Article # Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB₂, Al₃Ti, and Al₃Zr Jianqiang Wu¹, Qilin Ruan¹, Simin Chen¹, Chuanchao Meng¹, Zhengbing Xu¹, Chunhua Wei¹, Hongqun Tang¹,* and Junsheng Wang^{2,3},* - Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials, Center of Ecological Collaborative Innovation for Aluminium Industry in Guangxi, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; w1249433210@163.com (J.W.); CQPSRuanQiLin@163.com (Q.R.); a1321039179@163.com (S.C.); 15216729719@163.com (C.M.); xuzhb@gxu.edu.cn (Z.X.); 20150071@gxu.edu.cn (C.W.) - ² School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China - Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China - * Correspondence: hqtang@gxu.edu.cn (H.T.); junsheng.wang@bit.edu.cn (J.W.) Abstract: Al-Ti-B intermediate alloys are widely used as grain refiners in aluminum alloys owing to the presence of Al₃Ti and TiB₂ phases. However, the existence of Zr in aluminum alloy melts often results in coarse grain size, leading to Al-Ti-B failure called Zr poisoning. There are three kinds of poisoning mechanisms related to TiB₂, Al₃Ti, and a combination of TiB₂ and Al₃Ti for Zr. First, Zr forms ZrB₂ or Ti₂Zr with TiB₂ in Al-Ti-B to reduce the nucleation ability. Second, Zr existing in the aluminum melt with a high melting point Al₃Zr then attracts Ti to reduce the dispersion of Ti as a growth inhibitor. Third, Zr reacts with Al₃Ti on TiB₂ surface to form Al₃Zr, thereby increasing the degree of mismatch with Al and diminishing the refiner's ability as a nucleation substrate. To gain a better understanding of the mechanism of Zr poisoning, the first principle was used in this study to calculate the adhesion works $(ZrB_2//Al_3Ti)$, $(Ti_2Zr//Al_3Ti)$, $(Al_3Zr//Al_3Ti)$, $(Al_3Ti//Al)$, $(TiB_2//Al_3Zr)$, and $(Al_3Zr//Al)$, as well as the surface energy of Al_3Zr and adsorption energies of Al to Al₃Ti or Al₃Zr. The results demonstrated that Zr poisoning originated from the second guess. Zr element exiting in aluminum melt led to the formation of an Al₃Zr (001) surface. The interfacial adhesion work of Al_3Zr (001)// Al_3Ti (001) was not weaker than that of TiB_2 // Al_3Ti . As a result, Al₃Zr first combined with Al₃Ti to significantly decline the adsorption of Al₃Ti (001) on Al, losing its role as a nucleating agent and grain coarsening. Overall, to prevent failure of the grain refiner in Zr containing aluminum melt, the adhesion work interface between the generated phase of the grain refiner and Al₃Zr must remain lower to avoid the combination of the generated phase of grain refiner with Al₃Zr. In sum, these findings look promising for evaluating future effects of grain refinement in Zr containing aluminum melt. **Keywords:** first principles calculation; adhesion work; adsorption energy; grain refiner; Zr poisoning mechanisms Citation: Wu, J.; Ruan, Q.; Chen, S.; Meng, C.; Xu, Z.; Wei, C.; Tang, H.; Wang, J. Insights into Poisoning Mechanism of Zr by First Principle Calculation on Adhesion Work and Adsorption Energy between TiB₂, Al₃Ti, and Al₃Zr. *Metals* **2022**, *12*, 286. https://doi.org/10.3390/met12020286 Academic Editor: Ruslan Z. Valiev Received: 30 November 2021 Accepted: 1 February 2022 Published: 6 February 2022 **Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). #### 1. Introduction Aluminum is a metal with lower cost and lighter weight, thereby widely used in furniture, automobile, aerospace, and navigation. However, higher strength and toughness aluminum alloys are increasingly required for various practical applications. In this regard, grain refinement could be used to improve the microstructure, strength, and toughness of aluminum alloys, as well as reduce defects like component segregation, shrinkage porosity, and cracking. Metals 2022, 12, 286 2 of 14 Among refiners, Al-5Ti-1B is widely used in various fields. With the progress of time, three nucleation mechanisms take place: boride particle theory, peritectic reaction theory, and double nucleation theory [1,2]. Meanwhile, TiB₂ employed as a heterogeneous core with a high melting point possesses an orientation relationship between TiB₂ (0001)//Al (111) and Al. In this respect, Cibula et al. [3] proposed the boride particle theory with TiB₂ as the main nucleation core. By comparison, the peritectic reaction theory mainly considers Al₃Ti phase precipitated in the refiner as the nucleation core. For instance, Crossley et al. [4] proposed a peritectic reaction (L + Al₃Ti $\rightarrow \alpha$ - Al) nucleation. However, both theories suffer from defects. For example, Gru'zleski et al. [5] directly added large amounts of TiB₂ particles to the melt and noticed the possible exclusion of TiB₂ toward the aluminum grain boundary, showing TiB₂ is not the main nucleating material. On the other hand, Ti content introduced into the refiner often does not reach 0.01 wt.