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Abstract: Ductile iron is a high-strength cast iron material. The spherical graphite obtained by
inoculation treatment effectively improves the mechanical properties of cast iron, resulting in higher
strength than carbon steel. However, severe corrosion may occur under specific circumstances,
especially in thermal water pipelines. In this paper, the corrosion mechanisms at the main defective
points of ductile iron were investigated using microscopic morphological characterization after
accelerated tests combined with numerical simulations. The influence law of each environmental
factor on the corrosion kinetics of ductile iron in a complex water quality environment was studied
using dynamic potential polarization tests. The results showed that the main causative factors leading
to the increased corrosion of ductile iron were the presence of tail-like gaps on its surface, and the
crescent-shaped shrinkage and loosening organization around the graphite spheres. After mechanical
treatment was applied to eliminate the obvious defects, the number of corrosion pits was reduced by
41.6%, and the depth of the pits was slowed down by 40% after five days. By comparison, after ten
days, the number of pits was reduced by 51%, and the depth of the pits was slowed down by 50%.
The dynamic potential polarization test results show that the dissolved oxygen concentration has the
greatest influence on the corrosion of ductile iron in the simulated water environment; meanwhile,
the water hardness can slow down the corrosion of ductile iron. The relative influence of each
environmental factor is as follows: dissolved oxygen concentration > temperature > immersion
time > water hardness > pH > Cl−.

Keywords: ductile iron; harsh water; mechanical treatment; localized corrosion

1. Introduction

With increasing demand for water resources, the laying of water transmission pipelines
has been gradually accelerated [1]. Additionally, the demand for water transmission
pipelines such as steel pipes, ductile iron pipes, pre-stressed steel cylinder concrete pipes
(PCCP), and sandwich glass steel pipes has increased sharply. In the application of cast
pipes with cement lining, harmful ions such as Cr6+ often enter into the water from
contaminated cement and endanger human health. With the increased use of cement-free
lined cast iron pipes in plumbing lines, the fluid in the pipeline comes into direct contact
with the line material. In these circumstances, the flow rate and shear stress destroy the
resulting corrosion film on the material’s surface [2], and elevate the potential risk of the
corrosion-based deterioration of pipelines [2–8]. This may endanger the safe operation
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of the entire water supply system and lead to a series of problems, such as water quality
deterioration, and ecological and economic losses.

In non-cement-lined water supply pipelines, the water temperature, pH [1,9], oxygen
content, and chloride ion concentration are important factors that lead to the immersion
corrosion of the transmission pipeline; these factors exist in addition to the flow immersion
corrosion effect. Stefano [3] described the effect of scaling ions (Ca2+ and Mg2+) in water
quality on the corrosion process of geothermal galvanized steel pipes. The concentration
of Zn2+ and OH− has a clear effect on the formation of the nuclei of corrosion products
in a solution with a higher concentration of scaling ions, which results in the presence of
spherical corrosion products and scales on the surface of the pipe. This corrosion product
mainly comprises zinc oxide, calcium carbonate, and magnesium carbonate, which could
decrease the corrosion rate. Georgii [6] showed the effect of different flow rates on the
corrosion process of mild steel, whereby, at higher flow rates (0.19–0.45 m/s), the protective
properties of the metal surface layer were brought about by enhanced mass transport. In
this condition, crystals of calcite and iron oxide could be formed in the cathodic and anodic
regions, respectively, leading to the formation of a self-healing barrier film that blocked the
oxygen supply and prevented the release of iron into the water.

Ductile iron, as the material most widely used in aqueducts, can lead to the acceler-
ated damage of aqueducts due to microstructural defects such as microscopic shrinkage
loosening on the material’s surface, which can increase the corrosion area of castings. These
defects are also more likely to cause the formation of pits. However, these defects could be
improved by suitable surface mechanical treatment techniques [10,11], thus enhancing the
corrosion resistance of ductile iron castings in aqueduct services.

