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Abstract: Connecting a variable groove weldment is always challenging, and it is necessary to
monitor the course of the work and optimize the welding process parameters in real time to ensure
the final welding forming quality. Welding penetration is an important index to appraise the welding
forming quality; the visual sensing method for molten pool is the main method for detecting the
weld penetration, but its detection accuracy is affected by the arc light. In this paper, a welding
penetration sensing method for variable groove weldments based on the welding temperature field
distribution is proposed. Firstly, a set of temperature field measurement system for a weldment is
developed by means of an infrared sensor. Secondly, in the direction perpendicular to the welding
direction, a linear temperature distribution feature extraction algorithm based on Gaussian fitting is
studied; in the direction parallel to the welding direction, the linear temperature distribution feature
extraction algorithm based on the thermal cycle parameters is studied, and the feasibility of using
the extracted linear temperature distribution features to identify the weld penetration of a variable
groove weldment is analyzed. Finally, taking the extracted linear temperature distribution features
as input, using an artificial neural network, the prediction model for the welding penetration of a
variable groove weldment is established. The experimental results showed that the weld penetration
sensing method put forward in this paper can realize high-precision weld penetration sensing and
has high reliability, which solves the problem that weld penetration sensing is affected by arc light to
a great extent.

Keywords: variable groove; penetration sensing; infrared sensor; Gaussian fitting; thermal cycle parameters

1. Introduction

Welding is a manufacturing process and the technology of joining metals by heating,
high temperature or high pressure. In recent years, the online inspection of welding quality
has become a research highlight in the field of welding [1–3]. Realizing the online inspection
of welding quality can find welding defects in a timely manner so as to be able to quickly
adjust and optimize the welding process parameters and, finally, achieve the goals of
maintaining the welding quality and improving the welding processing efficiency.

In the welding process, multisource information, such as the electric signal, vision,
temperature, and spectrum, can reflect the welding quality to a large extent; therefore,
the welding quality can be inspected by online sensing of the multisource information.
Among them, the vision sensing method is widely used in welding quality inspection.
Zhang et al. [4] studied an improved fuzzy edge detection algorithm, which can extract
the weld edge from a low-contrast welded joint image, providing strong support for the
detection of welding defects. Deng et al. [5] studied a weld edge extraction algorithm
based on beamlet transform, which can accurately extract weld edges from high noise
welding images with high efficiency. Shen et al. [6] studied two weld defect detection
methods based on visual sensing and subsequently combined the two methods using
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information fusion to improve the reliability of weld defect detection. Khumaidi et al. [7]
established a classification model for welding defects using a convolutional neural network
and Gaussian kernel, with the acquired weld image as input; it could achieve the high-
precision classification of four types welds: good weld, over spatter, polarity, and undercut.
Haffner et al. [8] proved that a convolutional neural network is a reliable and promising
evaluation method when visual sensing is used to detect welding quality. The above
documents realized welding quality detection by directly imaging the weld; in order to
directly avoid the impact of arc light on welding quality detection, this paper measured the
temperature field distribution of the welding heat-affected zone around the molten pool
region through infrared band imaging and studied the relationship between the welding
temperature field and welding quality.

The weld penetration is closely related to the welding forming quality, and many
scholars have carried out in-depth research on the sensing technology of weld penetra-
tion [9–11]. Sibilano et al. [12] studied a spectrum-based laser welding penetration sensing
technology, and online sensing of the welding penetration was realized through the real-
time measurement of the electron temperature of the plasma. Yang et al. [13] studied
a penetration sensing technology for aluminum alloy welding based on the weld pool
vision, and they built a penetration recognition model based on an artificial neural network.
Xia et al. [14] developed a penetration evaluation model for resistance spot welding on the
basis of the electrode displacement signals, and they tested its generalization ability under
different welding conditions. Ren et al. [15] established a gas tungsten arc welding (GTAW)
penetration classification model for aluminum alloy based on arc sound detection and deep
learning; its classification accuracy was better than many typical models. Yu et al. [16]
aimed at the problem that a single molten pool image does not contain enough information
to predict the welding forming quality, and they studied a welding penetration sensing
technology based on a sequential weld pool image and deep learning. Liu et al. [17] aimed
at the problem that the instability of small holes will affect the penetration of laser welding,
and they studied a pulse laser welding penetration sensing technology using vision sensing
and deep learning. To sum up, a change in the welding penetration will inevitably lead
to a change in the multisource information features during the welding process. When
connecting a variable groove weldment, the change in the penetration will also be reflected
by a change in the welding temperature field distribution features; therefore, using the
temperature information in the welding process to carry out online sensing of the welding
penetration is a feasible research direction.

