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Abstract: The effects of hydrogen charging on the electrochemical and stress corrosion cracking
(SCC) behavior of X70 steel in a simulated deep seawater environment were investigated by using
electrochemical measurements, slow strain rate tensile (SSRT) tests, and corrosion morphology
characterization through SEM. The results showed that the concentrations of the adsorbed hydrogen
in X70 steel after precharging under different hydrostatic pressures increased gradually and tended to
be steady with the charging time. High hydrostatic pressures promoted the hydrogen permeation of
X70 pipeline steel by promoting the permeating rate and quantity. The SCC susceptibility of X70 steel
decreased first and then increased with the hydrogen-charging current density. The area reduction
loss (Iψ) and true strain loss (Iε) exhibited the lowest SCC susceptibility at the 25 mA/cm2 hydrogen-
precharging current density. The elongation rate loss (Iδ) exhibited the lowest SCC susceptibility at
the 50 mA/cm2 hydrogen-precharging current density.

Keywords: X70; hydrogen penetration; deep seawater; SCC

1. Introduction

Oil and gas will continue to be the dominant source of energy resources across the
world in the future. Due to the rapid exploration and development of offshore oil and gas,
oil and gas resources in deep sea have been considered the major production sources in the
exploitation field, and they have led to a large scale of pipeline steels in service. Due to the
aggressive marine environment and the complexity of oil and gas production, there may
be a high risk of failure for subsea pipelines caused by the combined factors of corrosion,
stress corrosion cracking (SCC), hydrostatic pressure, waves, and currents, as well as
some emergency events. As a result, huge economic losses and serious environmental
pollution occur.

SCC is one of the main failure modes because of the offshore pipeline usually laid
directly on the seabed or suspended to the offshore platform. Therefore, changes in a
number of aspects including seabed topography, ocean currents, and geological factors
produce additional structural tensile stresses. Moreover, high-level tensile stress within
local pipeline segment, due to various superpositions of structural stress/strain, hoop
stress, and residual stress in weld joints, may exceed the critical level in the occurrence of
SCC [1]. Meanwhile, the disbanding and peeling of coatings lead to the direct contact of
corrosive media on the surface of pipeline steels. Under these synergetic effects, it can be
strongly confirmed that it is highly risky of SCC failure for subsea pipelines.

Although quite a few SCC accidents have been recognized in deep-sea environments,
a number of accidents caused by the SCC of oil/gas pipelines in land soil have been
characterized in recent years [2–7], which are mainly divided into high-pH SCC and near-
neutral-pH SCC [8–11]. High-pH SCC often occurs in places where cathodic protection (CP)

Metals 2022, 12, 334. https://doi.org/10.3390/met12020334 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12020334
https://doi.org/10.3390/met12020334
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0001-9672-270X
https://doi.org/10.3390/met12020334
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12020334?type=check_update&version=2


Metals 2022, 12, 334 2 of 17

is strong with localized pH values higher than nine, while near-neutral-pH SCC usually
takes place in weak-CP or no-CP areas [12,13]. The above situations can be more severe,
as the service condition is much more complex in subsea environments. Moreover, the
penetration of seawater into the gaps will promote the peeling of coatings, creating a more
complex corrosion environment. Therefore, it is believed that high-pH or near-neutral-pH
environments with a higher concentration of chloride ions can form under peeled coatings,
and SCC is easily initiated in such situations [14,15].