%, thereby preventing the occurrence of peritectic reactions due to the very far lower Ti content than the level of peritectic reaction. The latest theory has to do with the dual nucleation theory, suggesting the formation of a thin layer of Al₃Ti on the TiB₂ surface. In this regard, Jones et al. [6] reported the easy segregation of Ti on TiB₂ surface by calculating the chemical formula in the melt. Qi et al. [7] noticed higher Ti content around TiB2 in the refined aluminum alloy than that around TiB₂ in the refiner. Fan et al. [8] observed two-dimensional Al₃Ti by transmission electron microscopy. Schumacher et al. [9] recorded coating of a TiB₂ surface with Al₃Ti by transmission imaging after adding the refiner to aluminum-based glass alloy, further confirming the reliability of the double nucleation theory. For aluminum alloys containing Zr, the effect of Al-5Ti-1B refiner would be significantly reduced [10]. Some studies dealing with Zr poisoning have so far been reported, and three kinds of Zr poisoning mechanisms have been recorded: targeting TiB_2 , Al_3Ti and $(TiB_2//Al_3Ti)$. Jones and Pearson suggested the association between Zr and TiB_2 . They first proposed the replacement of Ti atoms by Zr on a TiB_2 surface in combination with boride particle theory. Under these conditions, ZrB_2 was also formed on TiB_2 surface, thereby affecting the ability of TiB_2 as a nucleation substrate. Wang et al. also noticed the associated Zr to TiB_2 and confirmed the dual nucleation theory through transmission imaging by observing Zr atoms on TiB_2 refiner surface in Al alloys containing Zr with Ti_2Zr formed on the surface. In this case, Zr may have caused the dissolution of Al_3Ti bimetallic compounds formed on the surface of TiB_2 . Johnsson et al. [11] employed the peritectic reaction theory to propose Zr poisons free Al_3Ti in the melt, as well as a combination of Al_3Ti with Al_3Zr forming ternary compounds. The last kind of guess consisted of Zr poisoning $(TiB_2//Al_3Ti)$, where Zr reacted with Al_3Ti thin layer on the TiB_2 surface, and Zr replaced Ti atom in Al_3Ti . In the present study, vasp program was used to carry out calculations. For dual nucleation theory, calculations corresponding to three kinds of guesses for Zr poisoning mechanisms were performed. The first consisted of an Al melt without Zr: TiB $_2$ (0001)//Al $_3$ Ti (112), Al $_3$ Ti (112)//Al (111). The second dealt with Zr poisoning TiB $_2$ by calculating the works of TiB $_2$ -ZrB $_2$ (0001)//Al $_3$ Ti (112) and TiB $_2$ -Ti $_2$ Zr (0001)//Al $_3$ Ti (112). The third had to do with Zr adsorption free Ti, where the minimum energy surface of Al $_3$ Zr was first calculated followed by Al $_3$ Ti (112)//Al $_3$ Zr (114) and Al $_3$ Ti (001)//Al $_3$ Zr (001). Fourth, Zr poisoned Al $_3$ Ti on a TiB $_2$ surface was explored by calculating TiB $_2$ (0001)//Al $_3$ Ti-Al $_3$ Zr (112) and TiB $_2$ (0001)//Al $_3$ Zr (114). Finally, calculations related to Al $_3$ Ti and Al $_3$ Zr in contact with an Al melt were performed, including Al $_3$ Ti (001)//Al (001), Al $_3$ Zr (001)//Al (001), Al $_3$ Ti-Al $_3$ Zr (112)//Al (111), and Al $_3$ Zr (114)//Al (111). Note that Al atoms were adsorbed by Al $_3$ Ti and Al $_3$ Zr. The three kinds of guesses for the Zr poisoning mechanism and the first principle calculations are summarized in Table 1. Metals **2022**, 12, 286 3 of 14 | Zr Poison Target | Toxic Products | Adhesion Work Calculation | Adsorption Energy Calculation | |------------------------------------------------|-----------------------------------------|----------------------------------------------------|--------------------------------------| | Not containing Zr in Aluminum melt | | TiB ₂ (0001)//Al ₃ Ti (112) | | | Not containing 21 in Aranmani men | | Al ₃ Ti (112)//Al (111) | Al ₃ Ti (112) adsorbed Al | | TiB_2 | ZrB_2 | TiB_2 - ZrB_2 (0001)// Al_3Ti (112) | | | 1102 | ${ m Ti}_2{ m Zr}$ | TiB_2-Ti_2Zr (0001)// Al_3Ti (112) | | | | | $Al_3Ti (001)//Al_3Zr (001)$ | | | Free Al₃Ti | (A1 T* / /A1 77) | Al ₃ Ti (001)//Al (001) | Al ₃ Ti (001) adsorbed Al | | Free Al ₃ II | $(Al_3Ti//Al_3Zr)$ | $Al_3Zr (001)//Al (001)$ | Al_3Zr (001) adsorbed Al | | | | Al ₃ Ti (112)//Al ₃ Zr (114) | | | | | $TiB_2 (0001) / Al_3 Ti-Al_3 Zr (112)$ | | | Al ₃ Ti on TiB ₂ surface | (TiB ₂ //Al ₃ Zr) | Al_3Ti-Al_3Zr (112)// Al (111) | | | | $(11D_2//Al_3Zr)$ | $TiB_2 (0001) / Al_3 Zr (114)$ | | | | | Al ₃ Zr (114)//Al (111) | Al ₃ Zr (114) adsorbed Al | **Table 1.** The three kinds of guesses for Zr poisoning mechanism and the first principle calculations. ## 2. Computing Method ## 2.1. First Principle All simulations in this paper were carried out by vasp5.4 package. To this end, crystal models of various compounds were first established with interface cut by Material studio software. Next, TiB_2 (0001), Al_3Ti (112), Al (111), and other surfaces were all obtained, and vasp package was optimized to yield stable structures and surface energies. Further calculations were then carried out under stable structures, and the atomic adsorption calculations were performed on the surface followed by calculations of adhesion works at the interfaces. The wave function was generated by the program itself, and charge density was induced by superimposing charges using the conjugate