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Abstract: Flash butt welding is a high-efficiency welding technology that is widely used in industrial
development. However, the inclusions and defects generated during the process are unacceptable.
The presence of inclusions is one of the main factors affecting the quality of flash butt welding.
Suitable flash butt welding parameters such as the preheating temperature and upset distance are
essential to eliminate inclusions. In this study, because the number of inclusions on the end face is
greatly affected by the flash welding time and upset distance, the impact of different upset distances
on the number of inclusions was studied by fixing the flash welding time. Further observations
were conducted using a scanning electron microscope. Image analysis software was used on the
obtained photos to quantitatively analyze the inclusions on the welding surface. A statistical analysis
of the experimental data showed that the upset distance was related to the number of inclusions,
and the total number of inclusions on the welding surface had a negative impact on the strength of
the product.

Keywords: flash butt welding; upset distance; impurity; strength; HSLA

1. Introduction

Flash butt welding (FBW) is a type of resistance welding. In the initial preheating and
flashing stages, energy is obtained through the contact resistance of the two surfaces by
the application of a voltage, which softens the end face areas. After softening to a certain
extent, the upset stage starts, in which the materials are plastically deformed and connected
together by applying an axial force. Thus, welding can be completed without the use of
filler metal, maintaining the strength of the original base material [1–3].

FBW is a single pass welding process with a simple flat face weld joint. It is unlike
the approach used for most arc welding joints. Comparatively, FBW is an extremely
efficient welding technique. The ability to weld various materials using this type of
welding also provides a significant advantage. In principle, many ferrous alloys can be
FBW, including low-carbon steel, medium-carbon steel, and high-strength low-alloy steel
(HSLA) [4–6]. Therefore, it is widely used in various industries, playing a pivotal role in
industrial development.

In previous studies, failure analyses of FBW [7–11] in low-carbon steel have shown
that failures are most often the result of excessive heat input. This causes the production of
Widmanstatten ferrite at the welding joint, which affects the plasticity of the joint, resulting
in low toughness [12–16], as well as the decarburization and softening of the heat-affected
zones. In addition, the remaining inclusions in the joint [17,18] become stress concentration
points, allowing cracks to be easily produced and grow around them. Therefore, the
presence of inclusions significantly affects the mechanical strength. With the improvements
in various industries, maintaining a stable flash welding quality has become increasingly
important. With this emphasis on the welding quality, it is very important to correctly
adjust the welding parameters to obtain accurate and reliable welding methods [1,2,19–22].
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Therefore, determining a method to reduce the size and number of inclusions and effectively
eliminate them has become a significant focus of this processing technique.

2. Materials and Methods
2.1. Materials

The material used in this study was HSLA (carbon content 0.25%, Cr and Ni contents
were both 0.7%) with the function of a safety buckle for weightlifting. The buckle was
made of a metal rod that was bent into an oval shape as shown in Figure 1a. The two
ends were connected by flash butt welding. The diameter of the HSLA workpiece was
19 mm. The FBW machine used in the experiment was an SU 50 FBW, which could obtain
the flash welding data using monitoring software during the flash welding process. The
flash welding parameters are listed in Table 1.

Metals 2022, 12, x FOR PEER REVIEW 2 of 13 
 

 

[1,2,19–22]. Therefore, determining a method to reduce the size and number of inclusions 
and effectively eliminate them has become a significant focus of this processing technique. 

2. Materials and Methods 
2.1. Materials 

The material used in this study was HSLA (carbon content 0.25%, Cr and Ni contents 
were both 0.7%) with the function of a safety buckle for weightlifting. The buckle was 
made of a metal rod that was bent into an oval shape as shown in Figure 1a. The two ends 
were connected by flash butt welding. The diameter of the HSLA workpiece was 19 mm. 
The FBW machine used in the experiment was an SU 50 FBW, which could obtain the flash 
welding data using monitoring software during the flash welding process. The flash weld-
ing parameters are listed in Table 1. 

