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Abstract: Tungsten carbide based cemented carbides, often simply termed hardmetals, are established
forefront materials for tools, structural components, and wear parts with stringent requirements.
Several of the technological applications in which they are used include exposure to chemically
aggressive media. Under these conditions, failure induced under applied load may be accelerated; and
consequently, the service life may be decreased. Within this context, this work addresses the influence
of corrosion-induced damage on the mechanical integrity and load-bearing capability of hardmetals
at different length scales, i.e., from 100s nanometers to 1000s microns. Experimental data acquired by
means of nanoindentation, pyramidal, and spherical indentation, as well as sliding contact (micro-
and nanoscratch) techniques, are presented. The attained results allow for identifying guidelines
for the microstructural design of these materials under combined consideration of corrosion and
mechanical contact as service-like conditions. Discussion of the reported findings includes a critical
analysis of corrosion effects on the evolution of microstructure-property-performance interrelations
for the materials under consideration.

Keywords: cemented carbides; corrosion; mechanical contact; scratch; mechanical integrity;
load-bearing capability; microstructure-property-performance interrelations

1. Introduction

The excellent combination of properties exhibited by cemented carbides has made
them the preferential choice in a large number of industrial applications demanding high
performance under stringent working conditions, e.g., cutting and forming tools, mining
bits, and mechanical seals [1]. In addition to exposure to contact loading, wear, or repetitive
impacts, some of these applications involve harsh chemical media [1–4]. In this regard and
considering the ceramic-metal composite nature of hardmetals, it is now well-established
that the metallic binder is preferentially attacked in acid and neutral media, whereas the
ceramic phase is the one corroded in alkaline solutions (e.g., Refs. [5–11]). Under these
conditions, it has been shown that accelerated failures induced by applied loads may lead
to a significant reduction in service life.

Extensive research has been conducted aiming to evaluate either corrosion or tribology
response (wear, abrasion, contact loading, or scratch) as separated degradation phenomena
in cemented carbides (Figure 1). However, as indicated by a bibliometric analysis done
using databases from Scopus or Web of Science, the number of studies addressing the
combined action of corrosion and any of the referred tribology-related phenomena in these
materials is much more limited. Within this context, existing synergic-like investigations
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have been mainly focused on wear–corrosion interaction, following testing methodologies
involving either abrasion or sliding contact phenomena [12–22]. Regarding the former,
several interesting findings have been documented on the basis of abrasion–corrosion tests
conducted in chemically aggressive slurry within a wide range of pH values [13–18]. First,
binder dissolution and corresponding removal of tungsten carbide (WC) particles is the
rate-controlling step to determine volume loss under strongly acidic conditions (pH = 1.1).
Second, WC grains fracture combined with less binder dissolution seems to predominate
under weakly acidic conditions (pH = 2.6 and 6.3). Third and finally, overall wear rates
are hardly affected in neutral and alkaline conditions. Meanwhile, Gee and co-workers
have successfully studied, documented, and analyzed the synergy between corrosion and
scratch [19–21]. Among the interesting results reported by them, it must be highlighted that
there is an evidenced degradation regarding the microstructural and mechanical integrity
of the studied cemented carbides due to the binder leaching.
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loading, abrasion, and scratch.

The use of small-scale indentation and scratch techniques has been well-established
as suitable and valid tool to determine the mechanical and tribological properties of
cemented carbides at micro- and nano-metric length scales [23]. The implementation of
these testing approaches has allowed for measuring intrinsic hardness and elastic modulus
of individual constituent phases [24–29]; assessing the influence of microstructure on
sliding contact, scratch, and wear resistance [30–32]; and shedding light on deformation,
wear and material removal mechanisms [25–32]. Unfortunately, all the referred works have
been conducted on pristine or virgin cemented carbides; hence, there is a significant lack
of information about the influence of the damage induced by corrosion on the effective
mechanical integrity of hardmetals. Furthermore, testing protocols based on spherical
indentation have been successfully used for evaluating the contact response and induced
damage in nude and coated cemented carbides [33–42]. In such studies, contact damage
was introduced using spheres with curvature radii in the millimeter length scale. However,
once again, investigations in most of these works have been exclusively carried out on
pristine or virgin cemented carbides. Hence, once again, information addressing the
simultaneous action of contact loading (monotonic/cyclic) using spherical indentation and
corrosive medium is not only quite scarce but also required.