In order to measure the temperature information during the welding process, infrared
detection is a feasible means, which is an important testing method in the field of nonde-
structive testing [18]. Tan et al. [19] measured the welding temperature field distribution
using an infrared thermometer, modified the parameters of a double elliptical distribu-
tion heat source model, and established a finite element numerical simulation model for
welding temperature field. Alfaro et al. [20] studied a GTAW defect detection technology
based on infrared sensing, and they explored the relevance between the change of welding
temperature and forming defects. Kafieh et al. [21] processed the infrared image sequence
of a welded polyethylene pipe, which showed good performance in welding defect de-
tection. Zhu et al. [22] developed a set of infrared visual sensing systems for detecting
the weld offset of swing arc narrow gap welding. Guo et al. [23] studied an ultrasonic
infrared thermal imaging technology for crack defect detection of friction stir welded joints
of aluminum alloy sheets. Górka et al. [24] studied a reflection temperature correction
technology to reduce the uncertainty of the absolute temperature measurement using an
infrared sensor, which was used to diagnose several typical welding defects, including
nonpenetration and unsatisfactory weld formation size. To sum up, infrared detection has
become an important means for welding process monitoring; after infrared images are
collected by an infrared sensor, they are processed using image processing algorithms so
as to extract the features strongly related to welding forming quality. By identifying these
features, welding quality monitoring can be realized to a certain extent.
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In order to accurately establish the relationship between the signal features and weld-
ing forming quality, the outstanding performance of artificial neural networks has attracted
great attention by welding workers. An artificial neural network is an important branch
of machine learning, and from the relevant research results in the welding field, artifi-
cial neural networks are widely extended to welding process parameter design, welding
performance prediction, and welding forming quality monitoring and control [25–28].
Luo et al. [29] determined the sound signal features that were strongly related to the weld-
ing quality and established a laser welding defect identification model using an artificial
neural network. Hong et al. [30] studied a prediction technology for the weld morphology
of laser arc hybrid welding using an artificial neural network. Lei et al. [31] studied a
prediction technology for the geometric features of a laser welding seam using multisource
information fusion, with the extracted weld pool morphological features and welding pro-
cess parameters as inputs, and built a weld geometry prediction model using an artificial
neural network. Li et al. [32] used a passive visual sensing system to acquire weld pool
images, and they developed a prediction model for GTAW penetration using a convolution
neural network. Bacioiu et al. [33] studied a tungsten inert gas (TIG) weld defect detection
technology by means of high dynamic range imaging, and they established a welding
defect identification model based on a convolutional neural network. Hartl et al. [34]
studied friction stir welding process monitoring technology, and they used various types
of artificial neural networks to detect the quality of friction stir welds. To sum up, the
application of artificial neural networks in the welding field has resulted in many achieve-
ments, but there is no mature algorithm for determining the parameters of a neural network
at present. Improving the generalization ability of artificial neural networks is also the
focus of future research.