 
Figure 1. (a) The geometry of the sample before flash welding; (b) Schematic of sample welding 
joint processing before tensile test. 

Table 1. Parameters of FBW machine. 

Welding 
Machine 

Upset Pressure 
(bar) 

Flash Allowance 
(mm) 

Upset Distance 
(mm) 

Flashing Time 
(s) 

Upset Speed 
(mm/s) 

SU50 50 8 2.5, 5, 7.5, 10 10 110 

2.2. Flash Butt Welding 
According to the processing behavior of the welding machine (SU50), the process of 

flash welding can be divided into three stages, namely, preheating, flashing, and upset, as 
shown in Figure 2. In the preheating stage, the flash welding machine undergoes the fix-
ture’s reciprocating movement to make contact and separation between the two ends. 
While through the low voltage, the high current forms a circuit of the junction end, the 
current through the contact resistance between the ends transforms into thermal energy. 
The end surface temperature is uniformly increased to make the subsequent flash stage 
more stable. In the flash stage, the moving end fixture clamps the workpiece forward to 
continue to contact the two end surfaces. When the current passes, the current contact 
density is exceptionally high, instantly heated to the molten condition. The molten metal 
produces a burst splash of sparks outward. During the top forging stage, electrical power 
is stopped, and sufficient upset pressure is applied on both sides of the workpiece so that 
the gap between the welding surfaces is rapidly reduced. The primary function of the 
upset is to extrude the softened metal and inclusions out of the welding surface to obtain 
a welding joint with better strength than the base metal. 

Figure 1. (a) The geometry of the sample before flash welding; (b) Schematic of sample welding joint
processing before tensile test.

Table 1. Parameters of FBW machine.

Welding
Machine

Upset
Pressure

(bar)

Flash
Allowance

(mm)

Upset
Distance

(mm)

Flashing
Time (s)

Upset Speed
(mm/s)

SU50 50 8 2.5, 5, 7.5, 10 10 110

2.2. Flash Butt Welding

According to the processing behavior of the welding machine (SU50), the process of
flash welding can be divided into three stages, namely, preheating, flashing, and upset,
as shown in Figure 2. In the preheating stage, the flash welding machine undergoes the
fixture’s reciprocating movement to make contact and separation between the two ends.
While through the low voltage, the high current forms a circuit of the junction end, the
current through the contact resistance between the ends transforms into thermal energy.
The end surface temperature is uniformly increased to make the subsequent flash stage
more stable. In the flash stage, the moving end fixture clamps the workpiece forward to
continue to contact the two end surfaces. When the current passes, the current contact
density is exceptionally high, instantly heated to the molten condition. The molten metal
produces a burst splash of sparks outward. During the top forging stage, electrical power is
stopped, and sufficient upset pressure is applied on both sides of the workpiece so that the
gap between the welding surfaces is rapidly reduced. The primary function of the upset is
to extrude the softened metal and inclusions out of the welding surface to obtain a welding
joint with better strength than the base metal.
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Figure 2. Schematic diagram of the three stages of flash welding during the actual welding process.

To understand the relationship between the upset distance and the number of inclu-
sions and its influence on the mechanical properties, four different upset distances were
used in this experiment: 2.5, 5.0, 7.5, and 10.0 mm. The other parameters were fixed.
For each parameter, six samples were produced. The purpose of the experiment was to
understand the relationship between the number of inclusions measured in the broken-out
section and the mechanical properties under different upset distances. None of the samples
in this study underwent post-weld heat treatment.

The sample used in this study is shown in Figure 1a. Breaking testing is used after
welding and evaluating its breaking force to meet the requirements of the product (340 kN).
The breaking test is performed by the left and right sides of the ellipse and stretching
in the X-axis direction after holding the sample. Breaking force and destruction location
were recorded.

