed as shown in Equation (6), 
for all 𝑝𝑝 = 1, 2 … P.  

LBP = � 2𝑝𝑝s�𝑔𝑔𝑝𝑝 − 𝑔𝑔𝑐𝑐�
𝑃𝑃

𝑝𝑝=1

 (6) 

By applying the LBP operator in Equation (6) to each pixel in an image, as indicated 
in Figure 3, an image can be represented by an equisized 2D array of center pixel values 
and referred to as an LBP image. Counts of these values, as represented in an LBP histo-
gram, serve as the features of the image.  

Variants of this approach are defined by the size of the pixel neighborhoods, the pos-
sible subdivision of the image in patches, as well as the inclusion of the number of transi-
tions in the LBP vectors (uniformity) of the vectors. LBP feature extraction is a compara-
tively recent approach to multivariate image analysis in mineral processing [5,47–50].  
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Figure 3. Example of a center pixel (shaded), with its eight neighboring pixels (top, left), the values 
obtained through binary thresholding (top, middle) and the conversion weights by which the 
thresholded values are multiplied to give the decimal LBP value shown in place of the center pixel 
(top, right). A histogram of these values in the resulting LBP image is used as a basis for LBP features 
(bottom). 

3.3. Textons 
Textons can be viewed as the centers of clusters of a localized filter response space 

that are generated through convolution of a training set of images with oriented spatial 
basis functions arranged in a filter bank [51], as indicated in Figure 4. Each pixel in an 
image is mapped to this feature space, while the cluster centers in the space are typically 
determined by k-means clustering. These cluster centers comprise what is referred to as a 
texton dictionary. A texton feature associated with an image consist of a count of the num-
ber of pixels assigned to the specific texton channel [5].  

 
Figure 4. Texton feature extraction from images based on filtering of images, extraction of localized 
filter vectors, clustering of the filter vectors in the vector feature space to construct a texton diction-
ary, mapping of the images to the dictionary and extracting the features as the resulting histogram 
counts. 

In this investigation, the Schmid filter bank was used [52]. It consists of 13 rotation-
ally invariant filters of the form described in Equation (7), where r represents the pixel 
coordinates in the image, s is the scale and t is the frequency or number of cycles in the 
Gaussian envelope of the filter [53].  

𝐹𝐹(𝑟𝑟, 𝑠𝑠, 𝑡𝑡) = 𝐹𝐹0(𝑠𝑠, 𝑡𝑡) + cos (
𝜋𝜋𝜋𝜋𝜋𝜋
𝑠𝑠

)𝑒𝑒𝑟𝑟2 2𝑠𝑠2⁄  (7) 

To date, textons have not been widely used in image analysis in mineral processing, 
although some studies have indicated that it can provide superior models, when com-
pared with more popular feature extraction algorithms, such as grey level co-occurrence 
matrix methods [5,49,54].  
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3.4. AlexNet 
AlexNet is a deep neural network, developed by Alex Krizhevsky et al. [55] that won 

the ImageNet LSVRC-2010 competition in 2012 (https://www.image-net.org/chal-
lenges/LSVRC/index.php) (accessed date: 17 February 2022). It contains five convolution 
layers that operate with three-channel images of size 224 × 224 × 3 and uses 3 × 3 kernels 
for max pooling and either 11 × 11, 5 × 5 or 3 × 3 kernels for convolution.  

3.5. VGG19 
The VGG19 convolutional neural network was created by the Visual Geometry 

Group (VGG) at Oxford University and can be seen as a successor of AlexNet. It won the 
ImageNet competition in 2014. The VGG19 architecture made use of 3 × 3 kernels with a 
one-pixel stride and max pooling over a 2 × 2 window with a stride of two. In addition, 
the network made use of rectilinear (ReLU) units to introduce nonlinearity into the model 
and to improve computation during training. 