gradient method. The self-consistent convergence energy was set to 1E-5, the pseudo-potential was PBE, and truncation energy was $1.0 \sim 1.3$ times the energy of the highest pseudo-potential of elements in the compound. The vacuum layer thickness adopted a height of 15~Å, and the interface was calculated by the relaxation method. The adsorption calculations were based on the method of relaxing the upper three layers and fixing the lower three layers. # 2.2. Adhesion Work The adhesion work can be defined as the energy required to separate the interface and the reversible work per unit area required to separate the X and Y condensed phase interface to generate two free surfaces. The adhesion work can mainly be reflected in the stability and bonding ability between the two interfaces, where bigger energies would yield more stability. The calculation formula can be expressed by Equation (1): $$W_{ab} = (E_{XY} - E_X - E_Y)/A$$ (1) where E_{XY} represents the total interface energy when X is combined with Y, E_X and E_Y are, respectively, the total surface energies of surfaces X and Y, and A refers to the area of the contact surface [12,13]. #### 2.3. Surface Energy Surface energy can be defined as the energy required to create the surface of matter. In the melt, lower energy required to form the surface would lead to the easy spontaneous formation of the surface. This can be calculated according to Equation (2): $$E_{surf} = (E_{slab} - N_i E_{ibulk})/2A$$ (2) where E_{slab} represents the total energy of the surface, N_i is the number of i atoms in the structure, E_{ibulk} refers to the average atomic energy of i atoms in the single substance of the structure, and A denotes the surface area [14,15]. Metals **2022**, 12, 286 4 of 14 ## 2.4. Adsorption Energy The adsorption energy can be defined as the energy required to adsorb atoms on the surface. This can be calculated according to Equation (3): $$E_{ads} = E_{all} - E_{surf} - E_{atom}$$ (3) where E_{all} represents the total energy of the adsorption system, E_{surf} is the energy of a clean surface, and E_{atom} refers to the energy of isolated atoms [16,17]. #### 3. Results and Discussion ## 3.1. Adhesion Work TiB₂ (0001)//Al₃Ti (112) and Al₃Ti (112)//Al (111) In dual nucleation theory, TiB_2 with a high melting point (2980 °C) was taken as the base core to solidify on TiB_2 surface and form an Al_3Ti thin layer. Next, Al underwent nucleation on Al_3Ti surface to yield the orientation relationship of TiB_2 (0001)// Al_3Ti (112) and Al_3Ti (112)//Al (111). Note that dual nucleation theory was the most accepted nucleation mechanism theory to date. The formation of Al_3Ti thin layer was also confirmed by Fan [8] and Schumacher [9]. As shown in Figure 1, the graph of interface structure revealed TiB_2 (0001), Al_3Ti (112), and Al (111) all with the same atomic arrangement order. Additionally, only small differences in atomic spacing were noticed, suggesting good bonding ability between the interfaces between TiB_2 (0001), Al_3Ti (112), and Al (111). **Figure 1.** Interfaces of $TiB_2 (0001) / Al_3 Ti (112)$ and $Al_3 Ti (112) / Al (111)$. As shown in Table 2, the adhesion work of (TiB₂ (0001)//Al₃Ti (112)) was calculated as $-0.228\,\text{eV/Å}^2$, a value much greater than that of (Al₃Ti (112)//Al (111)) ($-0.139\,\text{eV/Å}^2$). The binding of Al₃Ti (112) to TiB₂ (0001) was more stable than that of Al₃Ti (112) to Al (111), revealing the experimental formation of Al₃Ti thin layer on TiB₂ surface. Accordingly, the Zr poisoning theory was further studied. **Table 2.** The initial and final interface distance, contact area, and adhesion work calculated on TiB_2 (0001)// Al_3Ti (112) and Al_3Ti (112)//Al (111). | Interfaces | Initial d (Å) | W_{AB} (eV/Å ²) | A (\mathring{A}^2) | Final d (Å) | |---------------------------------------------------|---------------|-------------------------------|--------------------------|-------------| | TiB ₂ (0001)//Al ₃ Ti (112) | 3 | -0.228 | 63.82 | 2.25 | | Al ₃ Ti (112)//Al (111) | 3 | -0.139 | 55.39 | 2.31 | #### 3.2. Adhesion Work TiB₂-ZrB₂ (0001)//Al₃Ti (112) and TiB₂-Ti₂Zr (0001)//Al₃Ti (112) The first kind of Zr poisoning guess was mainly aimed to study the action of TiB_2 particles precipitated in the refiner. Jones and Pearson suggested the replacement of Ti by Zr on TiB_2 surface to form ZrB_2 , leading to increased degree of mismatch. Wang et al. confirmed dual nucleation theory through transmission imaging, where Zr atoms existing Metals **2022**, 12, 286 5 of 14 on TiB_2 surface led to the formation of Ti_2Zr on TiB_2 surface. They believed that Zr caused the dissolution of Al_3Ti on TiB_2 surface. Thus, the interface model was calculated in both cases. As shown in Figure 2, the left part replaced all Ti ends of TiB_2 surface layer with Zr to yield ZrB_2 surface, while the right part replaced part of Ti with Zr to form a thin Ti_2Zr surface layer. Therefore, the respective values of adhesion work with Al_3Ti were calculated. **Figure 2.