During the tensile test, a sample failure could occur outside the welding joint, making
it impossible to calculate the inclusions for the broken-out section of the welding joint.
Therefore, each experimental sample was divided into two parts. Three samples for each
parameter were subjected to a tensile test for the first part. If there was a sample with
damage in the welding joint, the number of inclusions could be directly analyzed. Then,
the welding joints of the remaining three samples were processed before stretching for
the second part. Figure 1b shows that a defect was deliberately created at the weld center.
Thus, the failure would occur at this point when the sample was stretched. Therefore, the
number of inclusions in the sample could be analyzed as the first part when the failure
occurred inside the welding joint.

2.3. Characterization

The surface morphology and elemental analyses of the welding joint were performed
using SEM (AURIGA, Carl Zeiss AG, Jena, Germany) and energy dispersive X-ray spec-
trometry (EDS, AURIGA, Carl Zeiss AG, Jena, Germany), respectively. To analyze the
number of inclusions in the sample welding joints, the samples with failures at the welding
joint were collected, and EDS was used to analyze and confirm the composition of the in-
clusions obtained. Then, the EDS mapping function was used to observe their distribution
positions. Next, as shown in Figure 3, 50 random images were taken of the broken-out
section along the X-axis and Y-axis using the SEM. Finally, the image analysis software
Image J was used to calculate the numbers of inclusions under the different parameters.
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Figure 5 shows that the sample with an upset distance of 2.5 mm could not be effec-
tively joined after the welding. Therefore, there were no data from its tensile test. The test 

Figure 3. SEM imaging directions for impurity analysis.

The image analysis step is shown in Figure 4a. First, the captured SEM images were
combined. For comparison, the combined total area was set to 2.4 mm2. The images were
changed from RGB to 8-bit images, and the scale was set. Then, the threshold was adjusted
to select the part to be calculated, as shown in Figure 4b. Finally, the result could be
obtained as shown in Figure 4c. The area, particle size, quantity, etc., of the selected region
could be obtained. The changes in the amount of inclusions eliminated under different
parameters could be compared.
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3. Results and Discussion
3.1. Flash Butt Welding

Figure 5 shows that the sample with an upset distance of 2.5 mm could not be effec-
tively joined after the welding. Therefore, there were no data from its tensile test. The test
samples with upset distances of 5.0 and 7.5 mm had similar test results. Two of the 10.0 mm
samples failed at the welding joint, and the breaking force was obviously insufficient.
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The reason for the welding failure with the 2.5 mm upset distance was that the upset
distance was too short, which prevented the two ends from being effectively joined after the
upset was completed [23]; however, when the upset distance was 10.0 mm, the ratio of the
preheating energy and flash welding time was abnormal [24]. This was because the total
production stroke was only 13 mm. After deducting the upset distance, only 3 mm was
left for the preheating and flash welding, resulting in an obvious shortage of preheating
energy. Continuously provided energy is needed to move the material smoothly during
flash welding. Thus, an increase in the flash welding time caused abnormal proportions.
It can also be observed from the electric current during different stages of flash welding
as shown in Figure 6. The original preheating waveform disappeared as a result of the
short stroke, whereas the continuous energy supply of the flash welding produced a large
square wave. As shown in Figure 6a, the temperature was insufficient when preheated,
even though there was continuous heating in the flash stage. The interface temperature
of the workpiece was still not enough at the upset stage for welding two ends together.
As a result, a weld failure in Figure 5 was observed. Because upset uses an instantaneous
pressure to join the two end faces, the entire production time will be shorter when the
upset distance is too long. It can be seen that the production time for the 10.0 mm upset
distance was only approximately 6 s. The material could not be heated effectively, resulting
in inclusions that could not be successfully squeezed out but remained in the welding joint,
causing the weld to fail. Table 2 sorts out the ratio of preheating energy/total energy and
flash welding time/total time from Figure 6 with the relative breaking force and failure
position under various upset distances. These two indices (preheating energy/total energy
and flash welding time/total time) were used to identify the process window by checking
the breaking force (>340 kN) and failure location (outside welding joint).