Following the above ideas, the influence of corrosion on the mechanical response
and damage of cemented carbides at different length scales is reviewed on the basis of
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recent work published by the authors [43–46]. It includes corrosion-induced changes in the
microstructural scenario, small-scale mechanical integrity, load-bearing capability, spherical
indentation contact behavior, and corresponding damage scenarios, as summarized in
Figure 2.
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2. Corrosion-Induced Changes on the Mechanical Integrity of Cemented Carbides

The authors have implemented nanoindentation and nanoscratch tests on a hardmetal
consisting of WC particles of about 1.5 mm embedded in a cobalt (Co) based metallic
binder (6 wt%), for both pristine and previously corroded conditions. The corresponding
surface/subsurface and mechanical integrity changes were then assessed and analyzed
at relatively small length scales (100 s to 1000 s nanometers) [43]. The examination of
the indented and scratched surface revealed that the small-scale mechanical properties
of the studied hardmetal grade (6 CoM) were significantly degraded due to the damage
induced by corrosion. In this regard, the non-corroded specimens exhibited a higher
indentation and scratch damage resistance response, as concluded from higher hardness
and Young’s modulus measured (Figure 3a), the narrower and shallower imprints/tracks
(Figure 3b,d,e), as well as less spallation and local chipping degree (Figure 3b,e). It could
be attributed to the effective deformation compatibility discerned between hard and soft
phases, where the intrinsic toughening capability of the metallic binder hampers carbide
microfracture; and thus, evades possible pull-out of the grains [31,47]. However, in the
case of the corroded condition, a mechanically unsupported carbide skeleton as remnant
microstructure was yielded due to the dissolution of the metallic binder (Figure 3c), leading
to plastic deformation incompatibility between both phases together with microfracture
within contiguous carbide grains. Therefore, a more severe damage scenario is discerned
for both indented and scratched surfaces (Figure 3c,f) in terms of larger penetration depth,
early fragmentation of WC phases, and easy removal of loose grains.
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Figure 3. (a) Hardness and Young’s modulus values as a function of penetration depth, (b) nanoin-
dentation residual imprints, (c) FIB cross-section of indented surface, (d) typical penetration
depth—scratch distance (under increasing applied load condition) curves, (e) micrographs of two
scratch tracks, and (f) FIB cross-sections of the scratch track corresponding to a load level of 225 mN
for non-corroded and corroded 6CoM samples (adapted from Ref. [43]).

An in-depth understanding of the deformation and damage scenarios may be attained
from the inspection of cross-sectional views by means of field emission scanning elec-
tron microscopy (FESEM) and focused ion beam (FIB) milling, as shown in Figure 3c,f.
Regarding the nanoindentation tests, the collapse of the binderless and porous carbide
network at the local level and pronounced multiple cracking was discerned in the corroded
condition, while the non-corroded case indicated an effective load-sharing between the
soft and hard phases. In the nanoscratch tests, the deformation and fracture features of the
virgin specimen were discerned in both phases (Co and WC phases). As the compressive
stresses induced by scratching rise, plastic deformation of Co binder first emerges near the
interphase boundaries, followed by a series of damage scenarios of extrusion, cracking, and
removal of binder phase, microfracture, and subsequent fragmentation of the individual
WC grains. Concerning the corroded specimens, strain energy induced by sliding contact
is absorbed/released by means of: (1) the removal of loose WC grains near the track edges
and (2) the emergence of multiple cracking and internal rupture of individual carbides. It
further supported the experimental findings that the effective mechanical integrity of the
remaining WC skeleton was markedly lessened, yielding then easy removal of loose grains
even by light abrasion.
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3. Corrosion Effects on the Load-Bearing Capability and Induced Damage of
Cemented Carbides

Exposure to longer corrosion times, together with the use of pyramidal indentation
and sliding contact (microscratch), allowed us to extend the study referred to in the previous
section to higher length scales, from 10s to 100s of microns in depth [44]. As the area of
indentation and scratch-affected zones were significantly increased, a longer corrosion
time was chosen for obtaining uniform and rather thick corrosion-affected layers, whose
thickness is similar to the corresponding damage depth.