Studies of the corrosion resistance of ductile iron are currently dominated by single
influencing factors [12–16]. The corrosion of ductile iron [14] under cyclic salt spray
exposure consists of three processes: (i) the pitting of ferrite, (ii) the inward oxidation of the
austenitic ferrite matrix, associated with the formation of a dense inner layer, and (iii) the
mixed oxidation of the matrix, associated with the formation of a rust layer on the sample
surface, where chloride ions are transferred and become involved in the corrosion reaction
by changing the properties and composition of the rust layer. The levels of corrosion
resistance of carbon steel and ductile iron castings show significant differences at different
levels of chloride ion content [15]. An increase in the chloride content leads to an increase
in the corrosion rate, and carbon steel is more susceptible to damage from chloride than
ductile iron is. However, the differences in the mechanisms of the carbon steel and ductile
iron castings in a multi-factor coupled environment remain unclear.

This study investigated the influence of surface cracks on the corrosion resistance
of ductile iron castings. In this work, the main causative factors for the acceleration of
the corrosion of ductile iron materials were investigated, and a variety of water quality
environments that may exist in water pipelines were simulated. We offer a quantitative
ranking of the degree of influence of each environmental factor on the corrosion kinetics of
ductile iron, and screen out the environmental factors that have the greatest influence on the
acceleration of the corrosion of ductile iron at each corrosive stage. The main environmental
factors that influence the corrosion resistance of ductile iron castings were identified.

2. Materials and Methods
2.1. Materials

The chemical composition of the ductile iron castings used in this work is 3.75% C,
1.8% Si, 0.45% Mn, 0.07% P, 0.012% S, 0.06% Mg, and Bal. Fe. Defects including shrinkage
and holes can be easily formed on the material’s surface in the manufacturing process.
Two different specimens were produced for this research. One type of specimen was
produced by being slightly mechanically ground to 2000#, with surface defects maintained
on the specimen surface. Another type of specimen was mechanically ground to 2000#
until the defect layer disappeared. All of the specimens were polished to a mirror finish
with diamond abrasives with a particle size of 1.0 µm.
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2.2. Environmentally Simulated Solution

Before the immersion experiment, nitrogen was introduced into the environment; this
required deoxygenation to simulate an anoxic environment, in which the simulated liquid
was deoxygenated at a constant speed of every 250 mL for 3 h. The concentration was then
measured and controlled at 0.3 mg∗L−1, and then start the immersion experiment. A total
of 8 different environments were configured for the experiments, as shown in Table 1. The
water hardness was adjusted with CaCO3, and the Cl− concentration was adjusted with
NaCl. The same batch was immersed in a large 8-hole water bath during the immersion
process. A small water bath was used for the electrochemical measurements to ensure a
constant temperature during the test.

Table 1. Characteristic parameters of the simulated solution.

No. 1 2 3 4 5 6 7 8

Hardness/ppm 20 20 20 20 80 80 80 80
pH 7 7 10 10 7 7 10 10

Temperature/◦C 60 90 90 60 90 60 60 90
Cl−/ppm 20 120 20 120 20 120 20 120

Oxygen concentration/mg∗L−1 0.3 0.3 6.5 6.5 6.5 0.3 6.5 0.3

2.3. Autoclave Immersion Experiment

Solution environment no. 8 was selected for the experiment. Ductile iron samples
of 50 mm × 25 mm × 4 mm, both with and without surface mechanical treatment, were
polished with silicon carbide paper (2000#) and then cleaned with ethanol and dried
using cold air. After determining the original weight of the specimen, the specimen
was suspended from the inner wall of the beaker using a nylon fishing line. During the
immersion process, the autoclave was pressurized to 1 MPa and the water temperature
was controlled at 90 ◦C; the test cycles were 1220 h and 2440 h. Four parallel specimens
were prepared for each material, and three of them were used to determine the loss in
thickness. The last sample was used for scanning electron microscopy (SEM) and laser
scanning confocal microscopy (CLSM) characterization. The rust on the specimen was
ultrasonically cleaned in a descaling solution that consisted of 98%HCl (500 mL), H2O
(500 mL), and hexamethylenetetramine.