3.6. ResNet50 
ResNet50 is one of a number of variants of convolutional neural networks, such as 

ResNet18, ResNet101 and ResNet152. Despite being deeper than AlexNet and VGG19, it 
contains comparatively fewer parameters (weights), i.e., approximately 25.5 million. Un-
like traditional, or shallow neural networks, such as one- or two-layer perceptrons, deep 
neural networks are prone to suffering from the so-called vanishing gradient problem. 
Essentially, the signal used to update the weights during training originates from the end 
of the network as the error between the ground-truth and prediction. This signal becomes 
very attenuated at the earlier layers, because of the increased depth of the network. In 
addition to this, the number of parameters to optimize can also grow rapidly with an in-
crease in the number of layers.  

Residual networks (ResNet) overcome this problem through its special architecture 
consisting of residual modules. A detailed diagram of the architecture of ResNet50 can 
be found at this following link: 
http://ethereon.github.io/netscope/#/gist/db945b393d40bfa26006 (accessed date: 17 Feb-
ruary 2022). 

3.7. GoogLeNet 
GoogleNet [56], a.k.a. Inception V1, developed by Google and its research partners, 

was the winner of the ILSVRC competition in 2014. Its architecture differs significantly 
from architectures such as that of AlexNet by making use of 1 × 1 or pointwise convolu-
tions, global average pooling, as well as what is referred to as inception modules. As a 
result, it has a comparatively deep structure with relatively few parameters to train. 

3.8. MobileNetV2 
MobileNet [57] is a novel convolutional neural network architecture that has been 

adapted for use on mobile devices by significantly decreasing the number of operations 
and memory required, without sacrificing accuracy. This is achieved by using a novel 
layer module based on inverted residuals with linear bottlenecks taking a low-dimen-
sional compressed representation. This representation is subsequently expanded to a high 
dimension and filtered using lightweight depth-wise convolution. Finally, linear convo-
lution is used to project the features back to a low-dimensional representation.  

The characteristics of the convolutional neural networks are summarized in Table 1. 
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Table 1. Characteristics of AlexNet, VGG19, ResNet50, GoogLeNet and MobileNet. 

Network Depth Parameters (Millions) Features 
AlexNet 8 61 4096 
VGG19 19 144 4096 

ResNet50 50 25.6 2048 
GoogLeNet 22 7 1024 

MobileNetV2 53 3.4 1280 

4. Case Study 1: Voronoi-Simulated Material Microstructures of Different Grain Size 
In the first case study, 1000 simulated textures each of A and B were generated by 

identical bivariate uniform distributions, except that texture dataset A was based on 100 
data points and texture dataset B on 105 data points. This meant that the simulated grain 
sizes in the Class B dataset were on average smaller than those in the Class A dataset. 
Examples of these simulated textures are shown in Figure 5. 

   
Random samples of Class A (100 data points) 

   
Random samples of Class B (105 data points) 

Figure 5. Random samples of a simulated microstructure associated with Class A (top) and Class B 
(bottom) considered in Case Study 1. Classes A and B contain 100 and 105 data points, respectively. 

It should be noted that the analysis done by the different algorithms strictly focuses 
on the appearance of the images, as determined by the distributions of the pixels in the 
images. This could be closely related to the simulated material textures in the sense of the 
random orientation of the simulated grains in polycrystalline materials, but it is not a di-
rect measurement of the material texture as such. The same would apply to Case Study 2. 

The convolutional neural networks used in this investigation were built using a 
PyTorch backend. All the experiments were run on a graphics processing unit (GPU) de-
vice on the Google Colab platform. In general, two approaches were adopted. In the first 
approach, Voronoi images were identified from features extracted by use of traditional 
algorithms including GLCM, LBP and textons. 

In the second approach, Voronoi images were identified from features directly ex-
tracted by use of convolutional neural networks pretrained on images from a different 
domain (hereafter referred to as direct deep feature extraction), as well as partially 
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retrained and fully retrained convolutional neural networks, including the use of AlexNet, 
VGG19, GoogLeNet, ResNet50 and MobileNetV2.  

More specifically, with direct deep feature extraction, all froth images were passed 
through the abovementioned five CNNs and the features generated in the layer immedi-
ately preceding the last fully connected layer were used as predictors for classification of 
the froth images. By removing this last layer and freezing the weights of the model, the 
network can be regarded as a feature extractor. The traditional feature sets and the direct 
deep feature sets were then used as input to a random forest model to evaluate their cor-
responding classification performance to distinguish texture A from texture B.  

