Self-Diffusion Coefficients of Components in Liquid Binary Alloys of Noble Metals
Abstract
:1. Introduction
2. Theory
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feinauer, A.; Majer, G. Diffusion of 23Na and 39K in the eutectic melt Na0.32K0.68. Phys. Rev. B 2001, 64, 134302. [Google Scholar] [CrossRef]
- Lee, J.H.; Liu, S.; Miyahara, H.; Trivedi, R. Diffusion-coefficient measurements in liquid metallic alloys. Metall. Mater. Trans. B 2004, 35, 909–917. [Google Scholar] [CrossRef]
- Das, S.K.; Horbach, J.; Koza, M.M.; Chatoh, S.M.; Meyer, A. Influence of chemical short-range order on atomic diffusion in Al–Ni melts. Appl. Phys. Lett. 2005, 86, 011918. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, Y.; Kajihara, M. Evaluation of interdiffusion in liquid phase during reactive diffusion between Cu and Al. Mater. Trans. 2006, 47, 2480–2488. [Google Scholar] [CrossRef] [Green Version]
- Horbach, J.; Das, S.K.; Griesche, A.; Frohberg, G.; Macht, M.-P.; Meyer, A. Self-diffusion and interdiffusion in Al80Ni20 melts: Simulation and experiment. Phys. Rev. B 2007, 75, 174304. [Google Scholar] [CrossRef] [Green Version]
- Kehr, M.; Schick, M.; Hoyer, W.; Egry, I. Viscosity of the binary system Al-Ni. High Temp. High Press. 2008, 37, 361–369. [Google Scholar]
- Brillo, J.; Chathoth, S.M.; Koza, M.M.; Meyer, A. Liquid Al80Cu20: Atomic diffusion and viscosity. Appl. Phys. Lett. 2008, 93, 121905. [Google Scholar] [CrossRef]
- Holland-Moritz, D.; Stüber, S.; Hartmann, H.; Unruh, T.; Hansen, T.; Meyer, A. Structure and dynamics of liquid Ni36-Zr64 studied by neutron scattering. Phys. Rev. B 2009, 79, 064204. [Google Scholar] [CrossRef]
- Zhang, B.; Griesche, A.; Meyer, A. Diffusion in Al-Cu Melts Studied by Time-Resolved X-ray Radiography. Phys. Rev. Lett. 2010, 104, 035902. [Google Scholar] [CrossRef]
- Stüber, S.; Holland-Moritz, D.; Unruh, T.; Meyer, A. Ni self-diffusion in refractory Al-Ni melts. Phys. Rev. B 2010, 81, 024204. [Google Scholar] [CrossRef]
- Brillo, J.; Pommrich, I.; Meyer, A. Relation between self-diffusion and viscosity in dense liquids: New experimental results from electrostatic levitation. Phys. Rev. Lett. 2011, 107, 165902. [Google Scholar] [CrossRef]
- Lee, N.; Cahoon, J. Interdiffusion of copper and iron in liquid aluminum. J. Phase Equilibr. Diffus. 2011, 32, 226–234. [Google Scholar] [CrossRef]
- Wu, S.; Kramer, M.J.; Fang, X.W.; Wang, S.Y.; Wang, C.Z.; Ho, K.M.; Ding, J.; Chen, L.Y. Structural and dynamical properties of liquid Cu80Si20 alloy studied experimentally and by ab initio molecular dynamics simulations. Phys. Rev. B 2011, 84, 134208. [Google Scholar] [CrossRef] [Green Version]
- Kargl, F.; Sondermann, E.; Weis, H.; Meyer, A. Impact of convective flow on long-capillary chemical diffusion studies of liquid binary alloys. High Temp. High Press. 2013, 42, 3–21. [Google Scholar]
- Dahlborg, U.; Besser, M.; Kramer, M.J.; Morris, J.R.; Calvo-Dahlborg, M. Atomic dynamics in molten AlCu alloys of different compositions and at different temperatures by cold neutron scattering. Phys. B 2013, 412, 50–60. [Google Scholar] [CrossRef]
- Geng, Y.; Zhu, C.; Zhang, B. A sliding cell technique for diffusion measurements in liquid metals. AIP Adv. 2014, 4, 037102. [Google Scholar] [CrossRef]