** Interfaces of TiB_2 - ZrB_2 (0001)// Al_3Ti (112) and TiB_2 - Ti_2Zr (0001)// Al_3Ti (112). As presented in Table 3, the adhesion work between TiB_2 - ZrB_2 (0001)// Al_3Ti (112) interface was calculated to -0.226 eV/Ų, and that between TiB_2 - Ti_2Zr (0001)// Al_3Ti (112) interface was -0.224 eV/Ų. By replacing Ti on TiB_2 surface with Zr, the binding abilities of ZrB_2 and Ti_2Zr to Al_3Ti decreased slightly by 0.002 eV/Ų and 0.004 eV/Ų, respectively. However, these reductions were too small to affect the combination with Al_3Ti surface. **Table 3.** The initial and final interface distance, contact area, and adhesion work calculated on TiB_2-ZrB_2 (0001)// Al_3Ti (112) and TiB_2-Ti_2Zr (0001)// Al_3Ti (112). | Interfaces | Initial d (Å) | W_{AB} (eV/Å ²) | A (Å ²) | Final d (Å) | |---------------------------------------------------------------------|---------------|-------------------------------|---------------------|-------------| | TiB ₂ -ZrB ₂ (0001)//Al ₃ Ti (112) | 3 | -0.226 | 63.82 | 2.47 | | TiB_2 - Ti_2Zr (0001)// Al_3Ti (112) | 3 | -0.224 | 63.82 | 2.08 | ## 3.3. Adhesion Work Al₃Ti (001)//Al₃Zr (001) and Al₃Ti (112)//Al₃Zr (114) The second kind of poisoning guess proposes Zr poisons-free Al_3Ti in the melt. Since the melting point of Al_3Ti was low, the melting upon addition of Al melt followed gradual precipitation during solidification. In this case, the Ti atoms released by melting could inhibit the growth of Al. In this view, Johnsson et al. [11] proposed that the high melting point Al_3Zr would agglomerate Ti atoms in the melt, as well as reduce the uniform dispersion of Ti in the melt and decline its growth inhibition. Xiao et al. [18] used scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) techniques to show the bounding and wrapping of Al_3Ti with Al_3Zr on Al_3Zr surface, where Al_3Zr was the core of the aggregate. In this case, Zr poisoning was caused by the combination of Al_3Ti and Al_3Zr to form Al_3 (Zr, Ti). For precipitation and crystallization of Al_3Zr in the melt with a high melting point, Liu et al. [19] determined the precipitation of $(01\overline{1})$ and (110) in Al_3Zr through transmission electron microscopy (TEM) microstructures and corresponding diffraction patterns. In the present study, multiple modeling and pair screening of Al_3Ti and Al_3Zr crystal planes revealed the existence of (110), (114), and (001) planes of Al_3Zr with the same atomic structure arrangement as Al_3Ti (110), Al_3Ti (112), and Al_3Ti (001) surface, respectively. The surface of Al_3Zr (110), Al_3Zr (114), and Al_3Zr (001) surface were shown in Figure 3. Since (110), (114), and (001) planes of Al_3Zr were the most easily combined planes with Al_3Ti , a better understanding of which crystal plane Al_3Zr would most likely crystallize or grow in the high-temperature melt can be determined. According to Equation (2), Metals 2022, 12, 286 6 of 14 the surface energies of Al_3Zr (110), (114), and (001) were calculated as -0.008 eV/Å^2 , -0.109 eV/Å^2 , and -0.136 eV/Å^2 , respectively. Hence, Al_3Zr crystallized most easily in (001) plane among the three planes. The second consisted of (114) plane, and the lowest was (110) plane. The energy of (110) plane was close to zero, and its crystallization ability was much lower than those of the other two planes. Hence, Al_3Zr (114) and Al_3Zr (001) surfaces and Al_3Ti were selected to calculate the adhesion capacities. Figure 3. Surfaces of Al₃Zr (110), Al₃Zr (114), and Al₃Zr (001). The interface of $Al_3Ti~(001)//Al_3Zr~(001)$ and $Al_3Ti~(112)//Al_3Zr~(114)$ interfaces were shown in Figure 4. As presented in Table 4, the adhesion works between $Al_3Zr~(001)$ and (114) with Al_3Ti were calculated as $-0.223~eV/Å^2$ and $-0.168~eV/Å^2$, respectively. The previous calculations of surface energy revealed $Al_3Zr~(001)$ surface as the easiest to crystallize in the melt, and its adhesion work with $Al_3Ti~(001)$ was calculated to $-0.223~eV/Å^2$. Compared to the adhesion work between $TiB_2~(111)$ and $Al_3Ti~(112)$ surface in the melt, the difference was calculated to be only 0.005~eV, confirming the heterogeneous nucleation of $Al_3Zr~$ with a high melting point in the melt to compete with $TiB_2~$ for $Al_3Ti.~$ In other words, Al_3Ti would be wrapped on $Al_3Zr~$ surface, consistent with the experimental results reported by Xiao et al. [18]. Figure 4. Interfaces of Al3Ti (001)//Al3Zr (001) and Al3Ti (112)//Al3Zr (114). **Table 4.