Many studies have categorized the mechanisms of SCC into three ways, i.e., anodic
dissolution (AD), hydrogen embrittlement (HE), and their mixed influences [16,17]. Like
terrestrial pipelines, subsea pipelines were also installed with CP. Therefore, once the
coating is destroyed or cathodically disbanded by over-CP, seawater will permeate into
the gaps and lead to corrosion [18]. The SCC caused by HE is a severe environmental type
of failure that affects almost all metals and alloys [19]. Studies indicated that the cathodic
reaction of X70 steel in deep-seawater environments is hydrogen evolution [20,21]. The
precipiation of hydrogen may be due to corrosion in aqueous media (including pickling),
excessive CP, electroplating (without baking), welding by using damp electrodes, hydrogen
gas (if moist) used as a coolant in generators, etc. Hydrogen can initially be present, either
externally or internally, within the bulk of a structural alloy. The introduced hydrogen
atoms can be adsorbed on the electrode surface and diffused to the internal metal matrix.
As a result, the slip resistance of the dislocation decreases, and the dislocation density
increases simultaneously. When the hydrogen concentration reaches the threshold value,
the main dislocations are amalgamated at the aggregation source, resulting in a local shear
stress and promoting the initiation of cracks. Therefore, the cathodic hydrogen evolution
plays a significant role in the SCC susceptibility of X70 steel in the simulated seawater
environment. Although HE has been extensively studied by many researchers, neither a
clear interpretation nor a unified recognition of the mechanics has been achieved yet.

In recent years, the most recognized mechanisms of HE mainly includes stress-induced
hydride formation and cleavage [22], hydrogen-enhanced localization plasticity (HELP)
model [23], and hydrogen-enhanced decohesion (HEDE) [24,25]. Generally, the HELP
model is more suitable for plastic fracture, and HEDE is more suitable for brittle fracture.
Although various mechanisms have been proposed, an accurate understanding of the effect
of hydrogen on the SCC behavior of X70 pipelines is still insufficient. Electrochemical
methods based on the oxidation of reduced hydrogen absorbed in metals and the slow
strain rate test method are still powerful tools for studying the effect of hydrogen on the
SCC behavior of metals.

In this paper, the effect of hydrogen on the SCC process was investigated with the
electrochemical hydrogen permeation method. A great deal of attention has been paid to
the effect of the hydrogen current density on the SCC behavior under high hydrostatic
pressure. The critical hydrogen concentration of the SCC susceptibility transition point
of X70 pipeline steel was confirmed by calculating the average hydrogen density on the
surface at various hydrogen-charging current densities.

2. Materials and Methods
2.1. Material and Samples

Slow strain rate tensile (SSRT) test specimens were manufactured with a rolled X70
steel sheet. The X70 steel was provided by Nanjing Iron & Steel United Co., Ltd., Nan-
jing, Jiangsu, China. The schematic diagram is represented in Figure 1. The chemical
compositions were 0.045 wt% C, 1.53 wt% Mn, 0.013 wt% P, 0.0036 wt% S, 0.20 wt% Si,
0.048 wt% V, 0.030% wt% Cr, 0.0031 wt% Cu, 0.020 wt% Ni, 0.15 wt% Mo, and Fe-balanced.
After polishing and cleaning, a dehydrogenation procedure was performed, by annealing
the X70 specimens at 200 ◦C for 2 h and slowly cooling them to room temperature in an
automatic furnace with a nitrogen inert environment. Prior to each test, the SCC specimens
were ground in a longitudinal direction by a successive emery paper up to 2000 grit and
then embedded in an epoxy resin with a working area of 0.75 cm2. Then, the specimens
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were rinsed with deionized water, degreased in dehydrated ethanol and acetone with
ultrasonic cleaning apparatus and subsequently dried in air.
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Figure 1. Schematic diagram of slow strain rate tests specimens.

2.2. Cathodic Hydrogen Charging

Cathodic hydrogen-charging specimens were prepared in duplicate for hydrogen
concentration measurements and SSRT tests. Hydrogen charging tests were carried out in a
0.2 mol/L NaOH solution and poisoned with 0.25 g/L thiourea as a hydrogen recombina-
tion inhibitor at room temperature. The hydrostatic pressures for hydrogen charging were
0.1 and 5 MPa, which were pressurized by high-purity nitrogen. Before each experiment,
the electrolyte was de-oxygenated by pure nitrogen bubbling for 1 h. The charging current
densities employed were in the range of 10–1000 mA/cm2, while the charging time varied
from 2 to 24 h.