In the partially retrained networks and fully retrained networks, the original network 
architecture remained unchanged, and the only difference from the direct deep feature 
extraction was whether to unfreeze the later layers or all the layers of the original network 
architecture for further retraining. The features were extracted from the same layer as that 
in direct deep feature extraction, that is, the layer immediately preceding the last fully 
connected layer.  

It should be noted that for the partially retrained networks, the unfrozen layers in 
different CNNs are different. For AlexNet and VGG19, the weights are unfrozen from the 
second last convolutional blocks. For GoogLeNet, the weights are unfrozen from the sec-
ond last inception modules. For ResNet50, the weights are unfrozen from the second last 
residual modules. For MobileNetV2, the weighs were unfrozen from the second last in-
verted residual blocks.  

As mentioned above, random forest classification models were used in combination 
with the traditional feature sets and the direct deep feature sets to assess the quality of the 
features quantitatively. The mean value of the out-of-bag (OOB) accuracy over 30 runs 
was used as indicator of the classification performance. The hyperparameters used in ran-
dom forest models are summarized in Table 2. The same hyperparameters were used in 
Case Studies 2 and 3 as well, noting that 𝑚𝑚 is the number of features extracted by each 
algorithm.  

During partial or full retraining of the CNNs, Voronoi images were randomly split 
into training and test datasets (split ratio 80:20), with the latter used as an independent 
test set to validate the generalization of the neural network models. The training set was 
further randomly shuffled, and 75% of it was used to train the models, while the remain-
der was allocated to a validation set. The adaptive momentum estimation (ADAM) algo-
rithm [58] was used as the optimizer in this work. Hyperparameter optimization was done 
by use of grid search. Different optimal learning rates with or without L2 penalty apply 
to different CNNs. For most models, the optimal initial learning rate was 0.00001 with a 
weight decay parameter of 0.0000001 (L2 penalty). Optimal batch sizes and number of 
epochs varied as well. In order to deal with overfitting, image augmentation was used in 
the training stage by randomly rotating, shearing, shifting and horizontally flipping the 
original images. The retrained CNN models were used as end-to-end classifiers to dis-
criminate between the two classes of simulated material textures.  

Classification tasks to discriminate class A and B were performed and the corre-
sponding features were extracted with the GLCM, LBP, textons, AlexNet (three methods: 
direct deep feature extraction, partially retrained, fully retrained), VGG19 (three methods: 
direct deep feature extraction, partially retrained, fully retrained), GoogLeNet (three 
methods: direct deep feature extraction, partially retrained, fully retrained), ResNet50 
(three methods: direct deep feature extraction, partially retrained, fully retrained) and 
MobileNetV2 (three methods: direct deep feature extraction, partially retrained, fully re-
trained) algorithms from each of the images in the texture datasets.  
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Table 2. Hyperparameters used in random forest models. 

Hyperparameter Description Value 
𝐾𝐾 Number of trees  500 

𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 Percentage of observations drawn at each split 70% 
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡 Number of variables drawn at each split √𝑚𝑚 

Replacement TRUE/FALSE TRUE 
Node Size Minimum number of samples in a terminal node 1 

Splitting rule Criterion on which splitting of nodes is based Gini 

The classification performance of the models is summarized in Table 3, together with 
the number of features associated with each model. The three methods used with each 
CNN algorithm are indicated as by different superscripts, for example, AlexNet, AlexNet* 
and AlexNet** refer to AlexNet with direct deep feature extraction, AlexNet with partial 
retraining and AlexNet with full retraining, respectively.  

Table 3. Comparison between different texture predictors for Case Study 1. 

