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Abstract: Four novel superelastic alloys, Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, Ti-44Zr-10Nb
(at.%), were obtained and studied in terms of their microstructure and mechanical properties. The
obtained alloys were subjected to thermomechanical treatment, providing alloys with a pronounced
superelastic behavior. Materials phase composition and microstructure were studied using XRD and
SEM methods. Based on the XRD results, maximum lattice strains in the [011]β direction were calcu-
lated as 5.9%, 6.3%, 7.5%, and 7.2% for Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, and Ti-44Zr-10Nb
alloys, respectively. Mechanical properties of the thermomechanically-treated alloys were stud-
ied by Vickers microhardness testing, static tensile testing, and superelastic mechanical cycling.
The maximum superelastic recovery strains attained at room temperature was 3.7%, 1.9%, 3.2%,
and 3.0% for the Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, and Ti-44Zr-10Nb alloys, respectively.
Ti-41Zr-12Nb alloy demonstrated the highest ductility, with relative elongation to failure of over 20%,
combined with the total recovery strain of more than 6%. Obtained results indicate that Ti-41Zr-12Nb
is one the most promising alloys of the Ti-Zr-Nb system, with quite perfect superelastic behavior at
room temperature.

Keywords: materials science; titanium alloys; superelasticity; biocompatibility

1. Introduction

The creation of completely biocompatible metallic materials is one of the most promising
areas of modern materials science [1,2]. The demand for such materials is growing since the
percentage of the elderly population of the Earth is increasing, and, accordingly, the number
of people more susceptible to various bone injuries is increasing [3–6]. In the reconstruction of
bone tissues, a special role is assigned to metallic biomaterials. One of the most popular bone
replacement materials is titanium. Displaying biochemical inertness due to a stable surface
oxide film, it, nevertheless, does not meet the requirements of modern medicine in terms of
biomechanical compatibility [7–9]. On the other hand, Ti-Ni, discovered back in the 1960s, has
excellent biomechanical compatibility with bone tissue but is not suitable for long-term use in
the body, since Ni can cause an adverse effect [10–16].

The metallic material designed for bone replacement should meet the biomechanical
compatibility requirements. It suggests that the mechanical properties of the implant are close
to those of the replaced bone tissue. For this reason, special attention is paid to superelastic
alloys capable of accumulating significant deformation reversibly [17]. In particular, Ti-Nb-
and Ti-Zr-based shape memory alloys (SMA) are the most attractive due to their unique
combination of high corrosion resistance, low Young’s modulus, and superelastic mechanical
behavior, which make them a promising material for biomedical devices [18–22].
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Recently, novel Ti-Zr-Nb alloys with high Zr concentration (41 at.% Zr combined with
8–10 at.% Nb) were designed due to the possibility of reaching theoretical recovery strain
limits as high as 8% [23–25]. Among known issues hindering the development of these alloys
is the requirement of optimum phase composition at room temperature (RT) to demonstrate
pronounced superelastic behavior. It was proven earlier that Ti-41Zr-10Nb alloy, despite
its high transformation strain, suffers from the stable martensite at RT, which leads to a
considerable residual strain [26]. One approach to solve this problem is to introduce additional
alloying elements, such as Sn, ensuring desired phase composition and, hence, high functional
properties [27–29]. Another approach is to tune chemical composition within the ternary
Ti-Zr-Nb system. It was suggested that increasing Zr and/or Nb contents of the Ti-41Zr-10Nb
alloy by 1–3 at.% would be beneficial for its superelastic behavior at RT [26]. Therefore,
this work is aimed at the study of structure and functional properties of novel higher Zr-
or Nb-alloyed Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, and Ti-44Zr-10Nb SMAs. It was
expected that the varying of Zr/Nb ratio should help to find the optimum phase composition,
resulting in better superelasticity at RT.

