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Abstract: The emerging wire + arc additive-manufacturing (WAAM) technique has significant
potential to improve material design, as well as manufacturing cost and efficiency of structural
components such as offshore wind turbines and subsequently reduce the levelised cost of energy
(LCoE). Welded joints in offshore structures are usually considered potential spots for crack initiation
due to the combination of high stress concentration at the weld toes, residual stresses introduced
by the welding process and cyclic loading conditions in harsh, corrosive marine environments.
The WAAM technique is a deposition method consisting of repetitive welding process that can be
used as an alternative manufacturing technique for fabrication or repair of structural components.
An important issue that needs to be understood in structural-integrity assessment of WAAM-built
components is fracture-toughness behaviour. In particular, the sensitivity of fracture-toughness
properties to corrosive environments must be examined in order to extend the application of the
WAAM technique to offshore wind structures. Therefore, in this study, fracture-toughness tests were
conducted on WAAM-built compact-tension specimens made of ER70S-6 and ER100S-1 steel that
were initially exposed to a seawater corrosive environment prior to testing. All fracture-toughness
tests were performed at room temperature, and crack length was estimated using the compliance
method with a clip gauge attached onto the knife edge of the specimens. The obtained results,
which include load vs. load-line displacement and J-integral vs. crack extension, were analysed
and compared with the results of tests in air, without any exposure to seawater. The conclusions
of this study show that corrosive environments affect the yield stress and R-curves of the selected
materials and contribute to the overall understanding of the design requirements for functionally
graded structures fabricated by means of WAAM technique for offshore applications.

Keywords: WAAM; additive manufacturing; fracture; corrosion; offshore wind turbines

1. Introduction

Corrosion is one of the key factors that affects the short- and long-term performance of
steel structures exposed to harsh offshore environments, e.g., offshore wind turbines. The
residual mechanical properties of rusty steel structures need to be assessed to ensure safety
and provide further repair and reinforcement plans for the damaged structure. Fracture is
a common and dangerous mode of failure, especially if the behaviour is brittle or quasi-
brittle, as fractures may occur suddenly without a visible warning. In ductile steels, brittle
fractures can happen if concentration forces exist, for instance, at an initiated fatigue crack,
weld defect or geometry notch [1]. Moreover, corrosion pits on damaged steel surfaces can
act as stress concentrators and benefit the fracture-failure mechanisms [2,3]. Therefore, it is
likely that the fracture behaviour of corroded steel parts will degrade over time.

The new wire-arc additive manufacturing (WAAM) technique offers a variety of
benefits for various industries. Compared with other additive manufacturing (AM) tech-
niques, such as powder-based methods, WAAM is known for lower manufacturing costs
and high deposition rates for large-scale structural fabrication, which leads to reduction

Metals 2022, 12, 238. https://doi.org/10.3390/met12020238 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met12020238
https://doi.org/10.3390/met12020238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-7099-7956
https://doi.org/10.3390/met12020238
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met12020238?type=check_update&version=2


Metals 2022, 12, 238 2 of 11

in manufacturing lead time [4–7]. Nevertheless, this process consists of a pure welding
mechanism, depositing one metal layer on top of another while constantly reheating and
cooling down the built part. This causes uncertainties in microstructural homogeneity
and isotropy of mechanical properties [8,9]. Additionally, inherent weld defects can be
considered potential weak spots where fracture and fatigue failure can develop [10]. Thus,
in order to minimise safety risks, the degradation mechanisms of corroded WAAM-built
steel components need to be carefully investigated in order to assess the suitability of this
technique for offshore applications.

Many studies have been previously conducted to examine corrosion effects on me-
chanical behaviour of conventionally built metallic specimens and welded joints. Such
studies include tensile tests performed on corroded specimens, derivation of empirical
models and evaluation methods and prediction of residual mechanical properties [11–18].
Moreover, some studies have investigated the residual performance of degraded corroded
steel parts [19–21]. However, only a limited number of papers is available on fracture prop-
erties of corroded steel parts, with almost no investigations of corrosion damage effects on
fracture behaviour of WAAM-built parts.