Model Number of Features Accuracy (%) Test Data 
GLCM 4 57.69 

LBP 59 60.42 
Textons 20 64.82 
AlexNet 4096 59.09 
VGG19 4096 58.29 

GoogLeNet 1024 55.21 
ResNet50 2048 61.82 

MobileNetV2 1280 57.60 
AlexNet * 4096 63.25 
VGG19 * 4096 66.75 

GoogLeNet * 1024 64.00 
ResNet50 * 2048 65.00 

MobileNetV2 * 1280 62.75 
AlexNet ** 4096 65.75 
VGG19 ** 4096 73.50 

GoogLeNet ** 1024 74.25 
ResNet50 ** 2048 68.50 

MobileNetV2 ** 1280 69.50 
Note: For traditional predictors and transfer learning CNN predictors, accuracy refers to the out-of-
bag accuracy on the training dataset using a random forest model as the classifier. For partially and 
fully retrained networks, accuracy refers to the results obtained directly via end-to-end classification 
with the networks themselves. ‘*’ and ‘**’ indicate partially retrained networks and fully retained 
networks, respectively. 

As can been seen from Table 3, all the traditional feature sets can discriminate be-
tween Class A and B reasonably well, with accuracies ranging from 57.69% to 64.82%. Not 
all the direct deep feature sets performed as well as the traditional feature sets. For exam-
ple, GoogLeNet underperformed, while the others performed similarly.  

As expected, the partially retrained networks improved the accuracy to at least 
62.75% (only textons exceeds this value among the three traditional models), and the fully 
retrained networks further improved the accuracy to at least 65.75%. The best model in 
Case Study 1 is the fully retrained GoogLeNet, which achieved the accuracy of 74.25%. 
Generally, retraining of CNNs improved the classification accuracy and the depth of re-
training led to further improvement.  
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By making use of t-SNE plots, it is possible to visualize the extracted features in a 
two-dimensional score space and qualitatively assess the discriminative power of the dif-
ferent models. The t-distributed stochastic neighbor embedding (t-SNE) [59,60] algorithm 
constructs the points embedded in a low-dimensional space to best approximate the rela-
tive similarities of the points in the original high-dimensional space with those in the low-
dimensional space. It does so by minimizing the Kullback–Leibler divergence between the 
two distributions by moving the embedded points. 

Figure 6 shows the t-SNE score plots of the features extracted from different methods 
with the corresponding classification accuracy. Retrained networks can produce better 
separation between two classes than the direct deep feature extraction methods and tra-
ditional feature extractors. 

With further improvement in accuracy using features extracted from fully retrained 
networks, the separation between Class A and B becomes clearer. From these visualization 
results, one can confirm that the retraining of CNNs improves the discrimination between 
the two classes of microstructures and the depth of retraining makes a difference. 
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Figure 6. t-SNE score plots of the features extracted from GoogLeNet (top panel: fully retrained, 
partially retrained, transfer learning), VGG19 (second panel: fully retrained, partially retrained, 
transfer learning), MobileNet (third panel: fully retrained, partially retrained, transfer learning), 
AlexNet (fourth panel: fully retrained, partially retrained, transfer learning), ResNet50 (fifth panel, 
fully retrained, partially retrained, transfer learning) and the traditional predictors (bottom panel: 
GLCM, LBP, textons) in Case Study 1. Class A is indicated by black dots and Class B by red ‘+’ 
markers. 

5. Case Study 2: Voronoi-Simulated Material Microstructures of Different Grain 
Shape 

In the second case study, both classes of simulated textures were generated with eq-
uisized datasets of 1000 samples each. Texture dataset A was generated by random sam-
pling of a bivariate Gaussian distribution with a mean vector μ = [0,0] and a covariance 
matrix of Σ = [1 0; 0 1]. Texture dataset B was generated by 50%–50% random sampling of 
a bivariate Gaussian distribution with a mean vector μ = [−0.05,0] and a covariance matrix 
of Σ = [1 0; 0 1], as well as a bivariate Gaussian distribution with a mean vector μ = [+0.05,0] 
and a covariance matrix of Σ = [1 0; 0 1]. This different generation process means that Class 
B contains more elongated grains than Class A. Examples of these simulated textures are 
shown in Figure 7. 