2.3. Hydrogen Concentration Measurement

After hydrogen charging was finished, some specimens were cleaned with a 0.2 mol/L
NaOH solution once and then quickly transferred to a 0.2 mol/L NaOH solution to test
the hydrogen concentration. Before each experiment, the electrolyte was deoxygenated by
pure nitrogen bubbling for 1 h and kept until the test process was terminated (throughout
the whole test process). The tests were carried out using a three-electrode electrochemical
cell with a saturated calomel electrode (SCE) as the reference electrode and a platinum
sheet as the auxiliary electrode. An additional potential of +168 mV was applied to the
work electrode to monitor the anodic current variation. To obtain the hydroxide current,
this anodic current should be corrected by subtracting the background current, which was
obtained from the blank experiments with uncharged specimens.

2.4. SSRT Test

The SSRT method was used to investigate the SCC behavior of X70 steel after cathodic
hydrogen charging in a simulated 500 m deep seawater environment. SSRT tests were
conducted on an electrochemical slow strain rate machine (LF-100-201-V-304, Thermo
Electron Corporation, Waltham, MA, USA), with a strain rate of 1.2 × 10−6 s−1. The
control loop of the slow strain rate machine was crosshead displacement-driven by a servo
motor. The solution used in the tests was artificial seawater with pH of approximately 8.0
and pressurized by high-purity nitrogen to about 5 MPa. The test temperature was set
at the ambient environment (approximately 25 ◦C). All the tensile tests were performed
without the use of an extensometer. In order to calculate the strain, the gauge lengths of
the specimens were marked and measured before and after fracture. During the test, the
stress–strain curve was recorded to compare the ductile loss of the specimens. After failure,
the percentage of elongation and the area reduction of each specimen were calculated after
removing corrosion products. In addition, the fracture morphologies were observed using
a scanning electron microscope. Each test was reproduced at least three times to ensure
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the reliability of experimental data. Afterwards, the cross-sectional morphologies of the
fracture were observed to investigate the fracture location and cracking mode.

2.5. Hydrogen Analysis

The content of hydrogen in the metal matrix can be determined by the electrochemical
oxidation method. When the charged sample is in an anodic electric field and in a NaOH
solution, the hydrogen atoms in a subsurface diffuse from the metal matrix to the electrode
surface. It can be oxidized to H+ to form a hydroxide current density (iH) on the electrode
surface shown in Equation (1):

H → H+ + e−. (1)

The iH has a proportional relationship with the hydrogen atoms density on the metal
surface. The hydrogen damage susceptibility can be evaluated by the adsorbed hydrogen
concentration (C) as calculated with iH and the quantity of electric charge (Q), where Q can
be acquired from the integration value of the iH–t curve. The relationship of C with Q is
shown in Equation (2), which is an established method, and it was firstly introduced by
Yan et al. [26]:

C =
Q

zFv
, (2)

where F is the Faraday constant, v is the effective volume of the specimen, and z is the
electronic number.

Investigations indicate that there is a square root relationship between the adsorbed
hydrogen concentration and the hydrogen-charging current density, shown as following:

C ∝ i1/2
c . (3)

Cathodic hydrogen charging is widely used as an efficient way for the hydrogen
charging of metallic materials. The hydrogen retention ratio represents the relationship
between the inner hydrogen diffusion rate and the outer hydrogen-biding rate, and it is
shown in Equation (4):

R =
Q

ict0
, (4)

where R is the hydrogen retention ratio and t0 is the hydrogen-precharging time. From
Equations (2)–(4), we can get the square root relationship [26] between R and ic, as shown
in Equation (5):

R ∝ i−1/2
c . (5)

An anodic potential of +168 mV was applied to the blank specimen to test the back-
ground current i0. The hydroxide current iH was obtained from the anodic current at +168
mV by removing the effect of the background current, as illustrated in Figure 2.
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of X70 steel under a 0.1 MPa hydrostatic pressure.

