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Abstract: Rotating backward extrusion (RBE) is known as a new severe plastic deformation technol-
ogy that effectively combines the features of conventional backward extrusion (CBE) and torsion
deformation. In this study, 7075 Al alloy shell parts were successfully prepared by CBE and RBE with
a different number of revolutions (N = 5, 10, 15, 25, 50) at 410 ◦C. The effects of the RBE process on the
grain refinement, precipitates and properties of extruded parts were revealed, and the deformation
characteristics were compared with CBE. The results showed that the RBE process could greatly
eliminate the dead deformation zone at the bottom of the CBE section and significantly improved the
comprehensive strain level of the material due to the addition of severe torsional deformation via an
open punch. The grain refinement feature of RBE parts showed a gradient distribution that contin-
uously weakened from the inner wall to the outer wall with decreasing compressive and torsional
stress. Increasing the number of revolutions significantly promoted the level of grain refinement, the
grain refinement range, and effectively broke down and refined the coarse insoluble Fe-rich phases
of the extruded parts. It was revealed that the finest grain size of approximately 1.3 µm could be
obtained in the inner wall region when N was increased to 25, which was linked to the comprehensive
effects of continuous dynamic recrystallization and geometric dynamic recrystallization. RBE greatly
promoted an improvement in properties of the extruded parts. After T6 treatment, the microhardness
of the fine-grained region of the RBE (25 N) part increased to ~192–197 HV, compared with ~180 HV
in the initial T6-extruded state.

Keywords: 7075 Al alloy; rotating backward extrusion; severe plastic deformation; microstructure

1. Introduction

Aluminum (Al) alloys have become one of the important structural materials used in
transportation, aerospace, military production and other industrial fields due to its high
specific strength, low density, good thermal conductivity and excellent comprehensive
properties [1,2]. In particular, the development of heat-treatable strengthening alloys
represented by 7xxx series Al alloys, marks a breakthrough in greater mechanical properties
of Al alloys, which can be compared to certain steels in terms of strength [3–5]. However,
as the demand continues to grow for high-end products with properties of high strength,
toughness and high service capacity, it has become insufficient to rely solely on one or two
strengthening mechanisms to improve the comprehensive properties of materials. The
organized combination of multiple strengthening mechanisms can not only fully exploit the
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properties of materials, but also spark an inevitable trend in the development of materials
science. It was reported that the severe plastic deformation (SPD) methods such as equal
channel angular pressing (ECAP), equal channel forward extrusion (ECFE), planar twist
channel angular extrusion (PTCAE), high pressure torsion (HPT) and repetitive upsetting-
extrusion (RUE), etc., [6–11]) could be applied to impose high hydrostatic pressures to
the sample, which ensured the metal was sufficiently strained at a lower temperature or
room temperature without fracture defects, thereby effectively preparing ultra-fine grained
materials within micron or even nanometer size scales and high strength.

With the rapid development of the global economy, society, high-tech industries, in
addition to the deepening concerns of energy conservation and environmental protection,
the desirable lightweight properties of structural parts has become a developing trend of
modern manufacturing industries. This has intensified the growing demand for lightweight
materials such as Al and its alloys. As a typical structural partfor aerospace and automobile
industries, thin-walled shell parts are not only in large demand, but also function in
complex working environments, and as such require excellent mechanical properties. At
present, such parts can be produced by machining, spin forming, stretch forming, forging
and so forth [12–14]. However, the machining of consumables is time-consuming and has
low material utilization. At the same time, product performance also depends greatly
on the initial billet. Spin forming can improve component performance and increase
material utilization, but the operation steps are cumbersome with low production efficiency.
Moreover, it is similar to liquid filled drawing process, where the bottom of the part is
rarely strained and generally maintains the initial microstructure after forming. Among
the forging processes, the conventional backward extrusion (CBE) is the most effective
way to prepare shell components with convenient operation, simplified mold design,
higher dimensional accuracy and surface quality of the product. However, it also carries
with it the characteristics of large uneven deformation and lower strain levels at the
bottom of the part, leading to differences and deficiencies in mechanical properties [15].
Therefore, there is an urgent need to develop a shell part processing method that can
not only directly manufacture components but also exert more uniform deformation and
higher strain levels on the material. To solve these problems, a new SPD method, i.e.,
rotating backward extrusion (RBE), was proposed [16,17]. The basic principle of the RBE
method is to simultaneously apply a rotational movement around the CBE punch as it
is axially loaded. The metal in contact with the punch forms a continuous micro severe
deformation zone under the action of compression–torsion forces, thereby significantly
promoting microstructure refinement in the contact region. Since the frictional resistance
of the contact end surface of the punch and the billet is transformed into favorable shear
stress during deformation, this method greatly eliminates the dead deformation zone at
the bottom of the CBE. With reverse movement of the punch, the bottom metal flows to
the wall, and a fine-grained or ultra-fine-grained part is finally extruded. Moreover, this
method not only inherits the operation mode of CBE in its structure, but can additionally
obtain high effective strain through only one-pass deformation, providing a short-process
method for the preparation of high performance shell components. The RBE method is
essentially a combination of compression and torsion deformation. Kim et al., [17] studied
the deformation features of RBE by using the upper bound method and finite element
(FEM) simulation. The results showed that when compared with CBE, RBE could increase
the deformation uniformity of material and greatly reduced the axial forming load due
to the application of torsion deformation, where the forming load was related to the die
structure, billet size and rotation speed. Yu et al., [16] studied the microstructure and
properties of Mg–12Gd–4.5Y–2Zn–0.4Zr under RBE, and showed that the microhardness of
the cylindrical parts extruded by RBE decreased gradually from inside to outside along
the radial direction, which related to the gradient strain distribution. Che et al., [18]
systematically investigated the effects of the RBE deformation temperature and number of
revolutions (N) on grain refinement capability and texture of AZ80 Mg alloy. The results
showed that RBE could greatly refine the grain size of AZ80 Mg alloy to approximately
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3.9 µm when the deformation temperature was 573 K and N reached up to 100, where
the increase of N was conducive to accelerating the transformation of a strong (10-10)fiber
texture into a weak non-fiber texture in the fine-grained region of extruded parts. RBE
deformation showed many advantages and excellent microstructure refinement ability.
Thus, there should also be important attempts to prepare Al alloy shell parts for engineering
applications while improving its mechanical properties using the SPD method, however,
this such attempts are rarely reported.