- Engelhardt, M.; Meyer, A.; Yang, F.; Simeoni, G.G.; Kargl, F. Self and chemical diffusion in liquid Al-Ag. Def. Diff. Forum 2016, 367, 157–166. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Hu, J.; Geng, Y.; Zhu, C.; Zhang, B. A multi-slice sliding cell technique for diffusion measurements in liquid metals. Rev. Sci. Instrum. 2017, 88, 093905. [Google Scholar] [CrossRef]
- Xiong, L.H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Xie, H.L.; Xiao, T.Q.; Jiang, J.Z. Composition- and temperature-dependent liquid structures in Al–Cu alloys: An ab initio molecular dynamics and x-ray diffraction study. J. Phys. Condens. Matter 2017, 29, 035101. [Google Scholar] [CrossRef]
- Belova, I.V.; Heuskin, D.; Sondermann, E.; Ignatzi, B.; Kargl, F.; Murch, G.E.; Meyer, A. Combined interdiffusion and self-diffusion analysis in Al-Cu liquid diffusion couple. Scr. Mater. 2018, 143, 40–43. [Google Scholar] [CrossRef]
- Sondermann, E.; Jakse, N.; Binder, K.; Mielke, A.; Heuskin, D.; Kargl, F.; Meyer, A. Concentration dependence of interdiffusion in aluminum-rich Al-Cu melts. Phys. Rev. B 2019, 99, 024204. [Google Scholar] [CrossRef]
- Baumketner, A.; Chushak, Y. A molecular dynamics study of the diffusion processes in liquid Na-K alloys. J. Phys. Condens. Matter 1999, 11, 1397–1408. [Google Scholar] [CrossRef]
- Genser, O.; Hafner, J. Structure and bonding in crystalline and molten Li-Sn alloys: A first-principles density-functional study. Phys. Rev. B 2001, 63, 144204. [Google Scholar] [CrossRef]
- Gonzalez, D.J.; Gonzalez, L.E.; Lopez, J.M.; Stott, M.J. Atomic dynamics in simple liquid metals and alloys. J. Non-Cryst. Solids 2002, 314, 110–120. [Google Scholar] [CrossRef]
- Bhuiyan, G.M.; Ali, I.; Rahman, S.M.M. Atomic transport properties of AgIn liquid binary alloys. Phys. B 2003, 334, 147–159. [Google Scholar] [CrossRef]
- Bailey, N.P. Simulation of Cu-Mg metallic glass: Thermodynamics and structure. Phys. Rev. B 2004, 69, 144205. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, D.J.; Gonzalez, L.E.; Lopez, J.M.; Stott, M.J. Microscopic dynamics in the liquid Li-Na alloy: An ab initio molecular dynamics study. Phys. Rev. E 2004, 69, 031205. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, C.Z.; Chuang, F.; Morris, J.R.; Ho, K.M. Ab initio molecular dynamics simulation of liquid Al88Si12 alloys. J. Chem. Phys. 2005, 122, 034508. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, C.S.; Zhu, Z.G. Ab initio molecular-dynamics simulations of the structural properties of liquid In20Sn80 in the temperature range 798–1193 K. Phys. Rev. B 2006, 73, 024201. [Google Scholar] [CrossRef]
- Wax, J.F.; Jakse, N. Large-scale molecular dynamics study of liquid K-Cs alloys: Structural, thermodynamic, and diffusion properties. Phys. Rev. B 2007, 75, 0242004. [Google Scholar] [CrossRef]
- Dalgic, S.S.; Sengul, S. Structure and atomic transport properties in liquid AsTe alloys using AMEAM based potentials. J. Optoelectr. Adv. Mater. 2007, 9, 1699–1704. [Google Scholar]
- Dalgic, S.S.; Celtek, M.; Dalgic, S. Effective pair potentials for molten Cu-Ge alloys. J. Optoelectr. Adv. Mater. 2007, 9, 1710–1714. [Google Scholar]