3. Results
3.1. Effect of the Hydrostatic Pressure on the Hydrogen Permeation Behavior of X70 Steel

Figures 3 and 4 depict the variation of the hydroxide current iH of the X70 specimens
with the time at the condition of different cathodic hydrogen-charging times at 0.1 and
5 MPa hydrostatic pressures. From the results, we can see that the hydroxide current
iH increased with the charging time under different hydrostatic pressures. The electric
quantity Q can be obtained by integrating every single iH–t curve, and the adsorbed
hydrogen concentration C can be calculated from Equation (2). Figure 5 shows the variation
of the adsorbed hydrogen concentration with the time under 0.1 and 5 MPa hydrostatic
pressures. With the extension of the hydrogen-charging time, the concentration of the
adsorbed hydrogen increased gradually and tended to be stable. Comparing the hydrogen
permeation kinetics curves under different hydrostatic pressures, we can see that both the
hydrogen permeation speed and the quantity were promoted by the hydrostatic pressure.

3.2. Effect of the Hydrogen-Charging Current Density on the Hydrogen Permeation of X70 Steel
under High Hydrostatic Pressure

Based on the analysis above, the hydrostatic pressure promoted the hydrogen perme-
ation rate and the permeation quantity of X70 steel under a constant hydrogen-charging
current density. In this study, the effect of the cathodic hydrogen-charging current density
on the hydrogen permeation behavior was also studied. Figure 6 depicts the variation of iH
with the time under various current densities of 10, 25, 50, 100, 200, and 1000 mA/cm2 for
24 h.

Figure 7 shows the variation of the adsorbed hydrogen concentration C with the
charging current density of X70 steel. It depicts that the average hydrogen concentration
increased with the charging current density, and a linear relationship can be found with the
square root value of the charging current density. It was in association with Equation (6):

C = (1.730± 0.223) + (1.047± 0.223)× i1/2
c . (6)
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The hydrogen retention rate (R) can be calculated through Equation (4). Figure 8 rep-
resents the variation of R with the charging current density. It depicts that the R decreased
as the ic increased. Besides, a linear relationship with the reciprocal square root value of
the charging current density can be detected, and it was associated with Equation (7):

R = (−2.533± 0.216) + (1.094± 0.216)× i−1/2
c . (7)
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after the 24 h hydrogen charging of X70 steel under the 5 MPa hydrostatic pressure.

Through the analyses above, we drew the conclusion that the average hydrogen con-
centration rose with the hydrogen-precharging current density. Meanwhile, the efficiency
was reduced with the increases of the hydrogen-precharging current density.

3.3. Effect of the Hydrogen Charging on the SCC Susceptibility of X70 Steel under High
Hydrostatic Pressure
3.3.1. SSRT Tests

Figure 9 shows the SSRT results of X70 steel under a simulated 500 m deep seawater
environment with different current densities of 10, 25, 50, 100, 200, and 1000 mA/cm2. The
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elongation (δ), area reduction (ψ), and true strain (ε) of the SSRT experiments are listed in
Table 1. The parameters were obtained through the following equations:

δ = ∆L/L × 100%, (8)

ψ = ∆A/A0 × 100%, (9)

ε = ln(1 + ∆L/L), (10)

where ∆L is the length variation after fracture, ∆A is the cross-sectional area after fracture,
and L is the gauge length of the specimen.
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Figure 9. Stress–strain curves of 24 h hydrogen precharging with different current densities in the
simulated 500 m deep seawater environment.

Table 1. The elongation rates (δ), area reductions (ψ), and true strains (ε) of the slow strain rate tensil
(SSRT) after 24 h hydrogen charging with different current densities.