2. Materials and Methods
2.1. Melting

Alloys with the following chemical composition were investigated: Ti-41Zr-12Nb (41–12),
Ti-42Zr-11Nb (42–11), Ti-43Zr-10Nb (43–10), and Ti-44Zr-10Nb (44–10), all in at.%. The
150 g ingots were obtained by vacuum arc remelting technique with a non-consumable
tungsten electrode. Prior to melting process, the working chamber was evacuated by
mechanical pump and turbomolecular pump down to 10−3 Pa. After that, inert gas (argon)
was introduced into the chamber. Argon atmosphere was used as working atmosphere for
electric arc and also to prevent the increase of impurities and oxidation of the material. To
improve the quality of the ingots, each of them was obtained with five consequent remelts.
For quality assessment of the obtained ingots impurities, content was analyzed using the
high-temperature gas extraction technique (TC-600, Leco, Geleen, The Netherlands). The
results of the analysis are listed in Table 1.

Table 1. Impurities content, mass. %.

Alloys O, % N, % C, % S, % H, %

41–12 0.17 ± 0.002 <0.001 0.030 ± 0.002 <0.001 0.004 ± 0.0004

42–11 0.21 ± 0.002 <0.001 0.037 ± 0.002 <0.001 0.009 ± 0.0004

43–10 0.17 ± 0.002 <0.001 0.025 ± 0.002 <0.001 0.008 ± 0.0004

44–10 0.18 ± 0.002 <0.001 0.033 ± 0.002 <0.001 0.004 ± 0.0004

The obtained results demonstrate that impurities level is low; thus, mechanical prop-
erties of the alloys are affected by this factor.

2.2. Samples Preparation

For the EDS and metallography analyses, three samples were prepared from each in-
got (from the lower, middle, and upper parts), in the shape of a rectangular plate with
2 × 3 × 8 mm3 dimensions. All samples were mirror-polished using SiC abrasive papers
(P320-P4000) and etched in an 1% HF:3% HNO3:6% H2O solution. For XRD analysis, rectan-
gular plates with 2 × 5 × 10 mm3 dimensions were prepared. For microstructure analysis
by SEM, polishing with SiC abrasive paper, MD-Chem fabric and diamond suspension, ion
etching using SC-2100 SEMPrep ion milling system, and plasma cleaning were implemented.

2.3. Thermomechanical Treatment

To obtain more equilibrium microstructure and avoid casting defects of the ingot, a
homogenization annealing was implemented. The ingot was heated to a temperature of
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950 ◦C in a tubular furnace with a protective argon atmosphere, annealed for 1 h, and
then water-quenched. To obtain pronounced superelasticity at RT, the following thermo-
mechanical treatment (TMT) regime was used: cold rolling (CR) with a true strain e = 0.3
and post-deformational annealing (PDA) at 550 ◦C (30 min) in an argon atmosphere, fol-
lowed by water quenching. It was shown previously that such TMT provides an optimum
superelastic behavior [26].

2.4. Microstructure and Chemical Composition Studies

The microstructure of all samples after homogenization was studied using an optical
microscope BX51, Olympus (Tokyo, Japan). The chemical composition of the alloy was
investigated by Energy Dispersive Spectroscopy (EDS) using an X-Max detector (Oxford
Instruments, Abingdon, UK) and a JEOL 5600F (Tokyo, Japan) scanning electron microscope
(see Supplementary Materials). Microstructure after TMT was investigated by scanning
electron microscopy (SEM) and electron back-scattered diffraction (EBSD) using the FEI
Scios DualBeam system (Hillsboro, OR, USA). For EBSD mapping, the beam voltage and
current were equal to 30 kV and 3.2 nA. The orientation maps were calculated using the
TSL OIM data collection TM software and then processed by TSL Oim Analysis software
7.2.1 (Leicester, UK).