7xxx series Al alloys have been widely regarded and developed as a new generation of
high-quality and ultra-high strength alloys. These types of alloys are considered to be the
most likely among non-ferrous metals to replace steel due to their superior performance
in various aspects [19]. In this study, the RBE process was carried out using commercial
7075 Al alloy. The main aim of this research is to reveal the effects of the RBE process
and deformation parameters on grain refinement ability, precipitates and heat treatment
properties of 7075 Al alloy. Moreover, a detailed analysis regarding the grain refinement
mechanism of materials used in the RBE deformation was revealed. In order to clarify the
deformation characteristics of materials under RBE deformation, the CBE process was also
carried out under the same deformation conditions.

2. Materials and Methods

The initial material used in this experiment was extruded-7075 Al bar with T6 treat-
ment. The specific chemical composition is shown in Table 1. In order to enhance the
deformability and eliminate the effect of aging precipitates of the material, the extruded
bar underwent solution treatment (T4) at 475 ◦C for 2 h, and was then rapidly cooled with
water at room temperature. Several cylindrical rods with a diameter of 21 mm and length
of 27 mm were prepared by electric spark cutting from the initial bar and used in the RBE
experiment. Figures 1 and 2a show the schematic illustration and specific die structure of
the RBE process, respectively. In this experiment, the punch adopted an open structure,
with a cross groove structure in a groove depth of 1 mm on the end surface. Due to the
circumferential torsional deformation applied in RBE, six process ribs with Φ1 × 24 mm
distributed along the circumference were set on the inner wall of the die to ensure the
firmness of the billet in the extrusion. The RBE experiment was carried out using a Gleeble-
3500 thermal simulation machine (DSI Inc., New York, NY, USA) equipped with torsion
unit structure, as shown in Figure 2b. The specific RBE experiment was divided into three
steps: (1) The moveable die was moved a certain distance (2 mm) to ensure that the billet
filled the punch groove and the punch did not rotate during the process; (2) With the feed
movement of the moveable die, the open punch began rotation; (3) When the moveable die
was fed to the target stroke, the experiment ended and rapid cooling was implemented in
the machine immediately. In this experiment, the deformation temperature was 410 ◦C, the
total moveable die stroke was 20 mm, the moveable die feed speed was 0.05 mm/s, and
the punch rotation speeds were 0, 0.0785, 0.1570, 0.2355, 0.3925, 0.785 rad/s, corresponding
to the number of revolutions, respectively (N) = 0, 5, 10, 15, 25, 50 (0 N was defined as CBE
processing). The specific parameters are shown in Figure 2c. Before extrusion, the billets
and die were heated to the deformation temperature through resistance with the thermal
simulation machine and kept warm for 10 min. The temperature variation of the billet
during deformation was monitored by welding thermocouple wires to the bottom of the
billet. Oil-based graphite was used as lubricant.

Table 1. Chemical compositions of 7075 Al alloy (wt%).

Zn Mg Cu Fe Si Al

5.1–6.1 2.1–2.9 1.2–2.0 <0.4 <0.5 Bal.
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grinded and polished, and then residual stress layer was removed using a LECO ion thin-
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current of 2.4 mA. The EBSD tests were conducted at the voltage of 20 kV, the tilt angle of 
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Figure 2. (a) The die structure, (b) experimental equipment, and (c) specific processing procedure
and parameters for applied RBE method.

The microstructure of the extruded parts was investigated using an optical microscope
(OM; A1 m, Zeiss Inc., Oberkochen, Germany) and scanning electron microscopy (SEM;
SU5000, Hitachi Inc., Tokyo, Japan) equipped with electron backscatter diffraction (EBSD;
EDAX Inc., Mahwah, NJ, USA). Samples for OM analysis were prepared by pre-grinding,
mechanical polishing and etching using a solution of 2.5 mL HNO3, 1.5 mL HCl, 1 mL HF,
and 95 mL H2O. For SEM and EBSD observation, the samples were first pre-grinded and
polished, and then residual stress layer was removed using a LECO ion thinning instrument
(Leica EMS-102, Wetzlar, Germany) with a voltage of 6.3 kV and electric current of 2.4 mA.
The EBSD tests were conducted at the voltage of 20 kV, the tilt angle of samples was 70◦,
and the scanning step was 0.1–0.3 µm. The EBSD data were analyzed with orientation
imaging microscopy (OIM) analysis v7.3 software (EDAX Inc., Mahwah, NJ, USA). The
microhardness test was performed using a Vickers indenter with a load of 200 g as well as
a loading time of 15 s. To ensure the reliability of the results, 5 indentations were measured
under each condition.

Deform 3D-v11 software (SFTC Inc., Columbus, OH, USA) was used for FEM sim-
ulation analysis of CBE and RBE deformation. In the simulation, the die was set as a
rigid body, and the billet of 7075 Al alloy was set as an elastic–plastic model (the specific
material parameters are shown in Table 2). The simulated processing parameters were
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consistent with the actual deformation parameters. The friction model was considered as
shear friction, and the friction factor was set at 0.3, as frequently used in lubricated thermal
deformation.