2.4. Electrochemical Test

Electrochemical measurements were performed using the PARSTAT4000A electro-
chemical workstation and electrochemical system using the classic three-electrode system
with a platinum sheet as the counter electrode, a saturated calomel electrode (SSCE) as the
reference electrode, and ductile iron samples as the working electrodes. Electrochemical
samples were sealed with high-temperature-resistant epoxy resin. The exposure area was
1 cm2. The open circuit potential (OCP) was measured for at least 30 min until a steady
state was reached; then, electrochemical experiments were conducted. Three sets of parallel
experiments were set up for each environment to minimize experimental errors [17].

Potentiodynamic polarization curves were obtained by performing kinetic polariza-
tion curve measurements with a scan rate of 0.333 mV/s and a scan potential range of
−0.5 V/OCP to 0.8 V/OCP.

The test conditions for electrochemical impedance spectroscopy (EIS) in each solution
were the same as the working electrode used for the kinetic potential polarization test. The
frequency range for EIS was from 100 kHz to 10 mHz with an amplitude of 5 mV (rms) at
the open circuit potential.

2.5. Simulation Model Calculations

The model uses the same solution environment as the autoclave immersion experiment.
Finite element simulation was performed using Comsol software [18–21]. Irrespective
of insoluble substances, the modeled electrolyte species are H+, OH−, Cl−, Na+, and
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Fe2+. Fixed concentrations and electrolyte phase potential were set at the top horizontal
electrolyte boundary, facing the air. The iron dissolves at the electrode surface:

Fe2+ + 2e− ⇔ Fe (s) (1)

Additionally, the kinetics depend on pH (i0 proportional to H+):

iloc = i0(exp(
∂aFη

RT
)− exp(−∂cFη

RT
)) (2)

iloc = i0(cR exp(
αaFηre f

RT
)− c0 exp(−

−αcFηre f

RT
)) (3)

Equation (2) is a Butler–Volmer expression [22], where αc denotes the cathodic charge
transfer coefficient, αa is the anodic charge transfer coefficient, and i0 is the exchange current
density. The kinetic equation is then coupled with the solution environment. Equation
(3) is a Butler–Volmer expression with concentration dependence. This type of expression
allows for more freedom in defining the concentration-dependent Butler–Volmer type
of expressions, where the anodic and cathodic terms of the current density expression
typically depend on the local concentrations of the electroactive species at the electrode’s
surface. cR and c0 are dimensionless expressions, describing the dependence on the reduced
and oxidized species in the reaction.

η is the overpotential given by

η = Em − Eeq (4)

Em is the electrode potential and Eeq is the equilibrium potential. The metal potential
is set to a fixed value, resulting in a mixed potential not affected by the local pit corro-
sion. Ions such as Cl− may also be transported in order to maintain electroneutrality. The
transport of ions, in combination with the pit shape, determine the local pH. If the iron
oxidation reaction is catalyzed by H+, a lower pH within the pit results in faster metal
dissolution compared to the metal surface outside the pit. The tertiary current distribution
and Nernst–Planck interface defines the mass and ion transport. The water-based charge
balance model with electroneutrality defines the H+ concentration and the OH− concentra-
tion as built-in variables, and automatically defines the water autoprotolysis equilibrium.
The separator node is used to define the pit as a porous structure. Deformed geometry
handles the deformation of the pit. The multiphysics nodes couple the electrochemistry to
the deformation.

3. Results and Discussion
3.1. Exploration of the Corrosion Mechanisms of Ductile Iron Shrinkage Holes
3.1.1. Microstructure Characteristics

As shown in Figure 1a–f, a large number of shrinkage holes, which are visible to
the naked eye, can be seen on the surface of the ductile iron pipe that did not receive
surface mechanical treatment. Additionally, these holes are deep and cover a wide area.
These holes are highly likely to become areas of aggressive ion accumulation in a harsh
environment. This would accelerate the formation of a local acidified environment, in
which the dissolution of the iron matrix would be promoted. After the surface mechanical
treatment, these obvious defects on the surface of the ductile iron pipe are removed; the
microscopic morphology is shown in Figure 1g–k. It can be seen that the shrinkage holes
on the surface of this specimen are significantly reduced. The surface uniformity of this
specimen is better, and the graphite balls are uniformly distributed on the surface.