** The initial and final interface distance, contact area, and adhesion work calculated on Al_3Ti (001)// Al_3Zr (001) and Al_3Ti (112)// Al_3Zr (114). | Interfaces | Initial d (Å) | W_{AB} (eV/Å ²) | $A (\mathring{A}^2)$ | Final d (Å) | |----------------------------------------------------|---------------|-------------------------------|----------------------|-------------| | Al ₃ Ti (001)//Al ₃ Zr (001) | 3 | -0.223 | 61.00 | 2.28 | | $Al_3Ti (112)//Al_3Zr (114)$ | 3 | -0.168 | 110.6 | 2.38 | Metals **2022**, 12, 286 7 of 14 # 3.4. Adhesion Work TiB_2 (0001)// Al_3Ti - Al_3Zr (112) and TiB_2 (0001)// Al_3Zr (114) The third kind of poisoning guess suggested the action of Zr on an Al_3Ti thin layer wrapped on a TiB_2 surface, and replacement of Ti atoms in Al_3Ti by Zr to reduce the effect of Al_3Ti . Wang et al. [20] observed the adsorption of Zr atoms on a TiB_2 (0001) surface by scanning transmission electron microscopy and showed that Zr may replace Ti of Al_3Ti on a TiB_2 surface. In the present study, two models were established. The first consisted of Zr replacing the Ti atom of Al_3Ti (112) to form Al_3Ti - Al_3Zr (112), and the second considered Al_3Zr (114) surface crystallization on a TiB_2 surface. According to Figure 5 and Table 5, when Zr replaced Ti of Al_3Ti (112),the adhesion work between Al_3Zr (112) and TiB_2 (0001) was calculated to -0.221 eV. This value was 0.007 eV lower than that of TiB_2 (0001)// Al_3Ti (112) without Zr(as shown in Table 2). The adhesion work of TiB_2 (0001)// Al_3Zr (114) was 0.027 eV higher than that of TiB_2 (0001)// Al_3Ti (112). However, the increasing or decreasing range was very small, meaning that the adhesion of Al_3Ti and Al_3Zr to TiB_2 surface was almost the same, meaning that Zr may replace the Ti atom in the representative layer. Meanwhile, the melting point of Al_3Zr represented by Zr was higher, making it easier to produce Al_3Zr (114) instead of Al_3Ti - Al_3Zr (112). **Figure 5.** Interfaces of TiB₂ (0001)//Al₃Ti-Al₃Zr (112) and TiB₂ (0001)//Al₃Zr (114). **Table 5.** The initial and final interface distance, contact area, and adhesion work calculated on TiB_2 (0001)// Al_3Ti - Al_3Zr (112) and TiB_2 (0001)// Al_3Zr (114). | Interfaces | Initial d (Å) | W_{AB} (eV/Å ²) | $A (\mathring{A}^2)$ | Final d (Å) | |----------------------------------------------------------------------|---------------|-------------------------------|----------------------|-------------| | TiB ₂ (0001)//Al ₃ Ti-Al ₃ Zr (112) | 3 | -0.221 | 63.82 | 2.28 | | $TiB_2 (0001) / Al_3 Zr (114)$ | 3 | -0.255 | 110.6 | 2.22 | #### 3.5. Adhesion Work Al₃Ti-Al₃Zr (112)//Al (111) and Al₃Zr (114)//Al (111) The previous calculations revealed that Zr may replace the Al_3Ti thin layer on TiB_2 surface. Hence, the adhesion work between Al_3Ti - Al_3Zr (112) and Al_3Zr (114) with Al (111) surface was further calculated to clarify the binding ability with Al from an energetic standpoint. The interface of Al_3Ti - Al_3Zr (112)//Al (111) and Al_3Zr (114)//Al (111) interfaces were shown in Figure 6. As illustrated in Table 6, the adhesion work of Al_3Ti - Al_3Zr (112) //Al (111) was 0.002 eV higher than that of Al_3Ti (112) //Al (111) (as shown in Table 2). Additionally, the adhesion work of Al_3Zr (114) //Al (111) was 0.013 eV lower than that of Al_3Ti (112) //Al (111), but the adhesion work of TiB2 (0001) // Al_3Zr (114) was higher than that of TiB2 (0001) // Al_3Ti (112). Thus, Zr reduced the nucleation ability in Zr-containing alloys, but with a small impact. Metals 2022, 12, 286 8 of 14 **Figure 6.** Interfaces of Al₃Ti-Al₃Zr (112)//Al (111) and Al₃Zr (114)//Al (111). **Table 6.** The initial and final interface distance, contact area, and adhesion work calculated on Al_3Ti-Al_3Zr (112)//Al (111) and Al_3Zr (114)//Al (111). | Interfaces | Initial d (Å) | W_{AB} (eV/Å ²) | $A (\mathring{A}^2)$ | Final d (Å) | |-------------------------------------------------------|---------------|-------------------------------|----------------------|-------------| | Al ₃ Ti-Al ₃ Zr (112)//Al (111) | 3 | -0.141 | 55.39 | 2.36 | | Al ₃ Zr (114)//Al (111) | 3 | -0.126 | 110.6 | 2.39 | # 3.6. Adhesion Work Al₃Ti (001)//Al (001) and Al₃Zr (001)//Al (001) The previous calculations mentioned that the presence of Zr element may lead to precipitation of Al_3Zr (001) plane crystallization in the melt, as well as the coating of Al_3Ti (001) plane on Al_3Zr (001) surface. Note that Al_3Ti - Al_3Zr (112) and Al_3Zr (114) were in contact with Al in the melt, while Al_3Ti (001) and Al_3Zr (001) were in contact with Al. Hence, their adhesion works with Al were calculated. The Al_3Ti (001)//Al (001) and Al_3Zr (001)//Al (001) interfaces were shown in Figure 7. According to Table 7, the values of adhesion work between (001) surface of (Al_3Ti and Al_3Zr) with Al were calculated as -0.140 eV/Å 2 and -0.133 eV/Å 2 , respectively. Compared to Al_3Ti (112)//Al (111), the difference was also very small, meaning good bonding abilities of Al_3Ti (001) and Al_3Zr (001) with Al (001). Figure 7. Interfaces of Al_3Ti (001)//Al (001) and Al_3Zr (001)//Al (001). Metals **2022**, 12, 286 9 of 14 | Table 7. The initial and final interface distance, | , contact area, and adhesion work calculated on | |---------------------------------------------------------------------------|-------------------------------------------------| | Al ₃ Ti (001)//Al (001) andAl ₃ Zr (001)//Al (001). | | | Interfaces | Initial d (Å) | W _{AB} (eV/Ų) | A (Å ²) | Final d (Å) | |------------------------------------|---------------|------------------------|---------------------|-------------| | Al ₃ Ti (001)//Al (001) | 3 | -0.140 | 58.98 | 2.08 | | Al ₃ Zr (001)//Al (001) | 3 | -0.133 | 64.96 | 2.09 | #### 3.7. Adsorption Energy of Al on Al₃Ti (001) or Al on Al₃Zr (001) In addition to