Table 2. The specific parameters of 7075 Al alloy billet used in the simulation.

Material Parameters Values

Elastic modulus (GPa) 71
Poisson’s ratio 0.33

Height of billet (mm) 27
Diameter of billet (mm) 21
Mesh number of billet 30,000

Minimum mesh edge length (mm) 0.46

3. Results and Discussion
3.1. FEM Analysis

In order to clarify the basic deformation characteristics and differences between CBE
and RBE deformation, Figure 3 shows the FEM simulation results of the billet after CBE
and RBE with the tracking results of the selected nodes of interest. The basic features of
CBE deformation are as follows, a punch pushes the bottom material to produce quasi-
upsetting deformation, promoting the flow of metal to the gap between the punch and the
die, eventually forming the wall of the part. In this process, the material also experiences a
certain degree of shear deformation when it flows through the corner of the punch. It can be
observed that upsetting deformation during CBE provided an uneven deformation mode.
Due to the strong frictional resistance between the punch and billet end surface, a dead
deformation region formed in the center of the billet top (Figure 3b), which greatly limited
metal flow toward the wall. Moreover, the outer metal surface in this region produced a
certain resistance to the inner metal flow. Along the height direction, the middle section
of the billet was the region of primary deformation, but showed a disadvantage of lower
strain, which may lead to inadequate microstructure refinement of materials. Concerning
the selected tracking nodes, it can be observed that the movement of the nodes (P1, P4)
in the center of the billet after deformation was limited. With the selected nodes moved
to the outside and the bottom, the metal fluidity was enhanced, but the overall strain
amplitude remained at a lower level. In contrast, RBE deformation combines compressive
and torsional deformation into a new SPD mode by imposing extra circumferential rotation
to the punch. Due to the rotary movement of the punch, the friction resistance between
the billet end surface and punch will be extensively transformed into an effective shear
force, thus greatly eliminating the dead deformation region in the billet top. From the
selected nodes, it can also be seen that compared with CBE deformation, RBE deformation
promoted greater flow of the top metal surface of the billet, particularly the metal in the area
around the middle wall (Figure 3c). Moreover, the comprehensive effects of compressive
and torsional deformation greatly improved the overall strain level of the material. From
the strain distribution, it can be observed that the dead deformation and deformation
region of the billet during the RBE process merged into one region, and the strain level was
extensively improved, which is conducive to the preparation of ultra-fine grained materials
with high angle grain boundaries and reduced anisotropy. However, it was noted that as
the billet moved away from the punch’s impact region, the strain level of the RBE extruded
part decreased to a certain extent, showing the characteristics of a gradient distribution.
The results indicated the effects of torsional and compressive deformation during RBE were
inevitably reduced as the action of the punch weakened.



Metals 2022, 12, 227 6 of 20
Metals 2022, 12, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. (a) The initial billet marked with selected nodes of interest, and effective strain distribu-
tions with tracking results for initial nodes under: (b) conventional backward extrusion (CBE) and 
(c) RBE (25 N). 

The FEM results of the effective strain distribution and average effective strain vari-
ables of RBE parts under a different number of revolutions (N) are shown in Figure 4. It 
can be seen that the average effective strain increases with an increase of N. The simulated 
average effective strain could be tremendously increased from 0.76 of the CBE to 9.54 of 
the RBE at 50 N through a severe torsional deformation. Moreover, it can be seen that with 
an increase of N, the plastic deformation area of the extruded part extended from the in-
side to the outside to a certain extent, indicating that an increase of N per unit time also 
increased the action range of the punch and thus the metal flow was further promoted. 
This will be confirmed in the Section 3.2 on microstructure characteristics. 

 
Figure 4. Variation of average effective strain and strain distribution of the extruded samples with 
number of revolutions (N). 

3.2. Microstructure Characteristics 
3.2.1. Initial Microstructure 

Figure 5 showed the microstructure and EDS results of T4-7075 Al alloy. After T4 
treatment, the extruded 7075 Al alloy showed a typical extruded fiber structure, mainly 
composed of elongated deformed grains that were large in size, with some fine dynami-
cally recrystallized(DRXed) grains distributed around their boundaries. In addition, some 
coarse block-shaped phases were left on the matrix and distributed along the initial extru-
sion direction. SEM and EDS analysis clearly revealed that these massive compounds 
were mainly enriched in Al, Fe and a small amount of Cu. Due to the inevitable presence 
of Fe and other impurities in alloy melting, some studies have investigated the presence 
of a high melting point Fe-rich phase in Al alloys [20–22]. The EDS analysis showed that 
the Fe atomic weight of the observed insoluble Fe-rich compounds in the extruded 7075 
bar was roughly 10%, but also contained a small amount of Cu, roughly 2.6%. In addition, 
a small amount of Mg–Si phase was found on the Al matrix, but the distribution number 

Figure 3. (a) The initial billet marked with selected nodes of interest, and effective strain distributions
with tracking results for initial nodes under: (b) conventional backward extrusion (CBE) and (c) RBE
(25 N).