Parameter
Hydrogen-Charging Current Density (mA/cm2)

0 10 25 50 100 200

δ (%) 36.7 ± 0.6 35.8 ± 0.3 36.9 ± 0.4 40.6 ± 0.5 33.3 ± 0.6 30.9 ± 0.9
ψ (%) 82.1 ± 0.2 82.5 ± 0.1 82.6 ± 0.2 81.8 ± 0.2 78.2 ± 0.5 72.7 ± 0.6
ε (%) 1.72 ± 0.01 1.74 ± 0.01 1.75 ± 0.01 1.70 ± 0.02 1.52 ± 0.04 1.30 ± 0.05

Comparing the series test results, we can see that hydrogen charging had a few effects
on the yield strength (σs) but a distinct effect on the elongation of X70 steel under the
500 m seawater environment. No obvious change of δ can be observed for the hydrogen-
precharging current density lower than 25 mA/cm2. As the hydrogen-precharging current
density reached 50 mA/cm2, δ increased. However, when the current density continued to
increase to higher than 100 mA/cm2, δ decreased again.

From the result, we can see that the elongation rate (35.8%) at the 10 mA/cm2

hydrogen-precharging current density was slightly reduced compared to that of the speci-
men without hydrogen precharging (36.7%). The elongation rate (35.9%) at the 25 mA/cm2

hydrogen-precharging current density was similarly to that of the specimen without
hydrogen precharging (36.7%). When the hydrogen-charging current density reached
50 mA/cm2, the elongation rate rose to 40.6%. As the current density kept increasing
to 100 mA/cm2, the elongation rate was reduced as the current density increased. The
variations of the area reduction (ψ) and the true strain (ε) with the hydrogen-charging
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current density were in association with each other. When the hydrogen-precharging
current density was lower than 25 mA/cm2, both the area reduction (ψ) and the true strain
(ε) had a slightly shift to the more positive side. When the hydrogen-precharging current
density was higher than 50 mA/cm2, both the area reduction (ψ) and the true strain (ε) had
an obvious shift to the more negative side.

The elongation rate loss (Iδ), area reduction loss (Iψ), and true strain loss (Iε) were cal-
culated to analyze the variation of the SCC susceptibility with the hydrogen-charging current
density. Generally, the greater these indexes values are, the greater the SCC susceptibility is.
Three SCC susceptibility parameters were calculated use Equations (11)–(13), respectively:

Iδ =
(

1− δs

δ0

)
× 100%, (11)

Iψ =

(
1− ψs

ψ0

)
× 100%, (12)

Iε =
(

1− εs

ε0

)
× 100%, (13)

where δs, ψs, and εs are the elongation rate, area reduction, and true strain after hydrogen
charging, respectively; δ0, ψ0, and ε0 are the elongation rate, area reduction, and true strain
without hydrogen charging. The three SCC susceptibility parameters results are depicted
in Figure 10.
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Figure 10. Variation of the stress corrosion cracking (SCC) susceptibility with the hydrogen-charging
current density in the simulated 500 m deep seawater environment.

When the hydrogen-precharging current density was relatively lower than 25 mA/cm2,
slight decreases of Iψ and Iε were observed and a slight fluctuation of the Iδ was detected.
When the hydrogen-precharging current densities were relatively higher than 25 mA/cm2,
all the three parameters exhibited an obvious shift to the more positive side, except a valley-
like decrease of Iδ at 50 mA/cm2 detected. As the analyses above, the SCC susceptibility of
X70 steel decreased first and then increased with the hydrogen-charging current density.
Iψ and Iε exhibited the lowest SCC susceptibility at the 25 mA/cm2 hydrogen-precharging
current density. The Iδ exhibited the lowest SCC susceptibility at the 50 mA/cm2 hydrogen-
precharging current density.
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3.3.2. SEM Morphologies of the Fracture Surface