Metals 2022, 12, 242 6 of 13

Metals 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 6. Electric current response during various stages of flash welding for (a) 2.5, (b) 5.0, (c) 7.5, 
and (d) 10.0 mm upset distance. 

Figure 6. Electric current response during various stages of flash welding for (a) 2.5, (b) 5.0, (c) 7.5,
and (d) 10.0 mm upset distance.



Metals 2022, 12, 242 7 of 13

Table 2. Energy and time ratio analysis with breaking force and destruction location of various
upset distances.

Upset Distance
(mm) 2.5 5 7.5 10

Preheating
energy/total

energy
42% 41% 40% 63% 62% 59% 75% 74% 73% 27% 27% 29%

Flash welding
time/total time 68% 69% 67% 55% 55% 58% 42% 44% 44% 72% 75% 76%

Breaking force
(kN) - - - 456.3 458.8 455.4 453.5 459.1 451.5 235.3 455.6 141.4

Destruction
location - - -

Outside
welding

joint

Outside
welding

joint

Outside
welding

joint

Outside
welding

joint

Outside
welding

joint

Outside
welding

joint
Weld
center

Outside
welding

joint
Weld
center

3.2. Characterization

Figures 7–9 show the element mapping results for samples with upset distances of 5.0,
7.5, and 10.0 mm, respectively. Many residual inclusions can be observed. Furthermore, the
oxygen element positions overlap the inclusions. The inference is that the inclusions were
oxides, might have originated from residual surface oxides of the original rod, and were
produced during the flash welding process. Figure 10a,b shows the weld cross-sectional
images of upset distances of 5 and 7.5 mm, respectively. The inclusions and the ductile
fracture can be observed. Figure 10c,d shows an obvious river pattern and fracture face
structure on the broken-out surfaces with an upset distance of 10.0 mm. Different failure
modes such as a ductile and brittle fracture can also be observed. In addition, multiple
failure factors have caused differences in breaking force (141–455 kN). It is highly likely that
this was caused by insufficient preheating of the material, which resulted in insufficient
fluidity. Then, the excessively long upset distance would have caused cracks and inclusions
in the section. Tables 3–5 list the calculation results for the inclusions. It can be found that
the samples with an upset distance of 10.0 mm had the largest number of inclusions in this
experiment. The total number of inclusions was 283, with only 117 per unit area, which
was consistent with this inference.
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Table 3. Inclusion calculation results for samples with upset distance of 5.0 mm.

Upset Distance
5.0 mm

Sample Area
(µm2)

Inclusion Area
(µm2) Count

Average Size
(µm2) Min (µm2) Max (µm2)

1 366,566.70 826.77 24 34.45 6.45 158.93
2 255,911.45 3284.13 53 61.69 6.12 1355.30
3 192,460.53 344.63 15 22.97 7.85 63.13
4 126,167.34 309.82 10 30.98 7.17 115.46
5 296,800.00 32.61 3 10.87 7.83 15.81
6 109,824.35 246.76 10 24.67 6.93 70.52
7 260,182.46 115.76 11 10.52 6.53 22.73
8 288,500.27 530.58 15 35.37 6.32 307.96
9 254,214.74 997.33 23 43.36 6.02 516.52

10 264,978.72 248.93 21 11.85 6.02 51.20
Total 2,415,606.57 6937.33 185 -
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Figure 10. Broken-out section of sample with upset distance of (a) 5, (b) 7.5, (c,d) 10.0 mm.

Table 4. Inclusion calculation results for samples with upset distance of 7.5 mm.