The FEM results of the effective strain distribution and average effective strain vari-
ables of RBE parts under a different number of revolutions (N) are shown in Figure 4. It
can be seen that the average effective strain increases with an increase of N. The simulated
average effective strain could be tremendously increased from 0.76 of the CBE to 9.54 of the
RBE at 50 N through a severe torsional deformation. Moreover, it can be seen that with an
increase of N, the plastic deformation area of the extruded part extended from the inside to
the outside to a certain extent, indicating that an increase of N per unit time also increased
the action range of the punch and thus the metal flow was further promoted. This will be
confirmed in the Section 3.2 on microstructure characteristics.
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3.2. Microstructure Characteristics
3.2.1. Initial Microstructure

Figure 5 showed the microstructure and EDS results of T4-7075 Al alloy. After T4
treatment, the extruded 7075 Al alloy showed a typical extruded fiber structure, mainly
composed of elongated deformed grains that were large in size, with some fine dynamically
recrystallized(DRXed) grains distributed around their boundaries. In addition, some coarse
block-shaped phases were left on the matrix and distributed along the initial extrusion
direction. SEM and EDS analysis clearly revealed that these massive compounds were
mainly enriched in Al, Fe and a small amount of Cu. Due to the inevitable presence of Fe
and other impurities in alloy melting, some studies have investigated the presence of a
high melting point Fe-rich phase in Al alloys [20–22]. The EDS analysis showed that the
Fe atomic weight of the observed insoluble Fe-rich compounds in the extruded 7075 bar
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was roughly 10%, but also contained a small amount of Cu, roughly 2.6%. In addition, a
small amount of Mg–Si phase was found on the Al matrix, but the distribution number
was extremely low. The Mg–Si compound was generally recognized as Mg2Si phase in Al
alloys [21].
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Figure 5. (a) Optical microscopy (OM) image, (b) backscattered scanning electron microscopy (SEM)
image, and (c,d) corresponding energy-dispersive X-ray (EDX) results for the as-extruded T4-7075
Al alloy.

3.2.2. Microstructure after CBE and RBE

In order to reveal the metal flow characteristics of the materials with greater clarity
during CBE and RBE, and to confirm the FEM results, a macro OM observation on the cross
sections of both extruded parts was conducted, with the results shown in Figure 6. The wall
region is the final position of metal flow for the extrusion part. The metal in the wall region
of the CBE part essentially retained its original extruded fiber structure, and there was a
certain range of deformation region that occurred on the inner side, with a low degree of
microstructure refinement. However, there was a notable microstructure refinement on the
inner side of the wall of the CBE (25 N) part, and the refinement amplitude decreased as it
approached the outer wall, showing a gradient structure. It can be seen from the OM image
of the earlier deformation stage (I) intercepted at a higher multiple that the metal in the
dead deformation region of the CBE part retained the initial microstructure. In the upsetting
region, the metal streamline was bent and flowed to the wall at an angle of around 45◦

with the movement of the die. Moreover, when the inner metal flowed through the corner
of the punch, it underwent a certain shear deformation with the microstructure clearly
refined, however, the overall refinement level remained insufficient. Due to the gradient
distribution of the torsional and compressive stress, the bottom deformation characteristics
of RBE parts showed a gradient structure from top to bottom. By applying circumferential
rotation of open punch, it can be observed that the RBE deformation greatly altered the
dead deformation zone between the billet surface and the punch into a severe deformation
zone, where the initial elongated grains were replaced by complete fine DRXed grains (I).
In the deformation zone II near the punch, the compressive and torsional deformation
promoted the compression of the initial metal streamline into a transverse fine fiber or
equiaxed structure, accompanied by significant DRX. In the deformation zone III located
far from the punch, the initial streamline was flattened with a lower DRX degree due to the
weakening of compression–torsion stress. Eventually, the metal in different deformation
regions flowed into the wall of the part leading to a gradient microstructure distribution of
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the wall. In addition, it can be noted that in the wall of CBE part, the inner deformation
region was weakened as it was in close proximity to the top section of the part (IV), which
related to lower initial strain levels at the earlier extrusion stage due to the lack of back
stress. However, the non-uniformity of deformation in the wall region of the RBE part along
the height direction was notably weakened. This phenomenon can also be confirmed by
the metal flow of selected nodes from Figure 3 (P1, P4). Compared with CBE deformation,
it can be seen that RBE promoted the flow of metal at the top of the billet to the wall at the
initial extrusion stage while the effective strain level simultaneously improved due to the
addition of torsional deformation. As a result, this greatly promoted the microstructure
refinement at the top of the part along the height direction and eventually improved the
deformation heterogeneity.
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Figure 6. Macroscopic OM images of (a) CBE and (b) RBE (25 N) samples marked with highly
magnified regions containing corresponding deformation characteristics (I, II, III and IV: the typical
deformation region of CBE or RBE samples).

It can be noticed that regardless of the CBE or RBE deformation, the main defor-
mation region of the parts concentrated on the inner side, while there was no obvious
microstructure refinement on the middle and outer side. As previously mentioned, this
was related to the decrease of compressive and torsional stress in the material away from
the punch, and was also greatly affected by the deformation ratio (the ratio of punch
diameter to billet diameter), acting on the effective strain level and distribution. In our
previous research on AZ80 Mg-alloy CBE shells with a wall thickness of 16 mm and outer
diameter of 200 mm (deformation ratio was ~0.85), it was shown that although the wall of
the extruded part displayed non-uniformity, the middle and outer sides were deformed
to varying degrees [23]. Due to the influence of maximum loading (2 tons) of the thermal
simulation testing machine, the deformation ratio of this CBE and RBE experiment was
only around 0.47. In addition, the torsional pressure of the RBE experiment could not
achieve the extremely high hydrostatic pressure similar to the HPT process in a laboratory
scale with a smaller sample size [24], which functions as the microstructure refinement
range. Therefore, further die structure designs will be the focus of our future work, and
the current work was carried out mainly to reveal the effects of RBE and deformation
parameters on the deformation characteristics and microstructure of the 7075 Al alloy.