the adhesion work used to understand the binding ability between the refiner and Al in the melt, the adsorption energy could also be employed to clarify the adsorption ability of the refiner to Al atoms. The adsorption ability of the refiner to Al atoms in the solute would determine the possible aggregation of Al atoms on its surface to form a new crystal surface. In previous calculations, the second guess of Zr poisoning confirmed the coating of Al $_3$ Ti on Al $_3$ Zr surface in the melt, with a relationship of site determined as Al $_3$ Ti (001)//Al $_3$ Zr (001). After surface energy calculations, the adsorption of Al atoms on its stable surface was calculated by considering the adsorption behavior of Al atoms on the surface. As shown in Figure 8, the following four points were considered: **Figure 8.** Surface structure and adsorption site of (a) Al₃Ti (001) and (b) Al₃Zr (001). The initial adsorption site and final site of Al_3Ti (001) and Al_3Zr (001) surfaces were shown in Figure 9. The top sites were all located above the Al atoms, as well as Zr and Ti atoms. Bridge sites were then built between Al-Zr and Al-Ti atoms, and hollows were formed in the center of Al-Zr and Al-Ti quadrilateral. In Figure 9, the adsorption site at the top site remained almost unchanged and stayed at the top site from the beginning to the end of the adsorption process. After completion of the adsorption process of the bridge site, the adsorption site shifted to the top site of the Al atom, while the adsorption site of the hollow site remained unchanged. Both the beginning and end stayed at the hollow site. Referring to Table 8 for Al_3Ti (001) surface, the energy at the hollow site was the most conducive to Al adsorption, with the adsorption energy at the hollow site calculated to -4.664 eV. The Al top site was the second priority adsorption site with an adsorption energy of -4.653 eV. For Al_3Zr (001), the Al top site consisted of the highest adsorption energy, thereby the most conducive to the adsorption of Al atoms with the energy of -3.848 eV. The second energy was obtained on the bridge site with a value calculated to -3.845 eV. However, the bridge site moved to the top site after adsorption, and the adsorption energy of Al_3Zr (001) for Al atoms was lower than that of Al_3Ti (001). This further confirmed that Metals **2022**, 12, 286 10 of 14 Al_3Ti could easily attract Al atoms when compared to Al_3Zr , and was thereby better as a core of nucleation. Figure 9. Initial and final sites of Al₃Ti (001) and Al₃Zr (001) for Al adsorption. **Table 8.** Adsorption energies of Al on Al₃Ti (001) or Al on Al₃Zr (001) surfaces, initial and final site of adsorption, and distance between adsorption end and plane top layer. | Surfaces | Initial Site | D _{Al} -sur(Å) | E _{asd} (eV) | Final Site | |--------------------------|--------------|-------------------------|-----------------------|------------| | | AlTop | 1.67 | -4.653 | AlTop | | A1 T:(001) | TiTop | 2.34 | -4.258 | TiTop | | Al ₃ Ti(001) | Bridge | 1.63 | -4.650 | AlTop | | | Hollow | 1.85 | -4.664 | Hollow | | | AlTop | 1.96 | -3.848 | AlTop | | A1 7 _{**} (001) | ZrTop | 2.96 | -2.303 | ZrTop | | $Al_3Zr(001)$ | Bridge | 1.96 | -3.845 | AlTop | | | Hollow | 2.37 | -3.069 | Hollow | # 3.8. Adsorption Energy of Al on Al₃Ti (112) or Al on Al₃Zr (114) The dual nucleation theory is the most acceptable for the refinement mechanism consisting of forming a thin layer of Al_3Ti (112) on TiB_2 (0001) surface. Previous calculations suggested greater adhesion work between Al_3Zr (114) and TiB_2 (0001) than that between Al_3Ti (112) and TiB_2 (0001). As shown in Figure 10, the adsorption energies of Al on Al_3Ti (112) or Al on Al_3Zr (114) surfaces were calculated by selecting seven points for adsorption based on the complexity of Al_3Ti (112) and Al_3Zr (114) surfaces. Figure 10. Surface structure and adsorption site of Al₃Ti (112) and Al₃Zr (114). Metals 2022, 12, 286 11 of 14 As shown in Figure 11, a total of seven adsorption points existed, with two sites at the top of Al atom and Ti atom. Three sites were selected at the bridge site: between Al-Ti atoms, between Al-Al atoms and away from Ti atoms, and between Al-Al atoms and close to Ti atoms. Hollow 1 was located at the center of Al-Al-Ti equilateral triangle, and hollow 2 was situated at the center of Al-Al-Al equilateral triangle. For adsorption of 7 sites, both the top and bridging sites crowded out the adjacent Al atoms to enter the hollow site after completion of the adsorption process. **Figure 11.** Initial and final site of Al on Al₃Ti (112) surface. In Table 9, the highest adsorption energy was obtained at bridge site 2 with an energy of -23.204 eV. The secondary preferential adsorption was observed at the top of Al with energy of -23.202 eV. The energies of all sites were greater than 20 eV, and the adsorption energy of Al $_3$ Ti (112) surface for Al atoms was about 4–5 times higher than that of Al $_3$ Ti (001). Thus, Zr atoms existing in the melt led to significantly lower adsorption capacity for refining to Al. Similarly, the nucleation core with Al $_3$ Zr (001)//Al $_3$ Ti (001) mainly formed the crystal surface of Al (001) for growth and nucleation core with TiB $_2$ (0001)//Al $_3$ Ti (112) as the base grown on Al (111) surface. Note that the surface energy of Al (001) was higher than that of Al (111). Al-related studies showed Al mainly nucleated with Al (111). As a result, Al (001) was more difficult to grow than Al (111). **Table 9.