Upset Distance
7.5 mm

Sample Area
(µm2)

Inclusion Area
(µm2) Count Average Size

(µm2) Min (µm2) Max (µm2)

1 246,923.97 470.55 11 42.77 9.81 112.63
2 194,290.9 60.85 4 15.21 6.06 41.10
3 262,870.07 582.19 15 32.81 7.73 84.51
4 240,981.85 867.91 19 45.68 6.31 346.93
5 246,933.18 365.33 13 28.10 6.39 96.30
6 260,281.23 417.24 20 20.86 6.17 78.05
7 293,597.29 912.53 22 41.47 6.31 152.66
8 280,730.81 773.08 24 32.21 6.93 100.76
9 109,191.87 0.00 0 0.00 0.00 0.00

10 183,251.18 436.45 14 31.18 7.26 89.14
11 82,375.93 76.99 4 19.25 6.96 54.43

Total 2,401,428.26 4963.12 146 -

Table 5. Inclusion calculation results for samples with upset distance of 10.0 mm.

Upset Distance
10.0 mm

Sample Area
(µm2)

Inclusion Area
(µm2) Count Average Size

(µm2) Min (µm2) Max (µm2)

1 308,129.52 654.04 29 22.24 6.31 136.44
2 287,829.61 419.27 16 26.21 6.42 99.17
3 297,895.50 920.85 19 48.46 6.45 154.09
4 299,927.04 591.32 20 29.56 6.21 104.59
5 218,426.28 6511.56 93 70.01 6.02 808.51
6 266,197.97 2408.46 53 45.44 6.44 382.37
7 208,845.91 1418.65 31 52.22 6.27 235.10
8 246,203.56 289.58 8 36.20 7.07 129.55
9 277,008.41 560.96 14 40.06 6.17 263.29

Total 2,410,462.80 13,974.69 283 -
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3.3. Results and Discussion of Image Analysis

Figure 11 shows the size distribution of the inclusions with different upset distances.
Five size ranges were selected using thresholds of 6, 36, 216, 1296, and 3000 µm2. It
is observed that the inclusion sizes were mainly concentrated between 6 and 36 µm2.
When the upset distance was increased from 5.0 mm to 7.5 mm, the number of inclusions
larger than 6 µm2 was reduced by 21%. However, when the upset distance was 10.0 mm,
rather than decreasing, the number of inclusions increased. The reason for this was the
aforementioned inference. Because the upset distance was too long, the heating length was
insufficient, resulting in poor material fluidity. Thus, the inclusions could not be effectively
eliminated, and cracks resulted. Comparisons of the numbers of inclusions per unit area
and their occupied areas for different upset distances are shown in Figure 12. It can clearly
be seen that when the number of inclusions decreased, their area also decreased, which
further proved that the sizes of the inclusions in the residual section were not large.

Metals 2022, 12, x FOR PEER REVIEW 10 of 13 
 

 

Table 5. Inclusion calculation results for samples with upset distance of 10.0 mm. 

Upset Distance 10.0 mm Sample Area (μm2) Inclusion Area (μm2) Count Average Size (μm2) Min (μm2) Max (μm2) 
1 308,129.52 654.04 29 22.24 6.31 136.44 
2 287,829.61 419.27 16 26.21 6.42 99.17 
3 297,895.50 920.85 19 48.46 6.45 154.09 
4 299,927.04 591.32 20 29.56 6.21 104.59 
5 218,426.28 6511.56 93 70.01 6.02 808.51 
6 266,197.97 2408.46 53 45.44 6.44 382.37 
7 208,845.91 1418.65 31 52.22 6.27 235.10 
8 246,203.56 289.58 8 36.20 7.07 129.55 
9 277,008.41 560.96 14 40.06 6.17 263.29 

Total 2,410,462.80 13,974.69 283 - 

3.3. Results and Discussion of Image Analysis 
Figure 11 shows the size distribution of the inclusions with different upset distances. 