In order to clarify the influence of the compression–torsion deformation mode and
the N on the deformation degree and microstructure of the extruded parts, the main
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deformation regions at the bottom and at the wall of the extruded parts with different N
were observed, and the results shown in Figures 7 and 8, respectively. Figure 7 shows the
low-magnification OM microstructure of the bottom of the extruded parts. The bottom
and top of the CBE part was an un-deformed region. With an increase in N, came an
increase in the refinement range of the microstructure at the bottom of RBE, indicating that
increasing N per unit time brought not only greater strain variables, but also expanded the
deformation amplitude, which is consistent with the results of FEM simulation. Due to the
presence of strain gradient, the overall DRX level essentially decreased from top to bottom
of the parts. It can be observed for 5 N and 10 N parts with relatively lower strain levels,
that the top ends retained some deformed regions. Moreover, it can be noticed that due to
the distribution differences of deformation torque in addition to the resistance of the outer
metal to the inner metal surface, the edge of the top end part was better than the center
position to be preferentially refined. As N increased from 5 to 10 and 15, the top region was
gradually refined from the edge to the center, with the area of dead deformation region
greatly reduced. When N exceeded 15, the top grains of parts were fully refined into fine
DRXed grains.
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Figure 8 shows the low magnification OM microstructure of the wall of extruded parts
under different N. Refer to the macro metal flow in Figure 6, the microstructure of the
wall region inherited the characteristics of the bottom. The deformed wall region of the
CBE part was mainly characterized by the deformed structure caused by the upsetting
deformation at the bottom, and a thin fine DRXed layer appeared in the inner wall due
to shear deformation applied on the punch corner. The entire inner wall region of CBE
parts were refined into fine DRXed grains. With continuous expansion to the outer wall,
the degree of grain refinement decreased with decreasing strain amplitude, which was
manifested as the transition region composed of fine fiber structure and DRXed grains. It
can be seen that with an increase in N, the DRXed regions extended outward. When N
increased to 50, the range of fine-grained regions reached roughly 1100 µm, compared to
roughly 350 µm at 5 N.

To further reveal the grain refinement ability and microstructure of the material after
RBE, Figures 9–11 showed inverse pole figure (IPF) coloring maps, corresponding kernel
average misorientation (KAM) and grain size distribution histograms of typical regions
from the inner wall of extruded samples obtained by EBSD analysis. Using OIM software,
we defined the range of low angle grain boundary (LAGB) as 3–15◦, and the high angle
grain boundary (HAGB) as greater than 15◦. Grain orientation spread (GOS) was applied to
distinguish between DRXed and non-DRXed grains of the tested samples [25,26], where we
defined GOS values of less than 1◦ as indicative of DRXed grains. The available KAM value
in this study was considered as 1–3◦ (KAM values less than 1◦ were considered machine
errors, and values greater than 3◦ were identified as LAGBs/Sub-GBs).
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The CBE microstructure of the selected region retained the initial extruded fiber
structure and was accompanied by obvious dynamic recovery (DRV) with an abundance of
LAGBs, but in some regions, the elongated deformation grains were also refined into some
coarse DRXed grains and fine DRXed grains. The average misorientation angle (MA) in
CBE sample was statistically around 22.8◦ with the existence of high proportion of LAGBs.
It can be seen that as N increased, the extruded fiber structure of RBE parts was gradually
replaced by DRX structure with average MA obviously increased and LAGBs rapidly
reduced. From the corresponding KAM distributions (Figure 10), the dislocation density of
the RBE samples was lower than that of the CBE samples, and exhibited a slight decrease
with an increase in N, probably due to the more sufficient DRX continuously depleting



Metals 2022, 12, 227 12 of 20

the dislocation structure of the material. The percentage of DRX significantly increased
from ~42% at 5 N to ~90% at 50 N, and the grain size of DRXed grain was maximally
refined to ~1.2 µm at 25 N with the corresponding average grain size refined to ~1.3 µm.
However, when N reached 50, the DRXed grained size and average grain size increased
slightly, ~1.3 and ~1.4 µm, respectively. It is well known that temperature and strain rate
as two key parameters in thermomechanical deformation, play a vital role in influencing
the size of DRXed grains. In addition, this relationship can be represented by the classical
Zener–Hollomon parameter [27]:

Z =
.
ε exp

(
Q
RT

)
, (1)

where,
.
ε is the strain rate, Q is the activation energy for lattice diffusion of Al, R is the gas

constant, and T is the deformation temperature. DRXed grain size and the Z parameter can
be further expressed as [28]:

lnZ + mlndDRX = lnA (2)

where m is the exponent and A is a constant. The increase of N per unit time significantly
improved the effective strain rate, promoting the reduction of DRXed grain size. However,
it can be inferred that the severe torsional deformation also inevitably accelerated the rise
of local temperature. Although the torsional velocity increased from 0.3925 rad/s at 25 N
to 0.785 rad/s at 50 N, the inevitable temperature rise caused by severe deformation may
have decreased the Z parameter, and thus contributed to the growth of DRXed grains.

Figure 12 showed the SEM microstructure of the inner wall of extruded samples under
different N (the test position was ~0.5 mm away from the inner wall). As previously
observed, a large number of insoluble banded Fe-rich phases were retained in the initial
state. After CBE, these banded phases remained preserved in the wall. However, as the
initial fiber structure was refined under the action of severe deformation by RBE, the phase
structure and distribution of the material were also greatly changed. A large number
of phase particles of different sizes and morphologies were observed to be distributed
in the RBE samples, and the distribution density increased to a certain extent with an
increase of N. It is not difficult to identify that the large bulk phase particles in the matrix
were the initial residual Fe-rich phases, while the finer dispersed phase particles could be
considered as the mixture of further fragmented insoluble Fe-rich phases and possible new
precipitates. Evidently, as N increased, the refinement level of insoluble Fe-rich phases also
increased. In addition, it was noted that when N reached 50, a few microcracks appeared
in the matrix. In order to further explore the phase evolution during RBE deformation,
we observed the microstructure of the earlier extrusion stage, i.e., the deformation zone
II at the bottom of RBE–25 N part in Figure 6, as shown in Figure 13. It can be seen that
numerous phase particles had already appeared at this stage and distributed laterally along
the metal streamline. Under severe plastic deformation, the insoluble Fe-rich phases were
separated and fragmented. The higher magnification SEM images clearly showed that
while the Fe-rich phases were broken, a large number of precipitated particles concurrently
appeared in the DRXed grain regions of different sizes. The EDS results in Figure 13c
further revealed that the residual Fe-rich phase particles could be refined to ~1–3 µm at this
stage. The size distribution of fine dispersed precipitates ranged widely, ~0.05–1.5 µm. The
EDS mapping scan of new precipitated phase particles with larger size clearly showed they
were enriched with Mg and Zn elements, which could be identified as MgZn2 phase [21].
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deformed region of the RBE (25 N) sample.