** Adsorption energy of Al on Al₃Ti (112) surface, initial and final site of adsorption, and distance between adsorption end and plane top layer. | Surface | Initial Site | D _{Al} -sur(Å) | E _{asd} (eV) | Final Site | |-------------------------|--------------|-------------------------|-----------------------|------------| | | AlTop | 1.565 | -23.202 | Hollow2 | | | TiTop | 2.007 | -22.886 | Hollow1 | | | Bridge1 | 1.984 | -22.885 | Hollow1 | | Al ₃ Ti(112) | Bridge2 | 1.528 | -23.204 | Hollow2 | | | Bridge3 | 2.185 | -22.732 | Hollow2 | | | Hollow1 | 1.940 | -22.881 | Hollow1 | | | Hollow2 | 2.177 | -22.732 | Hollow2 | As shown in Figure 12, the initial and final site of the Al adsorption site of Al_3Zr (114) were the same as those of Al_3Ti (112), with the top site located above Al and Zr atoms. A total of three sites were selected for the bridge site, namely between Al-Zr atoms, between Al-Al atoms and away from Zr atoms, and between Al-Al atoms and close to Zr atoms. Hollow 1 was located at the center of Al-Al-Zr equilateral triangle, and hollow 2 was situated at the center of Al-Al-Al equilateral triangle. Except for bridge site 1 that remained at its location after completion of the adsorption, other adsorption ends moved toward the hollow site. The original hollow site may also crowd out nearby Al atoms to form a larger hollow. Metals **2022**, 12, 286 12 of 14 Figure 12. Initial and final site of Al on Al₃Zr (114) surface. The adsorption energies of Al_3Zr (114) for Al are listed in Table 10. The most preferred adsorption point was based on hollow 2. The energy at the center of Al-Al-Al equilateral triangle was calculated to -23.695 eV, and the second was located at the top site directly above the Al atoms, thereby squeezing the Al atoms away to form a new hollow 2 with an energy of -23.058 eV. In general, hollow 2 can be considered as the optimal adsorption point. The highest adsorption energy of Al_3Zr (114) for Al was 0.491 eV superior, and the lowest adsorption energy was 0.579 eV inferior to that of Al_3Ti (112). However, the adsorption energy for Al atoms fluctuated between 22 and 23 eV when compared the whole, indicating both Al_3Ti (112) and Al_3Zr (114) surfaces with the same nucleation abilities in Al melt. **Table 10.** Adsorption energy of Al on Al_3Zr (114) surface, initial and final site of adsorption, and distance between adsorption end and plane top layer. | Surface | Initial Site | D _{Al} -sur(Å) | E _{asd} (eV) | Final Site | |---------------|--------------|-------------------------|-----------------------|------------| | | AlTop | 1.391 | -23.058 | Hollow2 | | | ZrTop | 2.169 | -22.153 | Hollow1 | | | Bridge1 | 2.188 | -22.175 | Bridge1 | | $Al_3Zr(114)$ | Bridge2 | 1.364 | -23.695 | Hollow2 | | | Bridge3 | 1.418 | -22.056 | Hollow2 | | | Hollow1 | 2.219 | -22.156 | Hollow1 | | | Hollow2 | 1.427 | -23.695 | Hollow2 | #### 4. Conclusions - (1) For the first kind of Zr poisoning guess, the adhesion work relationship between ZrB₂ and Ti₂Zr with Al₃Ti (112) surface was calculated and the results showed lower values for ZrB₂ and Ti₂Zr than TiB₂ and Al₃Ti (112). The replacement of Ti by Zr revealed reduced binding of Al₃Ti (112), but the reduction was not significant. - (2) For the second kind of Zr poisoning guess, Al_3Zr in Zr containing melt showed a high melting point and was precipitated as Al_3Zr (001). The adhesion work between Al_3Zr (001) and Al_3Ti (001) was almost the same as that between TiB_2 (0001) and Al_3Ti (112), meaning that Al_3Ti (001) would accumulate on the Al_3Zr (001) surface as precipitates. This agreed well with the experimental results reported by Xiao et al. [18]. The adsorption energy of Al on Al_3Ti (001) was only $1/5 \sim 1/4$ of that of Al on Al_3Ti (112), and the energy required to form Al (001) surface was higher than that required to form Al (111). Hence, Al_3Zr (001) would compete with TiB_2 (0001) to seize Al_3Ti in the melt and then Al_3Ti (001) crystallized on Al_3Zr (001) surface. This seriously affected the condensation of Al, thereby reducing the probability of nucleation and producing Zr poisoning effect. - (3) For the third kind of Zr poisoning guess, Zr acted on Al₃Ti (112) of the TiB₂ surface. The calculations showed higher adhesion work of TiB₂//Al₃Zr (114) than that of TiB₂//Al₃Ti (112). Thus, Al₃Ti on the TiB₂ surface may be replaced by Zr, and TiB₂ could bind to Al₃Zr. However, the calculated adhesion work and adsorption energy of the Al₃Zr (114) surface to Al illustrated Al₃Zr (114) surface with almost the same effect as Al₃Ti (112). The adhesion work and adsorption energy were similar to those Metals 2022, 12, 286 13 