- Bhuiyan, E.H.; Ahmed, A.Z.Z.; Bhuiyan, G.M.; Shahjahan, M. Atomic transport properties of AgxSn1-x liquid binary alloys. Phys. B 2008, 403, 1695–1703. [Google Scholar] [CrossRef]
- Das, S.K.; Horbach, J.; Thomas, V. Structural relaxation in a binary metallic melt: Molecular dynamics computer simulation of undercooled Al80Ni20. Phys. Rev. B 2008, 78, 064208. [Google Scholar] [CrossRef]
- Cheng, H.; Lü, Y.J.; Chen, M. Interdiffusion in liquid Al–Cu and Ni–Cu alloys. J. Chem. Phys. 2009, 131, 044502. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Kramer, M.J.; Xu, M.; Wu, S.; Hao, S.G.; Sordelet, D.J.; Ho, K.M.; Wang, C.Z. Experimental and ab initio molecular dynamics simulation studies of liquid Al60Cu40 alloy. Phys. Rev. B 2009, 79, 144205. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.Z.; Zheng, C.X.; Ho, K.M. Structure and dynamics of liquid Al1-xSix alloys by ab initio molecular dynamics simulations. J. Non-Cryst. Solids 2009, 355, 340–347. [Google Scholar] [CrossRef]
- Zhu, X.F.; Chen, L.F. Ab initio molecular-dynamics simulation of liquid AsxTe1-x alloys. J. Phys. Condens. Matter 2009, 21, 275602. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, Y.; Wang, Y.; Ji, C. Ab initio molecular dynamics study of liquid Se30Te70: Structural, electronic and dynamical properties. Phys. Scr. 2010, 82, 035603. [Google Scholar] [CrossRef]
- Pasturel, A.; Tasci, E.S.; Sluiter, M.H.F.; Jakse, N. Structural and dynamic evolution in liquid Au-Si eutectic alloy by ab initio molecular dynamics. Phys. Rev. B 2010, 81, 140202. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Qin, J.Y.; Gu, T.K. The structure of liquid Mg–Cu binary alloys. J. Non-Cryst. Solids 2010, 356, 1587–1592. [Google Scholar] [CrossRef]
- Wax, J.-F.; Johnson, M.R.; Bove, L.E.; Mihalkovic, M. Multiscale study of the influence of chemical order on the properties of liquid Li-Bi alloys. Phys. Rev. B 2011, 83, 144203. [Google Scholar] [CrossRef]
- Huang, L.; Wang, C.Z.; Ho, K.M. Structure and dynamics of liquid Ni36Zr64 by ab initio molecular dynamics. Phys. Rev. B 2011, 83, 184103. [Google Scholar] [CrossRef]
- Han, X.J.; Schober, H.R. Transport properties and Stokes-Einstein relation in a computer-simulated glass-forming Cu33.3Zr66.7 melt. Phys. Rev. B 2011, 83, 224201. [Google Scholar] [CrossRef]
- Ohmura, S.; Shimojo, F. Polymerization transition in liquid AsS under pressure: An ab initio molecular dynamics study. Phys. Rev. B 2011, 84, 224202. [Google Scholar] [CrossRef]
- Souto, J.; Alemany, M.M.G.; Gallego, L.J.; González, L.E.; González, D.J. Static structure, microscopic dynamics and electronic properties of the liquid Bi–Pb alloy. An ab initio molecular dynamics study. J. Nucl. Mater. 2011, 411, 163–170. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, L.; Fang, T. Demixingbehaviour in binary Cu-Co melt. Phys. Chem. Liq. 2013, 51, 687–694. [Google Scholar] [CrossRef]
- Cui, W.C.; Peng, C.X.; Wang, L.; Qi, Y.; Fang, T. Structure and dynamics of undercooled FeNi. Phys. Chem. Liq. 2014, 52, 88–99. [Google Scholar] [CrossRef]
- Wang, N.; Jiang, T.; Yang, Y.; Tian, J.; Hu, S.; Peng, S.; Yan, L. Embedded atom model for the liquid U-10Zr alloy based on density functional theory calculations. RSC Adv. 2015, 5, 61495. [Google Scholar] [CrossRef]