It was found that the load-bearing capability and crack extension resistance of the
investigated cemented carbide grade were markedly degraded for longer exposure times to
corrosive media. The former is manifested in changes in the damage-related features, such
as deeper penetration, larger residual imprints, wider scratch track, as well as decreased
hardness value, as the corrosion time increases from 1 day to 11 days. The latter is evidenced
in terms of the decreased crack resistance values as a function of corrosion time. In this
regard, the lessened resistance against cracking phenomena of cemented carbides is directly
linked to the energy absorbed during the constrained plastic stretching of Co binder
ligament as cracks extend [48,49]. In this sense, the toughening effect due to ductile
ligament reinforcement depends largely on the volume fraction of the binder phase, with
the corresponding crack growth (R-curve) resistance increasing as the binder content gets
higher [50,51]. Thus, in the authors’ investigation, the corrosive exposure results in the
effective removal of the ductile metallic phase, implying that the referred toughening is
no longer operative, leading to a gradually lowered energy required for subcritical crack
propagation as corrosion time increases. Interestingly, the above-mentioned corrosion-
induced lessening effects were found to decrease as exposure time increased, and no
difference was discerned after 7 days of immersion. In this regard, a relative indentation
depth (R) parameter, which is defined by the ratio between indentation depth and layer
thickness, may be used to describe the coating thickness effect on measured mechanical
properties [44]. Within this context, it has been reported that the measured mechanical
properties of a dense coating are not affected by the substrate response as long as R is lower
than 0.1, while in the case of a porous film on a hard substrate, such critical R can even
reach 0.3 [52,53]. Within the experimental scatter of the results, the calculated R values
in the condition of 1 day and 3 days of immersion are about 0.2–0.3, then sustaining the
description of the corroded specimens as systems consisting of a porous ceramic layer on
top of a very hard composite substrate.

Corrosion effects on damage scenarios induced during indentation and scratch tests
may be further understood by analyzing the existing crack-microstructure interaction
(Figure 4). For both testing conditions (i.e., pyramidal indentation and micro-scratch), a
well-defined cracking system is discerned for the non-corroded conditions, while in the
corroded case, multiple branched fissures confined within the porous-like degraded layers
are observed. This is in agreement with previous studies on sintered steels containing a
relatively large intrinsic porosity, where cracks exhibit pronounced branching, as they are
prone to follow easy paths of interconnected pores [54]. Thus, in the corroded case, the
subsurface crack propagation behavior is associated with the effectiveness of small-length-
scale interactions between cracks and cavities within the binderless WC framework [55]. In
this regard, the pores left after the binder is dissolved act as both an assemblage of many
stress concentrators and crack precursors [56]. Hence, when a load is applied, main cracks
first propagate toward the bulk, and then additional microstructurally short cracks nucleate
at the referred pores to subsequently extend steadily outwards.
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4. Corrosion-Induced Changes on Hertzian Contact Damage in Cemented Carbides

Spherical indentation is an interesting and feasible technique for the evaluation of
corrosion effects on the mechanical integrity of hardmetals at even higher length scales,
i.e., up to 1000 microns, closer to those involved under service-like conditions. It was
implemented in materials exposed to an acidic media for different times, aiming to docu-
ment and analyze the changes observed in the indentation stress-strain response [45]. The
study was conducted in three microstructurally distinct hardmetal grades, corresponding
to modifications of the reference 6CoM one by the addition of chromium (6CoCrM) and/or
substitution of cobalt by nickel (6NiCrM) within the chemical nature of the metallic binder.
Furthermore, the corresponding surface and subsurface features were assessed by the use
of advanced characterization techniques, such as the bonding interface technique combined
with FIB/FESEM observation.