The same framework for classification of the different classes as Case Study 1 is used 
in Case Study 2. The hyperparameters for the random forest models are the same as 
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summarized in Table 2. As the deep learning models, GoogLeNet and MobileNetV2 and 
the traditional texton algorithm performed best in Case Study 1, they are further consid-
ered here. The three approaches to implementation of GoogLeNet and MobileNetV2 were 
the same as those in Case Study 1. 

The classification performance of different models in Case Study 2 is summarized in 
Table 4, together with the dimension of the corresponding feature set. As can be seen in 
Table 4, again the direct deep feature extraction methods achieve comparable perfor-
mance to the traditional model textons, but neither of them can well discriminate Class A 
from Class B due to the low accuracies (53.54%~55.74%).  

   
Random samples of Class A (m = 0) 

   
Random samples of Class B (m = 0.05) 

Figure 7. Random samples of a simulated microstructure associated with Class A (top) and Class B 
(bottom) considered in Case Study 2. Classes A and B are generated with m = 0 and 0.05, respec-
tively. 

Table 4. Comparison between different texture predictors for Case Study 2. 

Model Number of Features Accuracy (%) Test Data 
Textons 20 55.74 

GoogLeNet 1024 54.11 
MobileNetV2 1280 53.54 
GoogLeNet * 1024 63.25 

MobileNetV2 * 1280 64.75 
GoogLeNet ** 1024 72.25 

MobileNetV2 ** 1280 70.75 
Note: For traditional predictors and transfer learning CNN predictors, accuracy refers to the out-of-
bag accuracy on the training dataset using a random forest model as the classifier. For partially and 
fully retrained networks, accuracy refers to the results obtained directly via end-to-end classification 
with the networks themselves. ‘*’ and ‘**’ indicate partially retrained networks and fully retained 
networks, respectively. 

The classification accuracy with the two retrained CNNs was improved to 
63.25%~64.75% for partially retraining and 70.75%~72.25% for fully retraining. This obser-
vation confirms the effectiveness of retraining CNNs. Moreover, it is noteworthy that the 
performance of the fully retrained MobileNetV2 was comparable to that of the fully 



Metals 2022, 12, 355 14 of 23 
 

 

retrained GoogLeNet, considering that MobileNetV2 generally has a slightly lower accu-
racy, but relatively faster training speed. 

To have a further visual look at how the features extracted by different methods can 
discriminate between the two classes of textures in Case Study 2, the t-SNE score plots 
with corresponding classification accuracies are shown in Figure 8. The visualization re-
sults in Case Study 2 are similar to those in Case Study 1. Fully retrained networks can 
produce sharper separation (less overlap) between Class A and B than partially retrained 
networks, followed by untrained networks and traditional predictors. 

   

   

 
Figure 8. t-SNE score plots of the features extracted from GoogLeNet (top panel: fully retrained, 
partially retrained, transfer learning), MobileNet (middle panel: fully retrained, partially retrained, 
transfer learning) and the traditional predictor textons (bottom panel) in Case Study 2. Class A is 
indicated by black dots and Class B by red ‘+’ markers. 

6. Case Study 3: Real Textures in Ultrahigh Carbon Steel for Material Classification 
In the final case study, a subset of the public Ultrahigh Carbon Steel Micrograph Da-

taBase (UHCSDB) [61] of 961 scanning electron microscopy (SEM) UHCS micrographs 
was considered to classify the textures in terms of heat treatments or annealing conditions 
on spheroidite morphology. We limited the classification dataset to four annealing condi-
tions with at least 20 micrographs under the same temperature (970 °C) and cooling 
method (water quench). The only difference between the four classes A–D is the annealing 
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time, that is, 90 min, 3 h, 8 h and 24 h, respectively. The classification dataset contained 
660 images and was constructed by cropping four smaller 224 × 224 pixel equalized im-
ages from the center of each original micrograph. Examples from each class are shown in 
Figure 9. 

As before, the same framework for classification as used in Case Study 1 and 2 was 
used in Case Study 3. To minimize the variability of model performance, the two fully 
retrained networks were trained multiple times on several different split of training set 
(including the validation set) and tested on the remaining different independent test set. 