Previous studies have revealed that small size phase particles could be continuously
precipitated from the matrix of alloy during thermomechanical deformation, which typi-
cally referred to dynamic precipitation [29]. Different from static precipitation, dynamic
precipitation is not only related to processing temperature, but also strongly dependent
on plastic deformation. RBE deformation through severe torsional deformation imposed
during extrusion would promote strong dislocation accumulation in the matrix, which
provided a favorable position for phase nucleation. At the same time, these dislocations
would also output solute atoms to high-density dislocation entanglements at high speed,
so that they reached higher saturation in a short time, and eventually accelerated the
nucleation and growth of phase particles [30]. Moreover, the evolution of phase particles
during deformation would have a certain impact on DRX. It was reported that when the
size of phase particles was fine enough, their distribution at the grain boundary (GB) could
become an obstacle to GB migration through the pinning effect [28]. As continuous plastic
deformation occurred during RBE, some dislocations would rearrange and evolve into
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sub-grain boundaries (sub-GBs) and new GBs. In this process, the continuous nucleation
and growth of new phase particles at these dislocations contributed to their distribution
at GBs. Due to their small size and high density distribution of these particles, they could
become an obstacle to the migration of GB, and then inhibit the growth of fine DRXed
grains by the pinning effect.

3.2.3. Microstructure Evolution during RBE

The RBE process exhibited a strong microstructure refinement capability for the mate-
rials by applying severe compression–torsion deformation. To clarify the microstructure
revolution and grain refinement mechanism in RBE, Figure 14 shows IPF coloring maps
with typical deformed regions selected at 1 mm, 2.5 mm and 4 mm from the top of the RBE
(25 N) billet, with the corresponding KAM and MA distribution histogram obtained by
EBSD analysis.

Figure 14. EBSD results showing the microstructure evolution during different stages of RBE (25 N)
sample: (a,d,g) IPF coloring maps, (b,e,h) corresponding KAM distribution maps and (c,f,i) misorien-
tation angle (MA) distribution histograms.

Figure 14a presented the IPF coloring map of the deformation region at 4 mm from
the top of the billet. Due to the gradient distribution of the effective strain, the effect of
torsional stress in this region was insufficient. The initial extruded fiber structure was
mainly flattened under compressive stress. It was observed that a large number of LAGBs
were distributed within the deformed grains, and the KAM map revealed that a large
amount of dislocations distributed simultaneously. It is known that Al as a typical metal
with high-level stacking fault energy, making it difficult to achieve full DRX during thermal
deformation due to the rapid DRV process [31]. In Al, DRV mainly includes the elimination
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and rearrangement of opposite sign dislocations caused by dislocation cross slip and
climb. The formation of sub-structures and DRXed grains is closely related to dislocation
rearrangement and subsequent dynamic polygonization, which provides a prerequisite for
continuous dynamic recrystallization (CDRX). The typical DRX characteristics at this stage
can be seen from the higher magnification image of the region A1 in Figure 14a, as shown in
Figure 15. Under plastic deformation, the grains in the deformation region were flattened
and accompanied by a significant variation in crystal orientation (Figure 15a). The line
profile of MA and inserted three dimensional face-centered cubic (FCC) crystal cells along
the line L1 showed that there was a large orientation gradient of ~13◦ along the length of
~35 µm present in the matrix with strong lattice distortion. According to the orientation
differences, the selected deformed region could be divided into three sub-grain parts, P11,
P12 and P13 (Figure 15d). Interiorly, some fine sub-grains were formed and developed into
DRXed grains via the transformation of LAGBs to HAGBs, showing the characteristics of
CDRX. It should be considered that the appearance of large-size sub-grains would cut the
matrix grains, and finally promote the refinement of the deformed grains into different
parts.

Metals 2022, 12, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 14. EBSD results showing the microstructure evolution during different stages of RBE (25 N) 
sample: (a,d,h) IPF coloring maps, (b,e,i) corresponding KAM distribution maps and (c,f,j) misori-
entation angle (MA) distribution histograms. 

 
Figure 15. The DRX behavior of the deformed region (A1) selected in Figure 14a: (a) IPF coloring 
map, (b) line profile of MA along the line L1 in (a), and corresponding (c) (111) pole figure and (d) 
inverse pole figure. 

Figure 14d showed the IPF coloring map of the deformation region at 2.5 mm from 
the top of the billet. As the metal approached the punch, the compression–torsion stress 
increased, and the metal deformed in the previous stage could produce a more obvious 
plastic deformation after flowing into this stage. The deformed grains were continuously 
flattened as the range of grain refinement increased in this stage. Compared with the ini-
tial stage, the KAM distribution revealed that the dislocation density increased due to 
more severe plastic deformation. At the same time, the proportion of LAGBs decreased 
and the average MA increased, indicating that more pronounced CDRX occurred via the 
evolution of LAGBs to HAGBs. The DRX behavior at this stage showed following three 
basic characteristics: (1) The formation of large-size DRXed grains through the emergence 

Figure 15. The DRX behavior of the deformed region (A1) selected in Figure 14a: (a) IPF coloring
map, (b) line profile of MA along the line L1 in (a), and corresponding (c) (111) pole figure and
(d) inverse pole figure.