The XRD experiment after TMT was carried out at RT using a DRON-3 diffractometer
(Saint-Petersburg, Russia) with an accelerating voltage of 52 kV and a current of 32 mA,
with CuKα radiation and a wavelength of 0.154178 nm with a 0.05◦ 2θ step and an exposure
time of 5 s. The maximum transformation lattice strain, which is a theoretical limit for the
recovery strain, was calculated in accordance with Reference [30], as follows:

εmax =
bα′′ − aβ

√
2

aβ

√
2

. (1)

The β-phase BCC lattice parameter aβ was determined from the {110}β X-ray line
angular position, and the α′′ -phase orthorhombic lattice parameter bα′′ , from (020)α′′

angular position.
DSC analyses was conducted using Mettler Toledo equipment (Columbus, OH, USA)

and STARe software (Columbus, OH, USA). Mass of the sample for DSC analysis was 24 g.
Obtained results are given in Supplementary Materials.

2.5. Mechanical Tests

Static and cyclic tensile tests of the alloys were carried out along the rolling direc-
tion on a universal machine, INSTRON 5966 (Instron, Buckinghamshire, UK). Samples
(50 × 1.5 × 1 mm3) with a gauge length of 30 mm were prepared by an electrical discharge
machine (EDM). The following testing mode was used: loading the sample up to 0.5% of
tensile strain in the first cycle, unloading sample to zero stress, and then increasing loading
by additional 0.5% of the gauge length with each subsequent cycle, until the sample fails.
It has been shown [29] that this mode is an optimum to study the superelastic behavior,
maximum recovery strain, and the evolution of the superelastic loop as the strain increases.
Static tensile tests were carried out at a strain rate of 0.05 mm/s at RT. Figure 1 shows a
typical superelastic curve obtained after the cyclic tensile test and a set of stress and strain
parameters used to characterize the mechanical behavior of SMA, such as transformation
yield stress σtr, dislocation yield stress σd, superelastic recovery strain εSE

r , elastic recovery
strain εel

r , total recovery strain εtot
r , residual strain ε f , and superelastic plateu strain εpl .

In the case when σtr and σd were not clearly separated, an apparent yield stress σy was
determined instead. Results of the additional mechanical testing with a larger strain in a
single cycle are given in Supplementary Materials.
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Figure 1. Schematic representation of measurements of loading-unloading diagram parameters.

The Vickers hardness (HV0.2) was measured at 8 different points of each sample.

3. Results and Discussion
3.1. Microstructure

A typical SEM micrograph of the structure of the material after homogenization is
shown in Figure 2. After homogenization, the microstructure of all alloys was represented
by relatively large equiaxed grains of β-phase, with a mean size of about 500 microns.

Figure 2. Microstructure of 43–10 alloy after homogenization.
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The results of XRD study after TMT are presented in Figure 3. The main phase constituent
of all studied alloys after TMT is a high-temperature metastable β-phase with low distinguish-
able martensite traces (Figure 3a). The absence of a large amount of martensite at RT after
TMT indicates that the starting temperature Ms of the forward martensitic transformation
β→ α′′ is around RT, which is beneficial for superelastic properties at body temperature.

Figure 3. XRD profiles of all obtained samples after TMT (a) and after additional CR (b).

It should be also noted that the integrated intensity of {200}β in the case of the
41–12 alloy is abnormally high. In fact, the I (110)/I (200) ratios are: 1.8, 3.9, 3.7, and 4.4
for 41–12, 42–11, 43–10, and 44–10, respectively. It has been demonstrated previously [31]
that such enhancement of (200)β intensity might be due to {001}|<110>β texture formation
having a pronounced positive effect on the superelastic behavior of the material. To induce
and stabilize the martensite phase at RT, in accordance with Reference [20], samples of all
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alloys were subjected to additional slight plastic deformation by CR with a 10% thickness
reduction. XRD results after TMT and additional deformation of 10% are presented in
Figure 3b. Note that the additional plastic deformation of 10% was not enough to obtain
sufficient intensity of the (020)α′′ X-ray in 41–12 alloy (see Supplementary Materials).
Therefore, 20% of additional plastic deformation was applied instead.