Similar to the phenomenon discerned in the former sections, corroded hardmet-
als show a lower load-bearing capability than pristine ones. This was manifested by
the increased depth of the residual imprints at a given load, as well as the deterio-
rated stress-strain behavior discerned after corrosion. In this regard, the generation of
porous/binderless corroded layers directly led to the gradual increase of the indentation
depth at a given load as immersion time gets longer [43,44]. On the other hand, indentation
strain-stress response shows significant dependence on the depth of the corroded layers. In
this sense, quasi-plastic deformation was largely controlled by the uncorroded substrate,
which can be attributed to the very low ratio between layer thickness and indenter radius.
As the layer thickness increases (from 10 s to 100 s microns), the quasi-plastic deformation
tends to be confined within the porous/binderless corroded layers. For the most aggressive
corrosion condition (i.e., with the immersion time of 11 days), the measured indentation
stress decay is maximum for 6CoM (23%), intermediate for 6NiCrM (20%), and minimum
for 6CoCrM (13%).

The detrimental corrosion effect on contact damage was also evidenced, as given by
the observation of a lower critical load for the emergence of incipient cracks and more
severe damage scenarios at the surface level, as shown in Figure 5. Regarding the non-
corroded condition, in agreement with previous studies [33,57,58], contact damage was
found to evolve from an initial partial ring crack to full ring ones as the applied load
increased. For the corroded condition, besides the similar evolution discerned in the
pristine hardmetals, radial cracks (located in the deformed zone and the edge of the plastic
zone) and even specimen breakage were evidenced. Once again, this is attributed to the
effective removal of the metallic phase, yielding a loose and porous WC skeleton. Hence,
toughening mechanism, based on ductile ligament reinforcement, is no longer operative at
the surface level of corroded specimens. Within this context, the shear stress during the
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unloading process may be recalled for explaining the initiation of radial cracks in the edge
of the plastic zone. Similar to the evaluation done on the basis of indentation stress decay,
6CoCrM may be proposed as the best option, as compared to the other two hardmetal
grades investigated, considering the critical load for the initiation of cracks and damage
scenario as figures of merit for material selection, for the service condition involving the
combined action of corrosion and contact loads.
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indentation load and corrosion time. Main damage features ascribed to each symbol (no cracks,
partial ring crack, full ring crack, radial crack, and specimen breakage) are shown within the legend,
including images of representative events (adapted from Ref. [45]).

Furthermore, the corresponding surface and subsurface damage mechanisms were
analyzed by means of FESEM, as shown in Figure 6. Concerning the uncorroded condi-
tion, the contact damage is mainly reflected by cracking, mainly crossing the two-phase
microstructure at the surface level and plastically deformed WC grains at both surface
and subsurface levels. Regarding the corroded specimens, the surface damage scenario is
dominated by well-developed radical cracks accompanied by significant WC grain removal,
cracking, and fragmentation of the particles together with micrometric cavities caused by
dislodged carbides. At the subsurface level, different damage scenarios were observed
in the corroded zone, as compared to those found in the region below the interface be-
tween the corroded and uncorroded zone. In the former case, microcracks are distributed
throughout the deformed area as a result of the role played by the pores left after the
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binder was leached out, i.e., small stress concentrators and crack precursors [45]. Regarding
the latter, the strain energy is absorbed by compatible plastic deformation between the
constitutive phases.
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5. Corrosion-Induced Changes on Contact Fatigue Response of Cemented Carbides

Hardmetal tools and components are often exposed to working conditions involv-
ing both cyclic loading and corrosion. Thus, the effect of corrosion-induced changes on
the contact fatigue response and associated damage in the reference 6CoCrM hardmetal
grade was further investigated by the authors [46]. It fills the information gaps regarding
the use of spherical indentation to evaluate the contact fatigue behavior of cemented car-
bides, considering the combined action of corrosion and cyclic loading at a length scale
of up to 1000 microns. Furthermore, the study evaluated the influence of microstructural
changes, previously induced by corrosion, on the damage scenario and corresponding
failure micromechanisms resulting from the repetitive contact loading.