- Pasturel, A.; Jakse, N. On the role of entropy in determining transport properties in metallic melts. J. Phys. Condens. Matter 2015, 27, 325104. [Google Scholar] [CrossRef]
- Peng, H.L.; Voigtmann, T.; Kolland, G.; Kobatake, H.; Brillo, J. Structural and dynamical properties of liquid Al-Au alloys. Phys. Rev. B 2015, 92, 184201. [Google Scholar] [CrossRef]
- Dziedzic, J.; Winczewski, S.; Rybicki, J. Structure and properties of liquid Al–Cu alloys: Empirical potentials compared. Comput. Mater. Sci. 2016, 114, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Pasturel, A.; Jakse, N. Validity of the Stokes–Einstein relation in liquids: Simple rules from the excess entropy. J. Phys. Condens. Matter 2016, 28, 485101. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Wang, P.; Shao, J.; Wang, F. Transport properties and entropy-scaling laws for diffusion coefficients in liquid Fe0.9Ni0.1 up to 350 GPa. RSC Adv. 2016, 6, 84420. [Google Scholar] [CrossRef]
- Yousefi, P.; Abbaspour, M.; Sokhanvaran, V. A comparative study of graphite and CNT supported Au-Ag, Au-Pd, Au-Pt and Au-Rh nanoalloys using MD simulation. J. Mol. Liq. 2019, 280, 87–96. [Google Scholar] [CrossRef]
- Martínez, M.D.P.; Hoyuelos, M. From diffusion experiments to mean-field theory simulations and back. J. Stat. Mech. 2019, 2019, 113201. [Google Scholar] [CrossRef] [Green Version]
- Dubinin, N.E.; Filippov, V.V.; Vatolin, N.A. Structure and thermodynamics of the one- and two-component square-well fluid. J. Non-Cryst. Solids 2007, 353, 1798–1801. [Google Scholar] [CrossRef]
- Lebowitz, J.L.; Percus, J.K. Mean spherical model for lattice gases with extended hard cores and continuum fluids. Phys. Rev. 1966, 144, 251–258. [Google Scholar] [CrossRef]
- Helfand, E. Theory of the molecular friction constant. Phys. Fluids 1961, 4, 681–691. [Google Scholar] [CrossRef]
- Davis, H.T.; Palyvos, J.A. Contribution to the friction coefficient from time correlations between hard and soft molecular interactions. J. Chem. Phys. 1967, 46, 4043–4047. [Google Scholar] [CrossRef]
- Dubinin, N.E. Square-well self-diffusion coefficients in liquid binary alloys of alkali metals within the mean spherical approximation. J. Alloys Compd. 2019, 803, 1100–1104. [Google Scholar] [CrossRef]
- Dubinin, N.E. Self-diffusion in liquid copper, silver, and gold. Metals 2020, 10, 1651. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Longuet-Higgins, H.C.; Valleau, J.P. Transport coefficients of dense fluids of molecules interacting according to a square well potential. Mol. Phys. 1958, 1, 284–294. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Langreth, D.C. Structure of binary liquid mixtures. I. Phys. Rev. 1967, 156, 685–692. [Google Scholar] [CrossRef]
- Ornstein, L.S.; Zernice, F. Interference of rontgen rays. Proc. Natl. Acad. Sci. USA 1914, 17, 793. [Google Scholar]
- Dubinin, N.E.; Filippov, V.V.; Malkhanova, O.G.; Vatolin, N.A. Structure factors of binary liquid metal alloys within the square-well model. Cent. Eur. J. Phys. 2009, 7, 584–590. [Google Scholar] [CrossRef]