Figure 14d showed the IPF coloring map of the deformation region at 2.5 mm from
the top of the billet. As the metal approached the punch, the compression–torsion stress
increased, and the metal deformed in the previous stage could produce a more obvious
plastic deformation after flowing into this stage. The deformed grains were continuously
flattened as the range of grain refinement increased in this stage. Compared with the
initial stage, the KAM distribution revealed that the dislocation density increased due to
more severe plastic deformation. At the same time, the proportion of LAGBs decreased
and the average MA increased, indicating that more pronounced CDRX occurred via the
evolution of LAGBs to HAGBs. The DRX behavior at this stage showed following three
basic characteristics: (1) The formation of large-size DRXed grains through the emergence
and transformation of large-size sub-grains in the initial deformed grains; (2) New DRXed
grain appearance at the boundary and inside large deformed grains due to local strain
accumulation (A2 and A3); (3) The newly formed large-size DRXed grains were gradually
refined to fine DRXed grains under continuous deformation through the dominant CDRX
(A4 and A5). These eventually greatly promoted grain refinement in this stage.

Figure 14g showed the IPF coloring map of the deformation region at 1 mm from
the top of billet. The stronger compression–torsion deformation promoted the transverse
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flattening of the metal streamline from previous stages, accompanied by significant grain
refinement. The microstructure was characterized by a mixed grain structure composed
of DRXed grains and deformed grains with fine fiber structure. Due to the development
of a large number of DRXed grains, the proportion of LAGBs decreased to 18% and the
average MA increased to 33.3◦ with the KAM value greatly reduced. There were two main
grain refinement behaviors in this stage: (1) The large-size DRXed grains formed in the
earlier stage were refined through CDRX under continuous strain (A6 and A7); (2) The
large, deformed grains were flattened laterally and transformed into fine fiber structure,
and continuously refined into new DRXed grains (A8 and A9). To further reveal the typical
DRX behavior at this stage, Figure 16 showed the deformation characteristics of elongated
deformed grains intercepted from A8 in Figure 14g. Under the severe deformation, the
interior of deformed grains developed into a banded grain structure consisted entirely of
fine sub-grains with MA of 8–11◦ (Figure 16b). The boundaries of deformed grains had
become serrated and in some regions they were refined to the entire or one-half thickness
of sub-grains. It is noted that when the deformed grains became thin enough, the DRXed
grains evolved from sub-grains would pinch them into different parts. Such DRX behavior
could be considered as a typical feature of geometric dynamic recrystallization (GDRX) [31].
It was revealed the original large grains had a tendency to be flattened (compression
stress) or elongated (tension or torsion stress) during large plastic deformation, and their
boundaries would become serrated with the formation of sub-grain. As the GB area per
unit volume rapidly increased, the sub-grain facets formed by the original GB increased
remarkably. Finally, when the original grain thickness was reduced to two sub-grain’s size,
the GBs made contact with each other, resulting in the crushing, pinching off the original
grains, and formation of fine DRXed grains with HAGBs, i.e., GDRX phenomenon [32,33].
In general, GDRX is considered prone to large strain deformation, while CDRX usually
begins at a lower strain amplitude. Blum et al., [34] reviewed the occurrence of GDRX
phenomenon in the large-strain torsion deformation of AA5083 alloy. Yu et al., [33] also
considered that GDRX was induced by pinching off the compressed or elongated initial
grains caused by large strain. As a result, when the material was distanced far from the
active region of open punch during RBE, the grain refinement by CDRX promoted the
refinement and slitting of large, deformed grains. With the continuous strengthening of
compression–torsion stress, the deformed grains flattened into fine fiber structure and
GDRX simultaneously appeared, greatly accelerating the DRX process in the later stage.

Metals 2022, 12, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 16. The DRX behavior of the deformed region (A4) selected in Figure 14h: (a) IPF coloring 
map, (b) line profile of MA along the line L2 in (a), and corresponding (c) (111) pole figure and (d) 
inverse pole figure. 

3.3. Microstructure and Properties after Heat Treatment 
It is known that 7075 Al alloy as a typical heat-treated alloy, that aging precipitates 

are the key to improve its properties. As previously observed, a large number of dynamic 
precipitated particles occurred in the matrix after RBE. However, the size of these phase 
particles was much larger than the typical aging precipitated particles in Al–Zn–Mg–Cu 
alloys, and greatly consumed the solute elements in the matrix. To dissolve these phase 
particles and clarify the effects of grain refinement and precipitation strengthening on the 
properties of extruded parts, we selected the 25 N sample with the finest grain size con-
ducted a short-time annealing at 475 °C for 30 min and subsequent artificial aging at 120 
°C for 24 h (T6). Figure 17 shows the annealed microstructure of the 25 N sample (the test 
position was 0.5 mm away from the inner wall). 

 
Figure 17. (a) IPF coloring map, (b) KAM map, (c) backscattered SEM image and (d) grain size dis-
tribution histogram of the annealed RBE (25 N) sample. 

After annealing, the grain structure of the sample occurred with clear static recovery 
and recrystallization with the equiaxed grains developed and the intracrystalline disloca-

Figure 16. The DRX behavior of the deformed region (A4) selected in Figure 14g: (a) IPF coloring
map, (b) line profile of MA along the line L2 in (a), and corresponding (c) (111) pole figure.