Surface damage induced by repetitive contact loads was inspected by means of laser
scanning confocal microscopy (LSCM) on both non-corroded and corroded specimens,
and the main results are shown in Figure 7. Similar to the behavior reported under
monotonic loading, the cyclic contact damage of pristine hardmetal was found to evolve
from partial (Nc = 10−103) to (multiple) full ring cracks (Nc = 103−105) as the number of
cycles increased. Besides, additional information regarding the removal of carbide grains
and discrete cohesive chipping at the edge of residual imprints was discerned. Concerning
the corroded condition, cracking emergence and evolution took place earlier (Nc = 10).
Moreover, within the range of the number of cycles studied (Nc = 10−105), changes in the
damage scenario were rather ill-defined with gradual transitions. The referred evolution
was further inspected for both non-corroded and corroded conditions by means of FESEM,
as shown in Figure 8a. It was found that the uniqueness of cracking as an observed damage
phenomenon disappears once a relatively high number of cycles is reached (i.e., about 105)
for the non-corroded condition. Hence, some grain pull-out and oxidation phenomena
could be clearly discerned near the crack path. In this regard, similar to the phenomenon
reported in previous studies [59–61], the former may be ascribed to frictional-like wear
mechanisms. Then, it is speculated that a high enough flash temperature was reached inside
the slip region due to shear during relative displacement between contact areas at small
length scales, which promotes the oxidation of the binder phase (Figure 8b). In the case of
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the corroded condition, ring cracks get less discerned as the number of cycles gets higher,
cavities then becoming the only feature near the contour of indentation impression (Figures
7 and 8a). In this regard, the intrinsic toughing of cemented carbides is completely absent
after the binder is leached out; thus, the stresses required for dislodging WC grains may be
significantly lowered. The energy needed for the grain pulled out may be lower than for the
crack initiation and propagation under cyclic loading conditions. Thus, the accumulated
degradation will preferentially lead to the generation of cavity-like features. Subsurface
inspection of the damaged zone was carried out by means of FIB/FESEM to obtain a
complementary viewpoint of the above-described surface damage scenario, as shown in
Figure 8c. Regarding the uncorroded specimen, the analysis was focused on the zone where
ring cracks were well-developed. It is shown that the failure micromechanism is manifested
by the crack extending throughout the two-phase microstructure after repetitive loading
contact. Concerning the corroded condition, significant differences were discerned with
respect to damage mechanisms found in the pristine one. At the edge of the indentation
impression, looser WC particles were discerned, which will be progressively pulled out as
the number of cycles get higher.
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Figure 8. (a) FESEM and LSCM images of indented areas (residual imprints) and enlarged views of
corresponding square areas under different experimental conditions, (b) EDX mapping of residual
imprint in an uncorroded hardmetal sample, and (c) FIB/FESEM cross-section micrographs of
Hertzian contact showing deformation and damage scenarios at the contour of residual impressions
(adapted from Ref. [46]).

6. Summary

The main objective of this contribution has been to review recent research work focused
on the evaluation of the corrosion-induced changes in the mechanical contact response
of hardmetals through a wide range of length scales: from 100 s nanometers to 1000 s
microns. In doing so, two baseline aspects have been proposed and validated for defining
microstructural design criteria for optimization of the performance of cemented carbides un-
der service-like conditions. First, the synergic consideration of basic mechanical properties
(i.e., hardness and toughness) and corrosion resistance by means of analysis and discussion
of the combined interaction among them through concepts like damage tolerance. Second,
the effective use of a wide spectrum of testing techniques: sharp and spherical indentation
together with scratch at macro-, micro-, and nano-metric levels. As a final outcome, in-depth
knowledge has been gained about the relevant influence of corrosion-induced damage
on mechanical properties, load-bearing capability, resistance to crack extension, spherical
indentation stress-strain response, Hertzian contact fatigue behavior and corresponding
damage scenarios of cemented carbides with distinct microstructures. Furthermore, the
study included the assessment of the evolution of microstructure-property-performance
interrelations due to the degradation of the material under severe working conditions.
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