Five size ranges were selected using thresholds of 6, 36, 216, 1296, and 3000 μm2. It is ob-
served that the inclusion sizes were mainly concentrated between 6 and 36 μm2. When the 
upset distance was increased from 5.0 mm to 7.5 mm, the number of inclusions larger than 
6 μm2 was reduced by 21%. However, when the upset distance was 10.0 mm, rather than 
decreasing, the number of inclusions increased. The reason for this was the aforemen-
tioned inference. Because the upset distance was too long, the heating length was insuffi-
cient, resulting in poor material fluidity. Thus, the inclusions could not be effectively elim-
inated, and cracks resulted. Comparisons of the numbers of inclusions per unit area and 
their occupied areas for different upset distances are shown in Figure 12. It can clearly be 
seen that when the number of inclusions decreased, their area also decreased, which fur-
ther proved that the sizes of the inclusions in the residual section were not large. 

 
Figure 11. Size distributions and numbers of inclusions with different upset distances. Figure 11. Size distributions and numbers of inclusions with different upset distances.

Metals 2022, 12, x FOR PEER REVIEW 11 of 13 
 

 

 
Figure 12. Relationship between number of inclusions per unit area and total area with different 
upset distances. 

The results for the inclusions and breaking force are shown in Figure 13. It can clearly 
be seen that when the number of inclusions was too large, the breaking force was greatly 
reduced, causing the failure of the welding joint. This shows that the inclusions indeed 
affected the mechanical properties of the material. Furthermore, the crack lengths for dif-
ferent upset distances were analyzed using the image analysis software. Under each con-
dition, 50 SEM images were randomly selected for sampling. The results are shown in 
Figure 14. It can be proven that when extrusion was performed with insufficient preheat-
ing, the cracks in the cross section of the material greatly increased, which further de-
creased the strength of the welding joint. Based on the above results, it can be seen that 
the materials could not be joined when the upset distance was too short, and the preheat-
ing of the material was insufficient when the upset distance was too long. 

 
Figure 13. Relationship between number of inclusions and breaking force with different upset dis-
tances. 

Figure 12. Relationship between number of inclusions per unit area and total area with different
upset distances.



Metals 2022, 12, 242 11 of 13

The results for the inclusions and breaking force are shown in Figure 13. It can clearly
be seen that when the number of inclusions was too large, the breaking force was greatly
reduced, causing the failure of the welding joint. This shows that the inclusions indeed
affected the mechanical properties of the material. Furthermore, the crack lengths for
different upset distances were analyzed using the image analysis software. Under each
condition, 50 SEM images were randomly selected for sampling. The results are shown in
Figure 14. It can be proven that when extrusion was performed with insufficient preheating,
the cracks in the cross section of the material greatly increased, which further decreased the
strength of the welding joint. Based on the above results, it can be seen that the materials
could not be joined when the upset distance was too short, and the preheating of the
material was insufficient when the upset distance was too long.
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4. Conclusions

This study investigated the relationship between the inclusions in a welding surface
and the breaking force of a safety buckle. The number of inclusions in the welding joint
will directly affect the product’s breaking force. Although the pieces of upset distance at
5 and 7.5 mm can be successfully welded, to reduce the number of inclusions that may
be the starting point for fracture/failure is an important topic. Therefore, after reaching
the product requirements, it is bound to reduce the internal inclusions, especially the
safety requirement. A larger number of inclusions in the welding joint resulted in a lower
breaking force for the product. The breaking force reaches a stable value (>450 kN) at the
upset distance window; excessively short and long upset distances produce a significant
reduction in the breaking force. In this study, upset distances of 2.5 and 10 mm do not
produce sound welds, while upset distances of 5 and 7.5 mm produce sound welds.

Although flash welding is a simple and effective welding technique, its application
is limited by many changing factors. The process window discussed in this paper will be
helpful in improving the quality of welding joints. The suggested method is to increase the
width of the high-temperature preheating zone while using the appropriate upset distance
under the premise of not causing excessive transverse deformation of the welding joint.
This will be beneficial for eliminating inclusions and will greatly improve the mechanical
properties of the product.
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