The SEM morphology of the fracture surface in each situation is shown in Figure 11. As
shown in Figure 11(a1,a2), an obvious necking with a certain degree of a brittle fracture zone
could be observed for the specimen without hydrogen charging. The necking increased
gradually and the brittle fracture zone extended continuously, when the hydrogen-charging
current densities were 10 and 25 mA/cm2, as shown in Figure 11(b1,b2). With the current
density increased, the necking shrunk gradually and the fracture surface tended to be
smoother, as depicted in Figure 11(c1,f2), which represented a more noble brittleness
characteristic of the X70 steel. Additionally, the fracture surfaces were more likely to
display the quasi-cleavage morphologies. Tearing edges and dimples, as well as secondary
cracks, can be detected almost in all fracture surfaces.
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Figure 11. SEM morphologies of the fracture surface of the SSRT specimens at hydrogen-precharging
current densities of 0 mA/cm2 (a1,a2), 10 mA/cm2 (b1,b2), 25 mA/cm2 (c1,c2), 50 mA/cm2 (d1,d2),
100 mA/cm2 (e1,e2), and 200 mA/cm2 (f1,f2).

The SEM morphologies of the adjacent side face of the fracture in each situation are
shown in Figure 12. Microcracks can be found in the side faces of all the specimens. The
crack development orientation was not intergranular, like zigzag but approximately a
straight line, which indicated the transgranular development mode of all these cracks.
Thus, the SCC development mode of X70 steel with hydrogen precharging in the simulated
seawater environment was mostly transgranular stress corrosion cracking (TGSCC).

Some microcracks across the whole corrosion pits were detected during the process
of observing the side face cracks, which are shown in Figure 13. These cross-microcracks
revealed that the cracks were initiated at the corrosion pits in priority and then extended.
Furthermore, more cracks in sizes and amounts in the zone concentrated with more corro-
sion pits. This illustrated that hydrogen promoted the anodic dissolution of X70 steel in the
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simulated seawater environment. Meanwhile, the synergistic effects of the hydrogen and
anodic dissolution led to the SCC.
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4. Discussion

Wang et al. [27] researched the effect of hydrogen on the fracture toughness KIQ of
X70 steel using the electrochemical hydrogen precharging method. Their result shows that
when the hydrogen-precharging current density was relatively lower than 25 mA/cm2,
hydrogen promoted KIQ for a slightly increase. They defined this current density as
the critical hydrogen-charging current density. When the current density was relatively
lower than this value, the hardening effect could increase the KIQ by 11.8% at maximum.
However, when the current density was relatively higher than this value, KIQ decreased, as
the hydrogen charging current density increased. As high as the current density increased
up to 1000 mA/cm2, KIQ decreased by 13.7%. This kind of effect was also observed in
pure iron [28]. Other researches [29,30] also represented that decreasing of the fracture
toughness KIQ of X series steel (X60, X70, X80, and X100) needs a sufficiently high hydrogen-
precharging current density or a sufficiently long hydrogen-precharging time. Therefore,
the hydrogen embrittlement of pipeline steel needs a sufficiently high hydrogen density.
It is in association with our experiment result that the variation of the SCC susceptibility
decreased first and then increased with the rising of the hydrogen-charging current density,
which means the non-linearity relationship of the hydrogen effect on the SCC susceptibility.
There exists a critical hydrogen current density that corresponds with the inflection point of
the SCC susceptibility. This can be interpreted by using the hydrogen-induced local plastic
model [31,32]. The diffused hydrogen in the metal may concentrate in the dislocation
or elastic stress field and form into a Cottrell air mass. The distribution of the Cottrell
air mass departs the dislocation and the elastic stress field and reduces their synergistic
effect simultaneously. Therefore, the slip resistance of dislocation can be reduced, and the
dislocation density can be promoted. As the hydrogen concentration is high enough, the
main dislocation would accumulate and integrate at the dislocation source. As a result,
the local shear stress is produced, and it increases the SCC susceptibility by promoting
the initiation and growth of the crack. The fundamental principle behind the hydrogen
embrittlement mechanism is that the presence of hydrogen in the lattice reduces the bond
strength, and this leads to rupture at lower levels of stress [33,34].