The classification performance of different models in Case Study 3 is summarized in 
Table 5, together with the dimension of the corresponding feature set. Classification per-
formance was based on the percentage of images correctly classified, using the feature sets 
as predictors. As can be seen in Table 5, one of direct deep feature extraction methods 
achieved comparable performance with the traditional model textons. Furthermore, the 
classification accuracy with the two retrained CNNs improved to 87.31%~91.04% with 
partial retraining and near-perfect accuracies 97.01%~97.76% with full retraining. 

    
Class A (90 min) 

    
Class B (3 h) 

    
Class C (8 h) 

    
Class D (24 h) 

Figure 9. Typical images of microstructures in UHCS associated with Classes A–D considered in 
Case Study 3. The annealing time is indicated in parentheses. 

The performance of the fully retrained MobileNetV2 appeared to be slightly better 
than that of the fully retrained GoogLeNet, despite the trade-off in MobileNetV2 between 
performance and speed. To further highlight the performance of GoogLeNet and Mo-
bileNet, their receiver operating curves (ROC) are given in Appendix A. 
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Table 5. Comparison between different texture predictors for Case Study 3. 

Model Number of Features Accuracy (%) Test Data 
Textons 20 85.35 

GoogLeNet 1024 81.63 
MobileNetV2 1280 86.38 
GoogLeNet * 1024 91.04 

MobileNetV2 * 1280 87.31 
GoogLeNet ** 1024 97.01 ± 2.36 (s.d.) 

MobileNetV2 ** 1280 97.76 ± 2.14 (s.d.) 
Note: For traditional predictors and transfer learning CNN predictors, accuracy refers to the out-of-
bag accuracy on the training dataset using a random forest model as the classifier. For partially and 
fully retrained networks, accuracy refers to the results obtained directly via end-to-end classification 
with the networks themselves. ‘*’ and ‘**’ indicate partially retrained networks and fully retained 
networks, respectively. 

As before, the features can be visualized in t-SNE score plots in Figure 10. Only one 
feature set of each fully retrained network (which has been trained multiple times) is 
shown here for visualization purposes. Textons can separate the four classes reasonably 
well, but overlap can still be seen between successive classes. Similarly, the CNN features 
extracted directly without retraining of the features layers of the networks separate the 
four classes and overlap exists. 

The partially retrained CNN features could separate the four classes a bit better, as 
the four classes are generally located in a sequence of regions, although some overlap still 
exists for specific classes (e.g., Class B and the other classes). In contrast, the fully retrained 
CNN features form four distinct clusters in the feature space and thus can separate the 
four classes nearly perfectly. 

To further demonstrate the classification performance of the fully retrained Mo-
bileNet, the confusion matrix on the test set is shown in Table 6. There are 20–48 samples 
for each class in the test set. The actual observations are presented in rows, while the pre-
dicted labels are presented in the columns of the table. More specifically, the numbers on 
the diagonal represent correct predictions, while the off-diagonal numbers give insight in 
the failures of the model. As can been seen from Table 6, Classes C and D can be distin-
guished from the other classes perfectly, while the only few errors made by the model 
were associated with distinguishing Class A from Class D, as well as distinguishing Class 
B from Class A. This is consistent with the visualization results in the corresponding t-
SNE plot. This may in part be owing to the small dataset available, and the statistical var-
iation in the images themselves, which could have contributed to the intractability of the 
problem. 
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Figure 10. t-SNE score plots of image features in Case Study 3. 

Table 6. Confusion matrix on test set for fully retrained MobileNet in Case Study 3. 

Confusion Matrix 
Predicted 

A B C D 

Actual 

A 46 0 0 2 
B 1 27 0 0 
C 0 0 20 0 
D 0 0 0 38 

7. Discussion 
Owing to their deep architectures and large parameters sets, convolutional neural 

networks are displacing traditional methods in image recognition as state-of-the-art meth-
ods in an increasing number of applications. Training large and complex convolutional 
neural networks completely from scratch can be prohibitively costly, if sufficient data for 
training are available in the first place. Therefore, the use of pretrained networks is a po-
tentially attractive approach to automated image recognition. 