In this paper, welding penetration sensing technology for variable groove weldments
was studied, which innovatively uses the temperature field distribution of the welding
heat-affected zone around the weld pool to sense the weld penetration. The temperature
field distribution of the weldment was measured by means of infrared thermal imaging, the
feature extraction algorithm of the temperature distribution perpendicular and parallel to
the welding direction on the weldment surface was studied, the key information such as the
welding thermal cycle parameters was extracted, and the feasibility of using the extracted
linear temperature distribution features to identify the welding penetration of variable
groove weldments was analyzed. Finally, a back propagation (BP) neural network was
adopted to establish a welding penetration diagnostic model for variable groove weldments.
The welding penetration sensing method proposed in this paper does not need to observe
the dynamic behavior of the molten pool but only needs to detect the temperature field
distribution of the welding heat-affected zone around the weld pool, and it can achieve
high-precision sensing of the welding penetration for variable groove weldments.

2. Design of the Welding Penetration Sensing System for Variable Groove Weldments

A connection experiment on variable groove weldments was conducted under a gas
metal arc welding (GMAW) process. The whole welding experimental platform mainly
consisted of a welding system and a welding penetration sensing system for variable
groove weldments, which is shown in Figure 1. The welding system included an electric
welding machine, welding gun, wire feeder, control cabinet, and protective gas; the welding
penetration sensing system for the variable groove weldments included an infrared sensor,
signal generator (UNI-T, UTG932), and a computer. The infrared sensor was connected to
the welding gun through a clamp, and its monitoring area mainly included the welding heat-
affected zone around the weld pool. At the start of the welding process, the signal generator
sent a square wave signal with a frequency of 50 Hz to trigger the infrared sensor to measure
the temperature field distribution on the weldment surface online. Subsequently, the
temperature distribution image of the weldment was input to the computer for processing,
the key information such as the welding thermal cycle parameters was extracted by the
designed linear temperature distribution feature extraction algorithm and then input to
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the artificial neural network model, and the penetration of the variable groove weld could
be sensed online. The welding wire and weldment were made of stainless steel, and the
specific welding process parameters are shown in Table 1.
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Figure 1. Welding penetration sensing system for variable groove weldments.

Table 1. Welding process parameters.

Process Parameter Value

Welding technology GMAW
Welding wire grade ER316L

Welding wire diameter 1.2 mm
Weldment 304 stainless steel

Base metal size 27 cm × 6 cm × 5 mm
Base metal blunt edge 1 mm

Protective gas composition 99%Ar + 1%O2
Protective gas flow 25 L/min

Welding current 158 A
Welding voltage 17.8 V
Welding speed 5 mm/s

Wire feeding speed 6.6 m/min

The groove angle of the weldment directly affects the welding penetration, so we
processed the weldment into variable grooves along the welding direction. A structural
diagram of a variable groove weldment is shown in Figure 2.
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Figure 2. Structural diagram of a variable groove weldment.

The starting point of the welding was set at 4 cm from the edge of the base metal part
with a groove angle of 30 degrees. In addition, the distance between the welding end point
and the starting point was set at 19 cm. Setting the welding parameters in accordance with
Table 1, after completion of the welding experiment, the penetration state of the variable
groove weld is shown in Figure 3. It can be seen that the first 5 cm welded joint was in the
mode of nonpenetration, the next 9 cm welded joint was in the mode of full penetration,
and the last 1 cm welded joint was in the mode of excessive penetration. In cases where
the section of the welded joint was in the mode of excessive penetration and there was a
tendency of welding leakage, the welding arc was extinguished, and the welding process
was stopped.
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Figure 3. The penetration state of a variable groove weld.

3. Feature Extraction of the Linear Temperature Distribution on a Weldment Surface

In the welding process, the temperature field image of a weldment surface measured by
an infrared sensor at different times is shown in Figure 4. When an infrared sensor is directly
adopted to measure the temperature field distribution of a weldment surface, according to
our previous research work [35], based on the temperature measurement principle of the
infrared sensor, its temperature measurement results are related to the emissivity of the
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target. The molten pool is liquid, and the welding heat-affected zone around the molten
pool is solid; the emissivity of the solid and liquid is different. Furthermore, the molten pool
area will be covered by arc light during the welding process; therefore, the temperature
measurement results in the molten pool area are unreliable, and it is feasible to select the
heat-affected zone around the weld pool area for the temperature field measurement.
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In order to study the distribution law of the welding temperature field under various
penetration modes, taking the temperature field of the weldment surface in Figure 4 as
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an example, firstly, the linear temperature distribution features of the weldment surface
perpendicular to the welding direction were extracted. Figure 5 shows a schematic diagram
of the selected line segments in the heat-affected zone. In this paper, a relatively fixed line
segment was selected from the heat-affected zone in the measured temperature field image
of the weldment surface, and the raw data on the linear temperature distribution were
processed by quadratic fitting, cubic fitting, and Gaussian fitting. The function expression
adopted for the Gaussian fitting was:

y = a exp

(
−
(

x − b
c

)2
)

(1)

where a, b, and c are constants; x is an independent variable; and y a dependent variable.
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Figure 6 is the Gaussian fitting result of the original temperature distribution data. The
function expression after the fitting shown in Figure 6a was
y = 162.8683 exp

(
−((x − 178.4872)/122.3834)2

)
; the function expression after the fit-

ting in Figure 6b was y = 869.3238 exp
(
−((x − 174.3964)/129.1515)2

)
; the function ex-

pression after the fitting in Figure 6c was y = 907.036 exp
(
−((x − 167.0896)/130.2656)2

)
;

the function expression after the fitting in Figure 6d was
y = 950.2439 exp

(
−((x − 165.3563)/128.9623)2

)
; function expression after the fitting in

Figure 6e was y = 949.0039 exp
(
−((x − 167.4753)/129.8019)2

)
; the function expression

after the fitting in Figure 6f was y = 954.0581 exp
(
−((x − 167.5125)/132.1399)2

)
.
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The mean absolute error of fitting the original temperature distribution data of the
weldment surface perpendicular to the welding direction by quadratic fitting, cubic fitting,
and Gaussian fitting is shown in Table 2.

Table 2. Fitting error of three fitting methods (◦C).

Fitting Method
Time a b c d e f

Quadratic fitting 29.6168 88.1995 103.7892 114.7833 114.1282 109.9440
Cubic fitting 28.5887 76.7988 81.8240 87.0293 91.3778 87.6424

Gaussian fitting 24.1636 41.1273 47.8991 51.8606 53.9904 51.0633

It can be found from Table 2 that the error of fitting the original temperature distribu-
tion data on the surface of the weldment perpendicular to the welding direction using the
Gaussian fitting method was the smallest, and this conclusion was also verified in more
infrared thermal images. According to the above conclusions, in the direction perpendic-
ular to the welding direction, this paper proposed a feature extraction algorithm of the
linear temperature distribution of the weldment surface based on Gaussian fitting. The
extracted Gaussian fitting curve coefficient was adopted to represent the linear temperature
distribution feature on the surface of the weldment perpendicular to the welding direction.

Secondly, the linear temperature distribution features of the weldment surface parallel
to the welding direction were extracted. The temperature distribution on any straight line
parallel to the welding direction can be considered as the temperature change experienced
by any point on the straight line, that is, the thermal cycle process of that point. According to
the above principles, this paper proposed an algorithm for extracting the linear temperature
distribution features of the weldment surface based on the thermal cycle parameters,
and the extracted welding thermal cycle parameters were used to represent the linear
temperature distribution features of the weldment surface parallel to the welding direction.
Figure 7 is the linear temperature distribution curve of the weldment surface parallel
to the welding direction at different times. In this paper, two welding thermal cycle
parameters, the maximum temperature and the cooling rate, were extracted from the
measured welding thermal cycle curve to represent the linear temperature distribution
features of the weldment surface parallel to the welding direction.
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4. Feasibility Analysis of Identifying the Welding Penetration Using Linear
Temperature Distribution Features