It can be seen from XRD data that the additional deformation led to the formation
and stabilization of the martensite in all studied alloys, especially in alloys with lower
Nb content, as follows: the highest amount of α”-phase after additional CR was found in
44/43–10 alloys, followed by 42–11 and 41–12 (Figure 3b). This trend indicates different
stability of the parent β-phase in these alloys and allows us to deduce their relative Ms
temperatures in the order of decrease as follows: 44/43–10→ 42–11→ 41–12. It means that
the Nb content has a primary role in regulating phase composition and Ms temperature of
the studied system.

The obtained data allowed us to calculate the maximum transformation lattice strains
εmax, i.e., the recovery strain crystallographic limits for the studied alloys. It should be noted
that the calculation was performed in the single-crystal approximation and characterized
a theoretically possible maximum of the recovery strain upon a transformation of the
BCC single crystal of the β-phase into the orthorhombic single crystal of the α” martensite.
Table 2 shows the lattice parameters and the maximum transformation lattice strains in
[011]β direction of the studied alloys.

Table 2. Theoretical recovery strain limits.

Alloys b
α
′′ , nm aβ

√
2, nm ε [011], %

41–12 0.5149 0.4848 5.9 ± 1.0

42–11 0.5163 0.4852 6.3 ± 1.0

43–10 0.5213 0.4846 7.5 ± 0.2

44–10 0.5214 0.4858 7.2 ± 0.2

It follows from Table 2 that, as Nb content decreases, theoretical recovery strain
gradually rises, even though the net content of the β-stabilizing components remains
roughly the same in all alloys. On the contrary, an increase in the zirconium content leads
to larger transformation strain values. This was mentioned in Reference [26] and requires
additional consideration.

The microstructure of all studied materials after TMT is quite similar which is expected
for solid solution systems with such close chemical compositions and the same TMT
processing. Typical SEM electron images of the microstructure after TMT and results of
their analysis are given in Figure 4 for the 43–10 alloy.

The microstructure is represented mainly by initial not recrystallized large grains con-
taining deformation bands (Figure 4a). Crystallographic orientation maps vividly demon-
strate that new small (≤10 µm diameter) recrystallized are present, as well (Figure 4b). A
more thorough investigation of the area containing small, recrystallized grains reveals that
they are located mainly closer to deformation bands (Figure 4c). Such areas appear to be
preferential sites for recrystallization due to the increased density of lattice defects (disloca-
tions). The grain sizes histogram has a bimodal character, with larger sizes attributed to
the initial grains, while smaller sizes (<10 µm) are attributed to new recrystallized grains.
The misorientation angle histogram (Figure 4f) reveals that a majority of the boundaries
are characterized by low-angle misorientation, which indicates that the polygonization
process took place in the dislocation substructure of the initial grains. Subgrains can indeed
be distinguished in Figure 4d. This suggestion is further supported by the grain bound-
aries rotation angle map, revealing an extensive network of the low-angle boundaries
(Figure 4d). The length of the low-angle boundaries is approximately 4.5 times higher
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as compared to the high-angle boundaries. It can be concluded that a mixed partially
recrystallized/polygonized structure was formed in the studied alloys as the result of TMT.

Figure 4. Image quality map (a), crystallographic orientation maps (b,d) (the same place under
different magnifications), grain boundaries rotation angle map (low-angle boundaries are in red and
high-angle boundaries are in blue) (c), grain sizes histogram (e), and grain/subgrain boundaries
misorientation angle histogram (f) for the 43–10 alloy after TMT.

3.2. Mechanical Tests

Results of static tensile tests are shown in Figure 5.
Mechanical properties of the studied materials are listed in Table 3. Tensile tests

show that all studied alloys demonstrate reasonable UTS values of about 400 MPa and a
pronounced ductility (Table 3). It is worth noting that higher relative elongation values
(over 20%) are ascribed to the materials with a more stable β-phase. It should be also noted
that 41–12 and 43–10 alloys show a pronounced martensitic transformation plateau (εpl),
highlighting their predisposition to superelastic behavior. Microhardness values lay in
the range from 205 to 220 HV0.2. Such low hardness of the alloys after TMT points to
inclination for martensitic transformation under stress [32]. For 41–12 and 43–10 alloys,
transformation σtr and dislocation σd yield stresses are well distinguished, while, for 44–10
and 42–11, only apparent yield stress σy can be measured (Table 3).
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Figure 5. Stress-strain diagrams obtained during static tensile testing of the studied alloys.