All three case studies demonstrate the effectiveness and superiority of using pre-
trained convolutional neural networks as competent feature extractors, as well as end-to-
end classifiers. These pretrained networks were originally designed to capture domain-
specific features from ImageNet images, which may not be optimal for classifying images 
from other domains (e.g., material textures). However, the case studies have shown that 
they are able to achieve at least equivalent (without retraining) or better performance 
(with partial retraining or full retraining) in texture classification compared with tradi-
tional feature extraction methods (specifically GLCM, LBP and textons). 

When used directly as deep feature extractors, the classification accuracy using these 
features was generally similar to that obtained with the traditional algorithms in Case 
Studies 1 and 2, or slightly better than the latter in Case Study 3. The performance of the 
original deep learning models was probably inhibited by the strong dissimilarity between 
the source and target databases, as well as the comparatively small size of the simulated 
microstructure image dataset and the image dataset of ultrahigh carbon steel. Compensa-
tion for the dissimilarity and data scarcity requires retraining of the top layers or all the 
layers of the network. 

When retraining the pretrained networks, fine tuning of the weights is accomplished 
by backpropagation. The earlier layers of these pretrained networks have learned more 
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generic features that are useful for different tasks, while the later layers have learned more 
complex features that are more specific to the domain of the source dataset. Therefore, it 
is sensible to freeze the earlier layers and retrain the later layers, forcing the networks to 
learn high-level features that are relevant to the new dataset. Furthermore, fully retraining 
and unfreezing all the layers led to markedly higher accuracy in all the case studies. 

In future work, other lightweight and effective convolutional neural networks (e.g., 
ShuffleNet and EfficientNet) for texture analysis should be explored further. Full retrain-
ing of these networks should be considered at the first place, owing to the increasing com-
putational power of devices and improved accessibility to high-performance computing 
(HPC) facilities. Further advanced training strategies, based on the use of transfer learning 
and progressive image resizing [62], could also yield richer, hierarchical textural feature 
sets. 

In addition, the efficacy of convolutional neural networks specifically designed for 
textural feature extraction would also need to be considered, as the advantages of these 
neural networks have not been established yet. Examples of these networks include T-
CNN [63,64] and B-CNN [65], as well as Deep-TEN [66]. 

Finally, future work is likely to focus increasingly on the interpretation of the deep 
learning models [67,68]. This would not only be to increase the acceptance of a model that 
can explain the reason why a certain texture or image is identified, but also would poten-
tially enhance the analyst’s understanding of physical attributes of materials that affect 
their performance in different applications. 

8. Conclusions 
In this paper, the use of pretrained convolutional neural network architectures for 

the quantitative analysis of both simulated and real material textures is explored. The fol-
lowing conclusions can be drawn. 
• Architectures, such as AlexNet, VGG19, GoogLeNet, ResNet50 and MobileNetV2, 

pretrained on a large public common object image dataset (ImageNet), can be used 
directly to generate textural descriptors of similar quality as what could be achieved 
with engineered features, despite the fact that these networks were trained on image 
data from a different domain. 

• As expected, further improvement is possible by partial or full retraining of all the 
networks. In the case studies considered in this investigation, this resulted in mark-
edly better classification of the different simulated microstructures and the recogni-
tion of microstructures of ultrahigh carbon steel under different annealing condi-
tions. 

• All the convolutional neural networks performed as well or better than the tradi-
tional algorithms (GLCM, LBP and textons). These results are in line with those of 
other emerging investigations. 

• Of the five abovementioned convolutional neural network architectures that were 
compared in the case studies, GoogLeNet and/or MobileNetV2 yielded the most re-
liable features. MobileNetV2 would therefore be the preferred approach, given that 
it trained faster than GoogLeNet. 
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Appendix A. Receiver Operating Curves for GoogLeNet and MobileNet in Case 
Study 3 

  
GoogLeNet (partially retrained) GoogLeNet (fully retrained) 

  
MobileNet (partially retrained) MobileNet (fully retrained) 

Figure A1. Receiver operating curves for GoogLeNet and MobileNet in Case Study 3. 
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