- Dubinin, N.E.; Filippov, V.V.; Yuryev, A.A.; Vatolin, N.A. Excess entropy of mixing of binary square-well fluid in the mean spherical approximation: Application to liquid alkali-metal alloys. J. Non-Cryst. Solids 2014, 401, 101–104. [Google Scholar] [CrossRef]
- Brillo, J.; Egry, I.; Ho, I. Density and thermal expansion of liquid Ag–Cu and Ag–Au alloys. Int. J. Thermophys. 2006, 27, 494–506. [Google Scholar] [CrossRef]
- Brillo, J.; Egry, I.; Giffard, H.S.; Patti, A. Density and thermal expansion of liquid Au–Cu alloys. Int. J. Thermophys. 2004, 25, 1881–1888. [Google Scholar] [CrossRef]
- Masaki, T.; Fukazawa, T.; Watanabe, Y.; Kaneko, M.; Yoda, S.; Itami, T. Measurement of diffusion coefficients of Au in liquid Ag with the shear cell technique. J. Non-Cryst. Solids 2007, 353, 3290–3294. [Google Scholar] [CrossRef]
- Brillo, J.; Egry, I.; Westphal, J. Density and thermal expansion of liquid binary Al–Ag and Al–Cu alloys. Int. J. Mat. Res. 2008, 99, 162–167. [Google Scholar] [CrossRef]
- Wang, W.Y.; Han, J.J.; Fang, H.Z.; Wang, J.; Liang, Y.F.; Shang, S.L.; Wang, Y.; Liu, X.J.; Kecskes, L.J.; Mathaudhu, S.N.; et al. Anomalous structural dynamics in liquid Al80Cu20: An ab initio molecular dynamics study. Acta Mater. 2015, 97, 75–85. [Google Scholar] [CrossRef]
- Trybula, M.E. Structure and transport properties of the liquid Al80Cu20 alloy—A molecular dynamics study. Comput. Mater. Sci. 2016, 122, 341–352. [Google Scholar] [CrossRef]
T (K) | D × 109 (m2/s) | cCu | |||||
---|---|---|---|---|---|---|---|
0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 | ||
1423 | Cu | 3.52 | 3.545 | 3.58 | 3.625 | 3.71 | |
Ag | 3.24 | 2.25 | 3.265 | 3.29 | 3.32 | ||
1573 | Cu | 4.63 | 4.675 | 4.74 | 4.82 | 4.91 | |
Ag | 4.41 | 4.435 | 4.46 | 4.49 | 4.53 |
T (K) | D × 109 (m2/s) | cCu | ||||
---|---|---|---|---|---|---|
0 | 0.25 | 0.5 | 0.75 | 1 | ||
1423 | Cu | 3.20 | 3.30 | 3.50 | 3.71 | |
Au | 2.28 | 2.30 | 2.40 | 2.50 | ||
1573 | Cu | 4.38 | 4.50 | 4.64 | 4.91 | |
Au | 3.08 | 3.15 | 3.27 | 3.40 |
T (K) | D × 109 (m2/s) | cAg | ||||
---|---|---|---|---|---|---|
0 | 0.25 | 0.5 | 0.75 | 1 | ||
1423 | Ag | 2.90 | 3.00 | 3.10 | 3.24 | |
Au | 2.28 | 2.38 | 2.49 | 2.61 | ||
1573 | Ag | 3.89 | 4.05 | 4.22 | 4.41 | |
Au | 3.08 | 3.22 | 3.37 | 3.51 |
D × 109 (m2/s) | T (K) | Our Results | Literature Results |
---|---|---|---|
Cu | 1423 | 7.95 | 7.86 [7] |
1573 | 10.47 | 10.28 [7] | |
Au | 1423 | 2.50 | 2.41 [51] |
1573 | 3.43 | 3.10 [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubinin, N.; Ryltsev, R. Self-Diffusion Coefficients of Components in Liquid Binary Alloys of Noble Metals. Metals 2022, 12, 2167. https://doi.org/10.3390/met12122167
Dubinin N, Ryltsev R. Self-Diffusion Coefficients of Components in Liquid Binary Alloys of Noble Metals. Metals. 2022; 12(12):2167. https://doi.org/10.3390/met12122167
Chicago/Turabian StyleDubinin, Nikolay, and Roman Ryltsev. 2022. "Self-Diffusion Coefficients of Components in Liquid Binary Alloys of Noble Metals" Metals 12, no. 12: 2167. https://doi.org/10.3390/met12122167
APA StyleDubinin, N., & Ryltsev, R. (2022). Self-Diffusion Coefficients of Components in Liquid Binary Alloys of Noble Metals. Metals, 12(12), 2167. https://doi.org/10.3390/met12122167