In this paper, a welding penetration sensing method for variable groove weldments
based on an infrared sensor and an artificial neural network was put forward. The weld
penetration was recognized by the linear temperature distribution features on the surface
of the weldment, and a flow chart of this method is described in Figure 8.
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For the sake of verifying the feasibility of using the extracted five-dimensional linear
temperature distribution features on the surface of the weldment to identify the penetration
of a variable groove weld, the principal component analysis (PCA) algorithm was adopted
for reducing the five-dimensional temperature distribution features to three-dimensional
features so as to realize the visualization. A total of 500 sets of nonpenetration state data,
900 sets of full penetration state data, and 100 sets of excessive penetration state data were
extracted from the welding experiment, and the display results after the dimension reduc-
tion are shown in Figure 9. It can be found that most of the feature points corresponding
to different penetration states were gathered together and could be well distinguished;
only a small number of feature points overlapped. In general, the linear temperature
distribution feature of the weldment surface under different penetration modes had certain
separability, and the penetration of the variable groove weld could be diagnosed using the
linear temperature distribution features of the weldment surface extracted in this paper.
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5. Welding Penetration Detection of a Variable Groove Weldment Based on an
Artificial Neural Network

In this paper, by means of a BP neural network, a penetration recognition model
for variable groove welds was established with the extracted five-dimensional linear
temperature distribution features of the weldment surface as the input and the penetration
of the variable groove weld as the output. There were three kinds of penetration states for
a variable groove weld at the output end of the network model, and we used 0 to represent
the nonpenetration state, 1 to represent the full penetration state, and 2 to represent the
excessive penetration state. The number of hidden layers and the number of neurons
in each layer of the penetration recognition model were closely related to the prediction
accuracy of the recognition model. In accordance with the experimental test results, and
the hidden layers of the recognition model were set as two layers, and each layer was set
with 10 neurons. A structural diagram of the penetration recognition model for variable
groove welds is shown in Figure 10. The activation function of the neural network was
a sigmoid function, the training function was Trainlm, the maximum number of training
times was 200, the learning rate was 0.01, and the target error was 0.001. The loss function
of the neural network was the mean squared error (MSE), and its calculation equation is:

E =
1
2∑

k
(yk − tk)

2 (2)

where yk is the output parameter of the neural network, and tk is the target parameter of
the neural network.

Metals 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 

5. Welding Penetration Detection of a Variable Groove Weldment Based on an Artifi-

cial Neural Network 

In this paper, by means of a BP neural network, a penetration recognition model for 

variable groove welds was established with the extracted five-dimensional linear temper-

ature distribution features of the weldment surface as the input and the penetration of the 

variable groove weld as the output. There were three kinds of penetration states for a 

variable groove weld at the output end of the network model, and we used 0 to represent 

the nonpenetration state, 1 to represent the full penetration state, and 2 to represent the 

excessive penetration state. The number of hidden layers and the number of neurons in 

each layer of the penetration recognition model were closely related to the prediction ac-

curacy of the recognition model. In accordance with the experimental test results, and the 

hidden layers of the recognition model were set as two layers, and each layer was set with 

10 neurons. A structural diagram of the penetration recognition model for variable groove 

welds is shown in Figure 10. The activation function of the neural network was a sigmoid 

function, the training function was Trainlm, the maximum number of training times was 

200, the learning rate was 0.01, and the target error was 0.001. The loss function of the 

neural network was the mean squared error (MSE), and its calculation equation is: 

( )
2

2

1
 −=

k

kk tyE  (2) 

where ky  is the output parameter of the neural network, and kt  is the target parameter 

of the neural network. 

 

Figure 10. The structure of the penetration state recognition model for a variable groove weld. 

Prior to training and testing the network model, the data set needed to be normalized. 

A total of 1500 sets of data were extracted from the experiment, 1200 sets of data were 

selected to form the training set, and the remaining 300 sets of data were used to form the 

test set. The recognition results of the penetration recognition model for a variable groove 

weld are shown in Figure 11, and the recognition accuracy is described in Table 3. 

Figure 10. The structure of the penetration state recognition model for a variable groove weld.



Metals 2022, 12, 2124 13 of 16

Prior to training and testing the network model, the data set needed to be normalized.
A total of 1500 sets of data were extracted from the experiment, 1200 sets of data were
selected to form the training set, and the remaining 300 sets of data were used to form the
test set. The recognition results of the penetration recognition model for a variable groove
weld are shown in Figure 11, and the recognition accuracy is described in Table 3.
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Table 3. Recognition accuracy of the penetration state.