3.1.2. Corrosion Morphology

To investigate the corrosion process of the ductile iron pipe in the real service environ-
ment of thermal pipeline, an immersion corrosion test was conducted in the autoclave. The
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corrosion morphology of the two different specimens after different periods of immersion
is shown in Figure 2. As the immersion time increases, there was a marked increase in
the corrosion product (Figure 2a,b,e,f). As shown in Figure 2c,d, the surface of the ductile
iron without surface mechanical treatment featured large pits after the rust removal, in-
dicating that serious localized corrosion was initiated on the specimen’s surface. As the
acceleration time increases, the number of large-sized holes increases, and local corrosion
intensifies [23,24]. The whole interface between the graphite spheres and the matrix was
dissolved on the ductile iron specimen that had not received surface mechanical treat-
ment. This is primarily the result of the holes and shrinkages formed around the graphite
spheres. Aggressive ions such as Cl− would be preferentially enriched at these defect sites,
resulting in the local acidification of the solution environment. The interface with high
electrochemical activity would be dissolved easily. The mechanically treated ductile iron
sample shows slight corrosion morphology (Figure 2g). Serval shallow pits were randomly
distributed on the specimen’s surface after 120 h of immersion. The corrosion is relatively
mild, mainly comprising the pits left by the dislodging of graphite balls after the spread of
corrosion. As the immersion time increased to 240 h, larger sized pits could be seen on the
surface of the mechanically treated ductile iron specimen (Figure 2h). This is mainly due
to the integration of the pits formed after the dislodging of the graphite balls. However,
the number of pits was significantly smaller than that of the ductile iron samples that had
not received surface mechanical treatment (Figure 2d). As the upper graphite sphere is
detached, the graphite sphere buried at the bottom is also exposed.
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Figure 1. The microscopic morphology of the two ductile iron samples before the experiment.
(a–f) ductile iron pipe with no surface mechanical treatment, (g–k) ductile iron pipe with surface
mechanical treatment.
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Figure 2. Surface corrosion morphology of different specimens after the immersion test. (a,b,e,f) Be-
fore and (c,d,g,h) after the corrosion rust removal. (a,c,e,g) Immersion at 120 h, and (b,d,f,h) immer-
sion at 240 h. (a–d) Ductile iron with no surface mechanical treatment, (e–h) Ductile iron with surface
mechanical treatment.

The SEM observation results show that there are many shrinkage holes and tail-like
crevices on the surface of the ductile iron. After mechanical polishing to remove these
obvious defects and applying a high-pressure immersion corrosion test, the degree of
corrosion on the specimen’s surface is significantly reduced, as is the number of local
corrosion holes. It can initially be concluded that the corrosion resistance of ductile iron is
significantly improved by the use of suitable surface mechanical treatments.

In order to analyze the development of the different pits in a quantitative manner,
the 3D corrosion pit morphology of the specimen after rust removal was observed using
confocal laser scanning microscopy (CLSM). The results are shown in Figure 3. Due to
the presence of more tail-like defects with the shrinkage and loosening of the tissue, the
corrosion on the surface of the non-mechanically treated ductile iron samples increased after
the immersion test (Figure 3a,c). There was also an increase in the depth of the localized
corrosion pits and an increase in the corrosion area. In contrast, the surface-treated ductile
iron samples corroded slightly (Figure 3b,d); this is consistent with the results observed
using SEM.

The pits on the surfaces of both samples were analyzed quantitatively and the results
are shown in Figures 4 and 5. After 120 h of immersion corrosion, the number of pits
(124/15 µm) and the maximum depth of the pits in the surface of the mechanically treated
ductile iron samples were significantly lower than in the untreated specimens (220/25 µm).
Equations (5) and (6) are used to describe the effect of the surface treatment on improving
the pitting resistance of the ductile iron material:

pren(number) =
n− nst

n
× 100% (5)

pren(depth) =
d− dst

d
× 100% (6)