A research group examined the fracture-toughness performance of corroded U-notched
steel plates [22], and the results revealed significantly degraded fracture properties. Ac-
cording to this study, the ultimate load and fracture toughness decreased for the corroded
specimens. Additionally, it was established that the increase in corrosion pits was the
driving force behind crack propagation. Another comprehensive test programme by
Hou et al. [23] was carried out on the effects of corrosion on mechanical properties of met-
als used for buried steel pipes, wherein a relationship between corrosion and deterioration
of mechanical properties was developed. It was also concluded that both tensile strength
and fracture toughness of corroded steel are reduced as a result of corrosion.

The intention of the present study is to investigate the effect of corrosion on fracture-
toughness properties of WAAM-built specimens made with different grades of steel, in-
cluding ER70S-6 and ER100S-1. The WAAM manufacturing setup, specimen extraction and
testing procedure are described. Prior to fracture-toughness testing, the specimens were
soaked in artificial seawater to assess environmental effects on fracture properties. The test
results were analysed and compared with the previously tested WAAM-built specimens
without any environmental exposure (i.e., in air and in the absence of corrosion damage).
The results produced in this study contribute to the overall knowledge of corrosion be-
haviour and its effects on fracture properties of WAAM steels in order to evaluate the
suitability of this technique for fabrication and repair of offshore wind-turbine structures.

2. Specimen Fabrication and Preparation Process

In this study, four specimens were extracted from two different WAAM walls: one
made with ER70S-6 welding wire [24] and the other made with ER100S-1 [25]. The chemical
composition of each wire is presented in Table 1. Both walls were manufactured using the
cold metal transfer (CMT) process with the parameters shown in Table 2 and by employing
an oscillation deposition method [26], which is often used for fabrication of relatively thick
WAAM walls. The manufacturing setup for the WAAM walls is demonstrated in Figure 1,
consisting of a CMT power source, a robotic arm with a CMT torch that simultaneously
supplies the shielding gas and the welding wire and an exhaust fan that removes excessive
heat and fumes from the WAAM wall. Each wall was deposited in the middle of a base plate
cut from an EN10025 rolled structural steel, which was firmly attached onto the working
table with eight clamps during the fabrication process in order to minimise any bending
or distortion of the base plate and the WAAM wall as a result of high manufacturing
temperatures. The clamps were removed once the deposition was completed, and the walls
were cooled down to ambient temperature.
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Table 1. Chemical composition of the WAAM wires (wt. %) [24,25].

C Mn Cr Si Ni Mo S P Cu V

ER70S-6 0.09 <1.60 0.05 0.09 0.05 0.05 0.007 0.007 0.20 0.05
ER100S-1 0.08 1.70 0.20 0.60 1.50 0.50 - - - -

Table 2. CMT-WAAM fabrication parameters.

Shielding Gas Ar + 20% CO2

Gas flow rate 15 L/min
Robot travelling speed 7.33 mm/s

Wire diameter 1.2 mm
Wire feed speed 7.5 m/min

Dwell time 120 s
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Figure 1. CMT-WAAM setup.