of 14 of Al_3Ti (112). As a result, Zr may replace Ti, but its function remained the same as that of Ti without toxic effect. **Author Contributions:** Conceptualization, H.T. and J.W. (Junsheng Wang); methodology, J.W. (Jianqiang Wu) and Q.R.; validation, J.W. (Jianqiang Wu), Q.R. and S.C.; investigation, C.M. and S.C.; resources, H.T.; data curation, Z.X.; writing—original draft preparation, J.W. (Jianqiang Wu) and C.W.; writing—review and editing, H.T. visualization, S.C.; supervision, Z.X. and C.W.; project administration, H.T.; funding acquisition, H.T., J.W. (Junsheng Wang) and Z.X. All authors have read and agreed to the published version of the manuscript. **Funding:** This research was funded by Key Projects of Regional Innovative Cooperative Development Foundation from NSFC(U20A20276), National Natural Science Foundation of China (51965005), The Natural Science Foundation of Guangxi (2018GXNSFAA281258), and Science and Technology Major Project of Nanning, Guangxi (20211004). Institutional Review Board Statement: Not applicable. **Informed Consent Statement:** Not applicable. Data Availability Statement: Not applicable. **Conflicts of Interest:** The authors declare no conflict of interest. #### References 1. Mi, L.; Wang, J.J.; Hu, Z.L. The Research Progress of TiB2 Impacts on the *Refin*. Effect of Al-Ti-B Master Alloy. *Appl. Mech. Mater.* **2014**, 3296, 391–395. [CrossRef] - 2. Wang, X.M.; Han, Q.Y. Grain Refinement Mechanism Of Aluminum by Al-Ti-B Master Alloys. In Proceedings of the Symposium on Light Metals Held during 145th The-Minerals-Metals-and-Materials-Society Annual Meeting and Exhibition, Nashville, TN, USA, 14–18 February 2016; pp. 189–193. - 3. Cibula, A. The grain refinement of aluminum alloy castings by additions of titanium and boron. J. Inst. Met. 1951, 80, 1. - 4. Crossley, F.A.; Mondolfo, L.F. Mechanism of grain refinement in aluminum alloys. JOM 1951, 3, 1143–1148. [CrossRef] - 5. Guzowski, M.M.; Sigworth, G.K.; Sentner, D.A. Role of boron in the grain refinement of aluminum with titanium. *Met. Trans. A* (*USA*) **1987**, *18a*, 603–619. [CrossRef] - 6. Jones, G.P.; Pearson, J. Factors affecting the grain-refinement of aluminum using titanium and boron additives. *Metall. Trans. B* **1976**, 7, 223–234. [CrossRef] - 7. Qi, W.J.; Wang, S.C.; Chen, X.M.; Nong, D.; Zhou, Z. Effective nucleation phase and grain refinement mechanism of Al-5Ti-1B alloy. *China J. Rare Met.* **2013**, *37*, 179. - 8. Fan, Z.; Wang, Y.; Zhang, Y.; Qin, T.; Zhou, X.R.; Thompson, G.E.; Pennycook, T.; Hashimoto, T. Grain refining mechanism in the Al/Al-Ti-B system. *Acta Mater.* **2015**, *84*, 292–304. [CrossRef] - 9. Schumacher, P.; Greer, A.L.; Worth, J.; Evans, P.V.; Kearns, M.A.; Fisher, P.; Green, A.H. New studies of nucleation mechanisms in aluminium alloys: Implications for grain refinement practice. *Mater. Sci.Technol.* 1998, 14, 394–404. [CrossRef] - 10. Mao, G.L.; Tong, G.Z.; Gao, W.L.; Liu, S.G.; Zhong, L.W. The poisoning effect of Sc or Zr in grain refinement of Al-Si-Mg alloy with Al-Ti-B. *Mater. Lett.* **2021**, *302*, 130428. [CrossRef] - 11. Johnsson, M. Influence of Zr on the grain refinement of aluminium. Metallkd 1994, 85, 786-789. [CrossRef] - 12. Zdziennicka, A.; Krawczyk, J.; Janczuk, B. Wettability and Adhesion Work Prediction in the Polymer-Aqueous Solution of Surface Active Agent Systems. *Colloids Interfaces* **2018**, 2, 21. [CrossRef] - 13. Wang, K.L.; Zhou, H.; Zhang, K.F.; Zhang, Y.S.; Feng, X.G.; Gui, B.H. A First-principles Study of Adhesion and Electronic Structure at TiN(111)/DLC Interface. *Rare Met. Mater. Eng.* **2021**, *50*, 2017–2024. - 14. Liu, Y.; Huang, Y.C.; Xiao, Z.B.; Reng, X.W. Study of Adsorption of Hydrogen on Al, Cu, Mg, Ti Surfaces in Al Alloy Melt via First Principles Calculation. *Metals* **2017**, *7*, 21. [CrossRef] - 15. Smith, A.E. Surface interface and stacking fault energies of magnesium from first principles calculations. *Surf. Sci.* **2007**, *601*, 5762–5765. [CrossRef] - 16. Zeng, Q.Q.; Liu, Z.X.; Liang, W.F.; Ma, M.Y.; Deng, H.Q. A First-Principles Study on Na and O Adsorption Behaviors on Mo (110) Surface. *Metals* **2021**, *11*, 1322. [CrossRef] - 17. Liu, S.Y.; Jiao, X.Q.; Zhang, G.Y. First principle study of the adsorption of formaldehyde molecule on intrinsic and doped BN sheet. *Chem. Phys. Lett.* **2019**, 726, 77–82. [CrossRef] - 18. Xiao, Z.B.; Deng, Y.L.; Tang, J.G.; Chen, Q.; Zhang, J.M. Poisoning mechanism of Zr on grain refiner of Al-Ti-C and Al-Ti-B. *Chin. J. Nonferrous Met.* **2012**, 22, 371–379. Metals **2022**, 12, 286 14 of 14 19. Liu, Q.B.; Fan, G.; Tan, Z.; Li, Z.; Zhang, D.; Wang, J.; Zhang, H. Precipitation of Al3Zr by two-step homogenization and its effect on the recrystallization and mechanical property in 2195 Al-Cu-Li alloys. *Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process.* **2021**, 821, 141637. [CrossRef] 20. Wang, Y.; Fang, C.M.; Zhou, L.; Hashimoto, T.; Zhou, X.; Ramasse, Q.M.; Fan, Z. Mechanism for Zr poisoning of Al-Ti-B based grain refiners. *Acta Mater.* **2019**, *164*, 428–439. [CrossRef]