Penetration State Nonpenetration Full Penetration Excessive Penetration

Recognition accuracy 100% 99.47% 95.45%

Gradually reducing the number of data sets in the training set, the number of data sets
in the training set and the recognition accuracy of the penetration recognition model for
variable groove welds are described in Table 4. It can be seen that the recognition accuracy
of the penetration recognition model for the three penetration states remained above 92%.

Table 4. Recognition accuracy of the penetration state under different data sets of training set.

Training Set Test Set Nonpenetration Full Penetration Excessive Penetration

1000 500 99.42% 98.99% 96.88%
750 750 99.60% 98.45% 95.92%
500 1000 99.70% 97.84% 92.42%

When 50 sets of nonpenetration state data, 50 sets of full penetration state data, and
50 sets of excessive penetration state data were randomly selected to form a training set,
and all 1500 sets of data extracted from the experiment were used to form a test set, the
recognition results of the penetration recognition model for variable groove welds are
shown in Figure 12, the recognition results of each penetration state are described in Table 5,
and the recognition accuracy is described in Table 6.
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Table 5. Prediction results of each penetration state by using BP neural network.

Prediction State
Actual State Nonpenetration Full Penetration Excessive Penetration

Nonpenetration 489 0 0
Full penetration 9 874 1

Excessive penetration 2 26 99

Table 6. Recognition accuracy of the penetration state by using BP neural network.

Penetration State Nonpenetration Full Penetration Excessive Penetration

Recognition accuracy 97.80% 97.11% 99.00%

In addition, this paper also used the support vector machine (SVM) to establish a
recognition model for variable groove weld penetration in accordance with the above
training strategy. The recognition results of each penetration state are described in Table 7,
and the recognition accuracy is described in Table 8.

Table 7. Prediction results of each penetration state by using SVM.

Prediction State
Actual State Nonpenetration Full Penetration Excessive Penetration

Nonpenetration 497 13 0
Full penetration 2 786 19

Excessive penetration 1 101 81

Table 8. Recognition accuracy of the penetration state by using SVM.

Penetration State Nonpenetration Full Penetration Excessive Penetration

Recognition accuracy 99.40% 87.33% 81.00%

Through the above experimental results, it can be seen that the overall recognition
accuracy of the recognition model for variable groove penetration based on a BP neural
network was higher than that of the recognition model based on SVM. The recognition
error of the recognition model for the variable groove weld penetration mainly occurred in
the adjacent penetration state, which was due to the close welding temperature field in the
adjacent penetration state at some moments. Moreover, the extraction and processing of
the linear temperature distribution features also had some errors, which led to errors in the
recognition of the weld penetration. In general, the method proposed in this paper can be
extended to the online sensing of the penetration of variable groove weldments.

6. Conclusions

In this paper, a penetration sensing method for variable groove weldments based on
an infrared sensor and an artificial neural network was proposed. The main conclusions
are as follows:

1. A linear temperature distribution feature extraction algorithm based on Gaussian
fitting was studied in the direction perpendicular to the welding direction, and a
linear temperature distribution feature extraction algorithm based on the thermal cycle
parameters was studied in the direction parallel to the welding direction, which could
extract the temperature field distribution of the weldment surface to a certain extent.

2. The linear temperature distribution features in the welding heat-affected zone around
the weld pool under different penetration states had a certain separability.

3. With the extracted linear temperature distribution features in the welding heat-
affected zone around the weld pool as the input, a penetration recognition model
for the variable groove weld was established based on an artificial neural network,
which could realize the high-precision sensing of the three penetration states, such as
nonpenetration, full penetration, and excessive penetration.
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4. The welding penetration sensing method proposed in this paper solves the problem
that the sensing of the welding penetration is affected by arc light to a large extent,
and it provides a new method for the sensing of welding penetration.
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