Upon completion of the wall deposition, two notched compact-tension, C (T), spec-
imens from the top (T) half of each wall were extracted using the electrical discharge
machining (EDM) method. The specimens from the bottom (B) of the wall were used in a
different study. The specimens were extracted in two different orientations with respect to
the deposited AM layers: vertical (V), with the crack growth-direction perpendicular to
the AM layers; and horizontal (H), with the crack-growth direction along the AM layers,
as schematically presented in Figure 2. The specimens were designed in accordance with
the ASTM 1820 standard [27] for fracture-toughness testing, with a width of W = 50 mm, a
height of H = 60 mm, total thickness of B = 16 mm and initial crack length of a0 = 17 mm
before pre-fatigue cracking. The specimens were not side-grooved (hence Bn = 16 mm) in
order to facilitate the introduction of corrosion damage on the outer surface during expo-
sure to seawater. The fracture toughness, C (T), specimens made of ER70S-6 and ER100S-1
welding wires were denoted as C-70-1 (T, V), C-70-2 (T, H) and C-100-1 (T, V), C-100-2 (T, H),
respectively. Prior to testing, all specimens were fatigue-pre-cracked under cyclic loading
conditions using the load-decreasing approach to approximately 32 mm (a/W = 0.64), as
advised in the ASTM 1820 standard. The starting fatigue-pre-cracking load was maintained
below the maximum allowable load specified in the standard. During the pre-cracking
process, an infinitely sharp crack tip is introduced ahead of the machined notch without
developing a significant plastic zone ahead of the crack tip. Once the specimens were
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prepared for fracture-toughness testing, they were immersed for 11 days in artificial seawa-
ter that was made according to the ASTM D1141-98 standard [28] using deionised water,
with the composition shown in Table 3. The temperature of the artificial seawater was
maintained between 8.0 and 10.0 ◦C using a chiller with a pH of 8.0 to replicate operational
conditions in the North Sea [28].
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Table 3. Chemical composition of artificial seawater.

Chemical Compound Concentration (g/L)

NaCl 24.53
MgCl2 5.20

Na2SO4 4.09
CaCl2 1.16
KCl 0.695

NaHCO3 0.201
KBr 1.101

H3BO3 0.027
SrCl2 0.025
NaF 0.003

3. Crack Length Estimation and J-Parameter Calculation

During fatigue pre-cracking and fracture-toughness testing, estimation of instanta-
neous crack length was performed using the compliance method, by attaching a clip gauge
onto the crack mouth of the specimen. This approach is based on constant load-line-
displacement (LLD) monitoring and calculation of the instantaneous crack length using the
elastic-compliance measurements according to Equations (1)–(3), where ai is the instanta-
neous crack length, Ci is the instantaneous unloading compliance, E is the elastic Young’s
modulus and Be is the effective thickness, which is calculated using the specimen’s full
thickness, B, and net thickness value, Bn.

ai
W

= 1.000196 − 4.06319u + 11.242u2 − 106.043u3 + 464.335u4 − 650.677u5 (1)

where
u =

1

[BeECi]
1
2
+ 1 (2)

Be = B − (B − Bn)
2

B
(3)

Fracture-toughness tests were conducted at room temperature on a 100 kN servo
hydraulic Instron machine (Instron, Norwood, MA, USA), under LLD control mode, by
applying sequences of loading and unloading with 60 s of hold time at each peak load,
followed by 20% unloading with respect to the peak load value. The loading-unloading
rate was 1 mm/min, and the sequences of unloading were carried out at LLD intervals
of 0.125 mm. To plot a resistance curve (i.e., R-curve) for each test, the elastic-plastic
fracture-mechanics parameter, J, was determined using Equation (4), as recommended by
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ASTM E1820 [27]. It can be seen from the equation that the total value of J consists of an
elastic and a plastic term, which are calculated using Equations (5) and (6), respectively.
In these equations, K is the stress-intensity factor, which varies for different specimen
geometries [29]; ν is the Poisson’s ratio; a0 is the initial crack length; Ap is the plastic area
under the load vs. LLD curve; and η is a geometry-dependent function, the solution of
which, for the C (T) specimen geometry, is demonstrated in Equation (7).

J = Jel + Jpl (4)

where

Jel =
K2(1 − ν2)

E
(5)

Jpl =
Ap

Bn(W − a0)
η (6)

η = 2 +
0.522(W − a0)

W
(7)

To establish the fracture-toughness value, the R-curve is generated for each test by
plotting J values against the crack extension, ∆a. Then, a construction line (which is also
known as the blunting line) is plotted, the slope of which is calculated using Equation (8).
In this equation, σY is the yield stress of the material. According to the ASTM E1820
standard, two exclusion lines are constructed parallel to the construction line, offsetting
the abscissa by 0.15 and 1.5 mm. The data points along the R-curve that fall between two
exclusion lines are considered valid data points, and a line of best fit is built to them. The
intersection between the line of best fit and a 0.2 mm offset parallel to the construction line
defines the fracture-toughness value, denoted as JIC.