Table 3. Mechanical properties of the studied alloys.

Alloys UTS, MPa σtr,Mpa σy,Mpa σd,Mpa εpl, % δ, % Hardness, HV 0.2

41–12 435 266 — 416 6.0 22.4 206 ± 11

42–11 395 — 262 — n/a 23.5 231 ± 7

43–10 458 171 — 403 4.7 14.4 232 ± 12

44–10 396 — 266 — n/a 11.4 217 ± 7

To study the functional properties of the alloys, superelastic cyclic tensile tests were
carried out. Based on the obtained stress-strain curves (Figure 6), the following dependen-
cies of superelastic recovery strain εSE

r , elastic recovery strain εel
r , residual strain ε f , and

total recovery strain εtot
r on the cycle number N are plotted in Figure 7. Since transformation

and dislocation yield stresses are clearly distinguished in cyclic tensile tests, we can plot
their dependencies on a number of cycles. Note that distinguished difference between σtr
and σd can only be observed starting from the 4th cycle of testing.
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Figure 6. A typical set of stress-strain curves obtained during superelastic cycling of all the studied alloys.

Figure 7. Superelastic recovery strain (a), elastic recovery strain (b), total recovery strain (c), and
residual strain (d) in each cycle versus number of cycles.

The values of the superelastic recovery strain are approximately two times lower
than the calculated values of the transformation strain. Such a decrease is explained by
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the fact that the transformation strain is calculated in the single crystal approximation.
Thus, it does not consider the presence of variously oriented grains and boundaries in the
polycrystalline material. All studied alloys demonstrate pronounced superelastic behavior
at RT with a large total recovery strain of 4 to 6% (Figure 7c). Elastic recovery strain has
nearly linear dependence on the cycle number (Figure 7b). Superelastic recovery strain
increases rapidly with the cycle number, reaches a maximum at about 14–18 cycle, and then
gradually declines (Figure 7a). Such behavior is typical of superelastic alloys [33]. It reflects
the fact that the superelastic deformation mechanism is triggered from the very beginning
of the testing. This leads to quite perfect superelastic behavior of the materials, which is
confirmed by insignificant (<0.1%) residual strains in the cycle (Figure 7d). Nonetheless,
at a certain point of testing (~6th cycle for 42–11, 9th and 10th cycles for 43–10 and 44–10,
and 11th cycle for 41–12), degradation of the superelastic behavior occurs. The following
suggestion could be made to explain the observed difference in superelastic behavior of
the studied materials: two factors to be considered are high theoretical recovery strain
limit and parent phase stability. In the case of the higher theoretical recovery strain
limit (Ti-43Zr-10Nb and Ti-44Zr-10Nb), realization of even a small portion would lead
to a quite high superelastic recovery strain. On the other hand, a more stable parent
phase (Ti-41Zr-12Nb alloy) is apparently beneficial for more complete realization of the
theoretical recovery strain (presumably due to prevention of residual martensite formation
upon deformation). In this case, relatively low properties of the Ti-42Zr-11Nb alloy are
due to a lower theoretical recovery strain limit (as compared to Ti-43/44Zr-10Nb) and
decreased parent β-phase stability (as compared to Ti-41Zr-12Nb). Note that superelastic
recovery strain can still increase, but residual strain rises, as well, indicating that plastic
deformation takes place. Participation of the plastic deformation increases rapidly, and the
superelastic recovery strain reaches its limit: 3.7% for 41–12, 3.2% for 43–10, 3.0 for 44–10,
and 2.1% for 42–11. The alloy 41–12, with the highest superelastic recovery strain of 3.7%,
also demonstrates the largest total recovery strain of over 6%, while involving of plastic
deformation starts at a higher cycle number for this alloy as compared to other alloys. As
for the transformation yield stress, its value decreases during mechanical cycling of the
material, while yield stress increases via dislocation hardening mechanism (Figure 8).