where n is the number of etch pits on the ductile iron without surface treatment, and nst is
the number of etch pits for the ductile iron with surface treatment. Additionally, d is the
maximum pit depth for the ductile iron without surface treatment, and dst is the maximum
pit depth for the ductile iron with surface treatment. The results show that the number
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of pits decreased by 43.6%, and the maximum pit depth reduction rate reached 40%. The
K-value distribution results show that, after the 120 h immersion corrosion test, the volume
of etch pits on the surface of the ductile iron samples without surface mechanical treatment
reached 2500–10,000 µm3. The K value distribution is not completely concentrated in the
small corrosion pit area; it is evenly distributed between the medium and large corrosion
pits. This indicates that the large pits observed by SEM are not coincidental. As shown in
Figure 4b, the volume of corrosion pits on the surface of the sample is distributed below
2500 µm3 after the surface mechanical treatment.
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Figure 3. 3D corrosion morphology of different specimens after the immersion test. (a,c) represent
the ductile iron that had not received surface mechanical treatment; (b,d) represent the ductile iron
that had received surface mechanical treatment.
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Figure 4. The number of etching pits and the K-value statistics of the CLSM results after the 120 h
accelerated test. (a,b) Ductile iron with no surface mechanical treatment, (c,d) ductile iron with
surface mechanical treatment.



Metals 2022, 12, 2103 8 of 18

Metals 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 4. The number of etching pits and the K-value statistics of the CLSM results after the 120 h 

accelerated test. (a) and (b) Ductile iron with no surface mechanical treatment, (c) and (d) ductile 

iron with surface mechanical treatment. 

After continuing the immersion in the autoclave up to 240 h, the corrosion of both 

ductile iron samples increased to different degrees. Specifically, the number, volume, and 

depth of pits increased, especially for specimens that had not received surface mechanical 

treatment. Although the surface corrosion pits on the surface of the mechanically treated 

ductile iron samples remained small, medium and large volume corrosion pits with vol-

umes greater than 2500 μm3 began to appear, and reached a maximum volume of 8000 

μm3. These occasional large pits are formed by the fusion of several small pits during the 

corrosion evolution process. Compared to the state of the surface at 120 h, the number of 

corrosion pits with a volume distribution of 2500 to 10,000 μm3 was, predictably, increased 

for the samples without surface mechanical treatment. Calculations show that, in the sur-

face-treated ductile iron material, the number of corrosion pits can be reduced by 51% and 

the maximum pit depth is slowed by 50% after 240 h of immersion. 

 

 

0 2,500 5,000 7,500 10,000

0.00

0.04

0.08

K

Volume/μm3

a b 

c d 

0 2,500 5,000 7,500 10,000
0.00

0.04

0.08

K

Volume/μm3

 

0 2,500 5,000 7,500 10,000
0.00

0.04

0.08

K

Volume/μm3

a b 

c d 

0 2,500 5,000 7,500 10,000
0.00

0.04

0.08

Volume/μm3

K

Figure 5. Distribution of the number of etch holes as a function of their size and the statistics of
the K value of the CLSM results after the 240 h accelerated test. (a,b) Ductile iron with no surface
mechanical treatment, (c,d) ductile iron with surface mechanical treatment.

After continuing the immersion in the autoclave up to 240 h, the corrosion of both
ductile iron samples increased to different degrees. Specifically, the number, volume, and
depth of pits increased, especially for specimens that had not received surface mechan-
ical treatment. Although the surface corrosion pits on the surface of the mechanically
treated ductile iron samples remained small, medium and large volume corrosion pits
with volumes greater than 2500 µm3 began to appear, and reached a maximum volume
of 8000 µm3. These occasional large pits are formed by the fusion of several small pits
during the corrosion evolution process. Compared to the state of the surface at 120 h, the
number of corrosion pits with a volume distribution of 2500 to 10,000 µm3 was, predictably,
increased for the samples without surface mechanical treatment. Calculations show that, in
the surface-treated ductile iron material, the number of corrosion pits can be reduced by
51% and the maximum pit depth is slowed by 50% after 240 h of immersion.