The fracture morphologies depicted the brittle fracture zone was continuously ex-
tended as the hydrogen-charging current density increased. All the fractures depicted
quasi-cleavage caused by the intensification of hydrogen embrittlement and the inhibition
of anodic dissolution. It could be attributed to the residual hydrogen atoms concentrated
in the traps or grain boundaries. As the hydrogen content reached the threshold value, it
could lead to hydrogen embrittlement by the hydrogen-induced hardening impact [35,36].
According to the result of SSRT shown in Figure 8, the critical hydrogen-charging current
densities Iψ and Iδ of the SCC susceptibility can be obtained as 25 and 50 mA/cm2, respec-
tively. Generally, the value of 25 mA/cm2 should be taken as the hydrogen-precharging
current density for the SCC susceptibility reflected by Iψ was always better than for Iδ.
However, whether the value was actually the minimum of the SCC susceptibility is unclear.
To obtain the minimum and more precise result, more experimental samples and more
accurate measurements are needed. Therefore, the critical charging current value should be
in the range of 25–50 mA/cm2 in our tests. Additionally, the critical value means a competi-
tion mechanism between hydrogen-induced plasticity and hydrogen embrittlement [37–39].
It is often considered that hydrogen traps are expected to mitigate hydrogen embrittlement
by reducing the local hydrogen concentration at crack initiation sites [40,41]. Therefore,
for a relatively low concentration of hydrogen atoms, the trap sites play the main role in
controlling the elongation and area reduction loss of the X70 steels.

5. Conclusions

In this study, the effect of the hydrogen permeation on the SCC behavior of X70 steel
was studied by electrochemical tests, SSRT tests, as well as morphology characterizations.
A possible mechanism about the effect of hydrogen on the SCC behavior of X70 steels was
proposed. The main conclusions are as follows:
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(1) The concentrations of the adsorbed hydrogen in X70 steel after hydrogen precharg-
ing under different hydrostatic pressures increased gradually and tended to be steady with
the charging time. A high hydrostatic pressure promoted the hydrogen permeation of X70
pipeline steel by promoting the permeating rate and quantity.

(2) The adsorbed hydrogen concentration increased with the increase of the hydrogen-
precharging current density, satisfying the relationship of C ∝ (1.047± 0.223)× i1/2

c . The
hydrogen retention rate was reduced with the increase of the hydrogen-precharging current
density, satisfying the relationship of R ∝ (1.094± 0.216)× i−1/2

c .
(3) The SCC susceptibility of X70 steel decreased first and then increased with the

hydrogen-charging current density. The area reduction loss (Iψ) and the true strain loss
(Iε) exhibited the lowest SCC susceptibility at the 25 mA/cm2 hydrogen-precharging
current density. The elongation rate loss (Iδ) exhibited the lowest SCC susceptibility at
the 50 mA/cm2 hydrogen-precharging current density. The critical charging current value
should be in the range of 25–50 mA/cm2.
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Abbreviations

SCC stress corrosion cracking
SSRT slow strain rate tensile
CP cathodic protection
AD anodic dissolution
HE hydrogen embrittlement
HELP hydrogen-enhanced localization plasticity model
HEDP hydrogen-enhanced decohesion
SCE saturated calomel electrode
TGSCC transgranular stress corrosion cracking
IC (mA/cm2) hydrogen-charging current density.
iH (mA/cm2) hydroxide current density
C (10−6 mol/cm3) hydrogen concentration
Q (C) electric charge quantity
R (%) hydrogen retention ratio
t0 (s) Hydrogen-precharging time
σs (MPa) yield strength
δ (%) elongation rate
ψ (%) area reduction
ε (%) true strain
Iδ (%) elongation rate loss
Iψ (%) area reduction loss
Iε (%) true strain loss
KIQ (MPa·m1/2) fracture toughness
∆L (m) length variation after fracture
∆A (m2) cross-sectional area after fracture
L (m) gauge length
A (m2) original sectional area
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