Figure 8. Transformation yield stress (a) and dislocation yield stress (b) versus number of cycles.

It should be noted that 41–12 demonstrated the lowest theoretical recovery strain
which is associated with larger Nb content, which, nonetheless, allowed this alloy to
demonstrate its more complete realization reflected in quite perfect superelastic behaviour
and superelastic recovery strain of 3.7% (total recovery strain over 6%) compared to previ-
ously investigated Ti-18Zr-14/15Nb (superelastic recovery strain 3.0%) and Ti-41Zr-10Nb
(superelastic recovery strain 0.8%) [26]. The combination of the factors explaining such phe-
nomenon could be as follows: quite large theoretical recovery strain, optimal phase compo-
sition at RT, and presumably crystallographic texture. As for the latter, enhanced functional
properties of the Zr-enriched alloys are often ascribed to sharp crystallographic texture
{001}|<110>β. For Ti-24Zr-10Nb-2Sn, total recovery strain of over 6% was achieved [34].
Even larger values (over 7%) were measured for Ti-(40–50)Zr-8Nb-2Sn after the same
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texture was formed in the material after TMT [29]. So, texture role in undeniably high,
although it is only one of the possible ways to increase material functional properties, as it
was demonstrated that comparable recovery strains can be achieved for the Ti-Zr-Nb alloy
without pronounced texture.

It should be mentioned that it is important to study functional fatigue life and its
dependence on the enhanced superelastic recovery strain of the developed materials. This
is the task for the upcoming research. Nonetheless, it can be suggested that developing a
more appropriate TMT scheme will allow achieving even higher functional properties for
the Ti-41Zr-12Nb alloy.

4. Conclusions

The structure, mechanical, and functional properties of Ti-Zr-Nb system alloys were
studied, with four novel compositions: Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, and
Ti-44Zr-10Nb (at.%). The following findings are highlighted:

1. All alloys subjected to an optimum thermomechanical treatment were in a high-
temperature metastable β-phase state at room temperature. The microstructure of
studied materials after TMT is characterized as mixed polygonized dislocation sub-
structure and partially recrystallized grain structure. The absence of a noticeable
amount of martensite phase indicates that the Ms temperature of all alloys is near or
somewhat below RT.

2. The theoretical recovery strain limits in the direction [011]β calculated from X-ray
diffractograms are 5.9%, 6.3%, 7.5%, and 7.2% for Ti-41Zr-12Nb, Ti-42Zr-11Nb,
Ti-43Zr-10Nb, and Ti-44Zr-10Nb, respectively. The differences in the calculated values
are mainly associated with different Nb content in the studied alloys.

3. UTS values of all studied alloys are near 400 MPa, and relative elongation value ex-
ceeds 20%, in the case of Ti-41Zr-12Nb and Ti-42Zr-11Nb, highlighting their enhanced
ductility. Low microhardness values of about 200 HV0.2 confirms that all studied
alloys are in a pre-martensitic state.

4. All studied alloys demonstrate pronounced superelastic behavior at RT during me-
chanical testing. The superelastic recovery strains are 3.7%, 1.9%, 3.2%, and 3.0%
for Ti-41Zr-12Nb, Ti-42Zr-11Nb, Ti-43Zr-10Nb, and Ti-44Zr-10Nb alloys, respectively.
Such high superelastic recovery strain and total recovery strain over 6%, along with
relative elongation to failure over 20%, allow us to consider the Ti-41Zr-12Nb alloy as
one of the most promising superelastic alloys of the Ti-Zr-Nb system.
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(a) electron image, (b) EDS spectra, (c) elemental maps; Figure S2: XRD profile of 41–12 alloy after
TMT and additional CR of 10%; Figure S3: DSC curves for the studied alloys after TMT; Figure
S4: Stress-strain curves of the obtained alloys loaded up to 6% of tensile deformation; Table S1:
Comparison of nominal and actual chemical compositions.
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