Metals 2022, 12, 227 17 of 20

3.3. Microstructure and Properties after Heat Treatment

It is known that 7075 Al alloy as a typical heat-treated alloy, that aging precipitates
are the key to improve its properties. As previously observed, a large number of dynamic
precipitated particles occurred in the matrix after RBE. However, the size of these phase
particles was much larger than the typical aging precipitated particles in Al–Zn–Mg–Cu
alloys, and greatly consumed the solute elements in the matrix. To dissolve these phase
particles and clarify the effects of grain refinement and precipitation strengthening on
the properties of extruded parts, we selected the 25 N sample with the finest grain size
conducted a short-time annealing at 475 ◦C for 30 min and subsequent artificial aging at
120 ◦C for 24 h (T6). Figure 17 shows the annealed microstructure of the 25 N sample (the
test position was 0.5 mm away from the inner wall).
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After annealing, the grain structure of the sample occurred with clear static recovery
and recrystallization with the equiaxed grains developed and the intracrystalline disloca-
tions were greatly consumed. It is noted that although the grain size maintained a relatively
fine distribution, they inevitably increased to ~2.7 µm compared with ~1.3 µm in extruded
state. SEM showed that all dynamic precipitated particles had fully dissolved into the
matrix after short-time annealing, while the refined Fe-rich phases were preserved. Since
these insoluble Fe-rich phases belong to brittle hard and hard compounds, when their
size is relatively large, they are prone to becoming crack sources in plastic deformation.
It was revealed that refining the Fe-rich phase through SPD method was conducive to
improving the toughness and fatigue resistance of the Al alloy. An increasing strength and
ductility was observed in a brittle Al-5–Fe alloy processed by ECAP due to the refinement
of Fe-rich particles [35]. Sha et al., [20] also revealed that after 8 passes of ECAP, the average
size of insoluble Fe-rich phases in AA7136 alloy could be effectively refined to ~131 nm,
compared with ~757 nm in the initial extruded alloy. Compared with the coarse banded
insoluble Fe-rich phases remaining in the initial extruded bar, these type of phases showed
significant size refinement and distribution improvement after RBE, thus being conducive
to the improvement of the potential fracture properties of the material.

Figure 18 shows the Vickers microhardness distribution of the initial T6-extruded rod,
the T4-extruded rod (the initial experimental state), the fine grain region of RBE-25 N and
T6-RBE (25 N) part. Compared with the T4-extruded rod (~95 HV), the microhardness
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of the extruded part was significantly improved after RBE treatment due to significant
grain refinement and hardening of dynamic precipitated particles. The microhardness of
the fine grain region at different positions along the inner side was distributed between
~101–106 HV. It is noted that the hardness of the wall region was slightly lower than that
of the bottom region, which could be related to the dislocation accumulation caused by
more severe compression–torsion deformation at the bottom. After T6 heat treatment, the
hardness of the fine grain region of the part had effectively increased to ~192–197 HV
and without significant distribution difference in different positions. Compared with the
T6-extruded state with a value of ~180 HV, the improvement of properties showed that
grain refinement combined with precipitation strengthening could potentially improve the
mechanical properties of extruded parts. However, due to the size limitation of the currently
prepared samples and the limited range of fine grain region caused by the relatively low
deformation ratio, the effect of RBE treatment on the overall properties of the material,
including the connection between the refinement of the insoluble Fe-rich phase and the
fracture properties, had not been further revealed. Therefore, further work will be carried
out on die design, extruded part size and mechanical properties research.
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4. Conclusions

7075 Al alloy shell parts were successfully prepared by employing a new rotating
backward extrusion (RBE) method with different number of revolutions (N = 5, 10, 15, 25, 50)
at 410 ◦C. The effects of the RBE process on grain refinement, precipitates, and properties
of extruded parts were reported and the deformation characteristics were compared with
conventional backward extrusion (CBE). The main conclusions can be drawn as follows:

(1) Compared with CBE, due to the addition of severe torsional deformation under open
punch, the RBE process eliminated the dead deformation zone at the bottom of the
shell part, and greatly improved the deformation uniformity and the comprehensive
effective strain level of the material. The overall strain level of the extruded parts
continuously weakened from the inner wall to the outer wall due to the decrease of
the compression–torsion stress.

(2) In RBE deformation, an increase in N greatly improved the grain refinement ability
and grain refinement range of the extruded parts. The microstructure observation of
the inner wall of the extruded samples revealed that the grain refinement range could
immensely increase from roughly 350 µm at 5 N to approximately 1100 µm when N
reached up to 50. The average grain size was maximally refined to around 1.3 µm at
25 N, compared to roughly 13.7 µm in the CBE sample.

(3) Due to the severe compression–torsion deformation, RBE strongly promoted the
refinement of massive insoluble Fe-rich phases that remained in the initial extruded
bar. As N increased, the fragmentation degree of insoluble Fe-phases also increased
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in a continuous manner. At the same time, a large number of Mg–Zn2 particles were
dynamically precipitated from the matrix, acting as an obstacle to grain boundary
migration and grain growth by the pinning effect.

(4) The grain refinement of the 7075 Al alloy under RBE was related to the comprehensive
effects of continuous dynamic recrystallization (CDRX) and geometric dynamic recrys-
tallization (GDRX). At the initial stage with lower strain levels, CDRX promoted the
segmentation and refinement of deformed grains into smaller parts. With the gradual
increase of compression and torsion stress, the deformed grains were flattened into
fine fiber structures, and the crushing and pinching off of these grains via GDRX
promoted grain refinement in the final stage.

(5) The RBE process greatly improved the properties of the material. The study of the RBE–
25 N part showed that short-time annealing could effectively dissolve the dynamic
precipitated particles remaining after extrusion. After annealing, the average grain
size of the extruded part increased to approximately 2.7 µm. After T6 treatment, the
microhardness of the fine grain region for the part could be increased to ~192–197 HV,
compared with ~180 HV in the initial extruded state.
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