3.1.3. Mechanisms of the Localized Corrosion Initiation

The CLSM results showed that the corrosion of the ductile iron was effectively slowed
down after the mechanical treatment was used to eliminate the obvious defects on the
surface of the ductile iron. Combined with the SEM observations, these finding suggest
that the main reason that the increased corrosion of the ductile iron occurs in the simulated
water quality is due to localized corrosion [23,25,26]. After the ductile iron that had not had
its surface defects removed was soaked in the autoclave, there were many large corrosion
pits on the surface of the sample. These local corrosion pits are large, deep, and numerous.
Additionally, when these surface defects are removed, the surface of the ductile iron is
basically flat, except for a very small number of small holes. However, as the corrosion
proceeds, the surface will continue to exhibit shrinkage holes and defects, and the rate of
corrosion will gradually increase.

Observation results by SEM, the localized corrosion process can be described as follows:
(1) With the aggressive ions accumulated in the defects at the matrix and the graphite nodule,
the initiation of localized corrosion is triggered (Figure 6a). (2) With the evolution of the
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localized corrosion, the galvanic effect [27–29] between the matrix and graphite promotes
the development of localized corrosion (Figure 6b). (3) With the growth of smaller pits, larger
pits would be formed, resulting from the consolidation of these smaller pits (Figure 6c).
The depth of the pits increases as the small graphite spheres continue to fall off during the
corrosion process.
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Figure 6. The localized corrosion initiation process in ductile iron (a–c).

3.1.4. Simulation of the Corrosion Process

In order to further confirm the conclusion offered in 3.1.3, and to describe clearly
the dynamic process of the increased corrosion of ductile iron by shrinkage holes, a finite
element simulation [30–33] was used to assess the ductile iron’s surface at the shrinkage
gap. The model defines the kinetic characteristics of the actual electrolyte environment and
the cast iron substrate. The planar geometry and mesh division of the model are shown in
Figure 7. The whole model consists of spherical graphite, an electrolyte, and a cast iron
electrode. Marking points 1,2,3 facilitates the observation of shape changes due to corrosion
in the later simulation studies.
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Figure 7. Schematic diagram of the geometry and meshing of the simulation model.

In the early stages of corrosion, when uniform electrochemical corrosion occurs over
the entire area, the crescent-shaped gaps around the graphite were filled with the electrolyte
solution (Figure 7b). This is because the shape of the gap was not extended when corrosion
occurred for 1d (Figure 8a,e). When corrosion occurs for 3 d (Figure 8b,f), the shape of
the gap changes due to corrosion. Additionally, because of charge conservation, as Fe2+

dissolves and oxygen are consumed, higher amounts of H+ and Cl− in the solution diffuse
into the gap. The pH and Cl− concentrations also changed. The highest Cl− concentration
was found at the bottom of the gap (point 3), reaching 190 ppm, and the pH decreased to 9.
This also resulted in a concentration difference within the gap from the overall solution
environment [25,34].The gap kept expanding. After 7 d of corrosion (Figure 8c,g), the
gap gradually evolved into a teardrop-shaped etch pit [35]. The Cl− concentration in the
gap reached a maximum of 260 ppm and the pH dropped to a minimum of 8.9. At this
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point, the gap expanded at an increasingly rapid rate. This continuous anodic dissolution
also continuously produced Fe2+ and consumed oxygen, prompting more migration of
Cl ions and transport of H into the crescentic gap. further acidifying the solution in the
interstitial space. Because of this vicious cycle, the initial gap gradually expanded into a
teardrop-shaped corrosion pit at 10 d (Figure 8d,h). This is consistent with the statistics
provided by the CLSM. The pH of the corrosion pits (point 3) was only 8.32 at this time,
and the Cl− concentration increased to 700 ppm.

Metals 2022, 12, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 7. Schematic diagram of the geometry and meshing of the simulation model. 