J = 2σY∆a (8)

4. Fracture-Toughness Test Results

The load vs. LLD data obtained from four fracture-toughness tests performed on
ER70S-6- and ER100S-1-corroded C (T) specimens are presented in Figure 3. Comparison of
the curves for different materials shows that the deviation from linearity occurs at a much
higher load level in ER100S-1- than in ER70S-6-corroded specimens, due to the higher
yield stress [30]. Additionally, it can be seen that the trends for two specimens of the same
material look similar; however, for ER70S-6 material, the horizontal specimen exhibits a
higher trend compared to the vertical specimen, whereas for ER100S-1, it is the vertical
specimen that shows the higher load vs. LLD trend compared to the horizontal specimen.

The results obtained in this study were further compared with the test results of
similar C (T) specimens extracted from ER70S-6 and ER100S-1 WAAM walls and tested for
fracture toughness in ambient conditions without any environmental exposure (denoted
as A) by Ermakova et al. [30], presented in Figure 4. It can be seen in this figure that for
both materials, the obtained trends for corroded specimens are lower and longer than
for the ambient-tested specimens, indicating that the yield stress is reduced in corrosive
environments [23]. The direct comparison of the ER70S-6 specimens extracted from the
same location of the wall and with the same orientation presents that A-70-1 (T, V) and C-
70-1 (T, V) have higher trends than specimens with horizontal orientation, A-70-3 (T, H) and
C-70-2 (T, H). Hence, the testing environment does not affect the orientation sensitivity of
the specimens made with ER70S-6 welding wire. The scatter between ER100S-1 specimens
with different orientations and the same locations is much smaller, and the results fall almost
on top of each other. It must be noted here that in this study, the tested corroded specimens
were only extracted from the top of the wall, and in a future study, more specimens
extracted from the bottom of the WAAM wall will be tested for further comparison of the
obtained results with the samples tested without any prior exposure to seawater.
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Fracture-toughness resistance curves were generated for four tested corroded spec-
imens and are shown in Figure 5. It can be seen in this figure that the R curves for the
specimens extracted from the ER70S-6 wall show much higher trends than those extracted
from the ER100S-1 wall, indicating that more energy is required to propagate cracks in
specimens made of WAAM ER70S-6 material. The scatter for vertical and horizontal speci-
mens for each material is small, and they almost overlap each other. An example of the
detailed fracture-toughness analysis by plotting the blunting and exclusion lines, as well
as determining the JIC value from the valid data points, is displayed in Figure 6a for the
C-100-1 specimen. The JIC values for ER100S-1-corroded specimens are summarised in
Table 4. The fracture-toughness analysis of ER70S-6-corroded specimens revealed that no
valid data points can be determined from the collected test data, as shown for the C-70-1
specimen in Figure 6b. Therefore, JIC values for ER70S-6-corroded specimens could not be
quantified and compared in this study. However, as concluded above, material properties
change due to corrosion damage; therefore, the slope of the blunting lines for both materials
would change, as they depend on the material properties (Equation (8)). Therefore, the
valid points and JIC values will differ. In future work, the tensile material properties of
corroded specimens will be determined in order to alter the blunting and exclusion lines
for quantification of JIC values.
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Figure 6. Analysis of the fracture-toughness data for (a) C-100-1 and (b) C-70-1 specimens.

Table 4. Fracture-toughness values for ER100S-1-corroded specimens.

Specimen ID C-100-1
(T, V)

C-100-2
(T, H)

JIC (kJ/m2) 104.2 109.0

Comparison of the resistance curves obtained in this study on corrosion-exposed
specimens with curves obtained in the study of Ermakova et al. [30] on ER70S-6 and
ER100S-1 ambient specimens without any prior corrosion exposure is displayed in Figure 7.
As seen in this figure, the slope of the curve is greater for corroded specimens for both of
the WAAM-built materials, indicating that a higher level of energy is required to propagate
cracks in corroded specimens than in ambient specimens. As previously observed for
ambient specimens, the R curves for specimens extracted from the same location fall on top
of each other, despite the orientation, and the same trend is seen for corroded specimens
extracted from the top of the WAAM walls. Analysis of JIC values for ER100S-1 specimens
demonstrates that for corroded specimens, JIC increased, on average, by 61%, compared
with values for ambient specimens [30].
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The higher level of fracture energy in corroded WAAM-built specimens, compared
to the samples without any prior exposure to seawater, can be associated with the fact
that the corrosion process significantly altered not only the mechanical properties but
also the sharpness of the crack tip in seawater-exposed specimens. In other words, the
results obtained from this study suggest that in both ER70S-6 and ER100S-1 WAAM-
built specimens, exposure to seawater resulted in a significantly blunter crack tip, which
subsequently elevated the R curves in the fracture analysis. This indicates that while
corrosion exposure is known to be a damaging mechanism, in the case of WAAM-built
components, it can enhance fracture properties by blunting the sharp fatigue-crack tips
created due to the cyclic loading effects exerted on offshore structures. Therefore, the
provisional results of this study show that the WAAM technique has great potential for
application in the offshore wind industry; however, other design considerations, such as
fatigue, must be investigated in more detail before employing this efficient AM technique
in fabrication or repair of offshore wind-turbine structures.

5. Conclusions

Fracture-toughness tests were conducted on WAAM-built specimens made with
ER70S-6 and ER100S-1 welding wires. The specimens were immersed in seawater for
11 days prior to fracture testing in order to introduce corrosion effects in the test specimens.
The results of this study were compared with those available for similar samples without
exposure to seawater. The following conclusions and observations can be drawn from
this study:

• The corrosive environment reduces the yield stress of the material; hence, load
vs. LLD curves show lower trends for corroded specimens for both ER70S-6 and
ER100S-1 materials.

• The R curves for corroded specimens are higher than those obtained from specimens
without prior corrosion exposure; thus, a greater level of energy is required to propa-
gate cracks in corroded specimens. The JIC value for ER100S-1-corroded specimens is
increased, on average, by 61% compared with JIC values on the same material without
corrosion exposure.

• The corrosion process alters the mechanical properties in WAAM-built specimens
and possibly makes the fatigue cracks blunter, which subsequently leads to improved
fracture properties.

• The WAAM technique has been demonstrated to have great potential for employment
in offshore applications, particularly manufacturing and repair of offshore wind-
turbine structures.

• Tensile properties of corroded specimens need to be investigated in future work in
order to improve the construction process of blunting and exclusion lines.

Author Contributions: Conceptualization, A.M.; methodology, A.E.; formal analysis, A.E.; writing—
original draft preparation, A.E.; writing—review and editing, A.M. All authors have read and agreed
to the published version of the manuscript.
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Universities’ Centre for Doctoral Training in Renewable Energy Marine Structures—REMS CDT
(http://www.rems-cdt.ac.uk/, accessed on 10 December 2021) from the UK Engineering and Physical
Sciences Research Council (EPSRC).
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Nomenclature

a0 initial crack length in C (T) specimen
ai instantaneous crack length
Ap plastic area
∆a crack extension
B total thickness of C (T) specimen
Be effective thickness
Bn net thickness between the side grooves
Ci instantaneous unloading compliance
E Young’s modulus
H height of C (T) specimen
J elastic-plastic fracture-mechanics parameter
JIC fracture toughness
K stress-intensity factor
W width of C (T) specimen
η geometry-dependent function
ν Poisson’s ratio
σY yield stress
AM additive manufacturing
B bottom
C (T) compact-tension specimen
CMT cold-metal transfer
EDM electrical discharge machining
H horizontal
LLD load-line displacement
T top
V vertical
WAAM wire + arc additive manufacturing
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