In the early stages of corrosion, when uniform electrochemical corrosion occurs over 

the entire area, the crescent-shaped gaps around the graphite were filled with the electro-

lyte solution (Figure 7b). This is because the shape of the gap was not extended when 

corrosion occurred for 1d (Figure 8a, e). When corrosion occurs for 3 d (Figure 8b, f), the 

shape of the gap changes due to corrosion. Additionally, because of charge conservation, 

as Fe2+ dissolves and oxygen are consumed, higher amounts of H+ and Cl- in the solution 

diffuse into the gap. The pH and Cl- concentrations also changed. The highest Cl- concen-

tration was found at the bottom of the gap (point 3), reaching 190 ppm, and the pH de-

creased to 9. This also resulted in a concentration difference within the gap from the over-

all solution environment [25,34].The gap kept expanding. After 7 d of corrosion (Figure 

8c, g), the gap gradually evolved into a teardrop-shaped etch pit [35]. The Cl- concentra-

tion in the gap reached a maximum of 260 ppm and the pH dropped to a minimum of 8.9. 

At this point, the gap expanded at an increasingly rapid rate. This continuous anodic dis-

solution also continuously produced Fe2+ and consumed oxygen, prompting more migra-

tion of Cl ions and transport of H into the crescentic gap. further acidifying the solution 

in the interstitial space. Because of this vicious cycle, the initial gap gradually expanded 

into a teardrop-shaped corrosion pit at 10 d (Figure 8d, h). This is consistent with the sta-

tistics provided by the CLSM. The pH of the corrosion pits (point 3) was only 8.32 at this 

time, and the Cl− concentration increased to 700 ppm. 

 

Figure 8. The pH and Cl− diffusion at different times. (a~d) culated results of pH at 24 h, 72 h, 168 

h, and 240 h, (e~h) alculated results of Cl− diffusion at 24 h, 72 h, 168 h, and 240 h. On this scale, 1 

represents 100 ppm concentration. 

According to the guidelines of the physical model adopted in this work, as corrosion 

occurs, the variation in the anode’s surface potential in the crescent-shaped gap is shown 

 

solutio  

  st iro  

 
r 

 
h

it
e 

  

  

  

 

x100ppm 

x100ppm 

x100ppm 

 

x100ppm 

 

a b e f 

c d g h 

Figure 8. The pH and Cl− diffusion at different times. (a–d) culated results of pH at 24 h, 72 h,
168 h, and 240 h, (e–h) alculated results of Cl− diffusion at 24 h, 72 h, 168 h, and 240 h. On this scale,
1 represents 100 ppm concentration.

According to the guidelines of the physical model adopted in this work, as corrosion
occurs, the variation in the anode’s surface potential in the crescent-shaped gap is shown in
Figure 9a~d. Inside the gap, the local potential difference in the interface iron/near solution
gradually becomes more negative from the top to the bottom of the gap. The electrode
potential at the top of the gap (point 1) was −0.62 V at 10 h and 90 h. The anode’s metal
corrosion potential at the bottom of the slit (point 3) decreased to −0.65 V. A more negative
electrode surface potential also leads to a higher corrosion rate and more severe corrosion at
the bottom of the crevice (Figure 9c). This is because, with the negative shift of the electrode
potential, a higher overpotential is generated in the interface region between the electrode
and the electrolyte (Equation 4), which results in an enhanced corrosion kinetic process.
At 240 h, the surface corrosion potential of the electrodes inside the gap continues to shift
negatively. The potential at point 1 decreases to −0.65 V and the surface potential at point
3 decreases to −0.73 V. The corrosion process still gradually increases.

3.2. The Effect of the Water Environment on the Corrosion Kinetics of Ductile Iron
3.2.1. Corrosion Rate Analysis

Figure 10 shows the corrosion rate of the two ductile iron materials after the autoclave
immersion experiment. After 120 h of immersion, the corrosion rate of the ductile iron
samples without surface treatment was much higher than that of the surface-treated sam-
ples. With the immersion time increased to 240 h, the corrosion rate of the surface-treated
samples was still lower than the specimen without surface treatment. This corrosion kinetic
law indicates that the corrosion rate of ductile iron can be substantially slowed down
after surface treatment to eliminate obvious defects on the surface. It also shows that
the corrosion damage of ductile iron in a harsh water quality environment is caused by
very severe local corrosion [36,37] due to the formation of dense differential cells [38] by
shrinkage holes.
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Figure 9. Calculated relative changes of local metal potential at different times. (a–c) potential
distribution clouds at 10 h, 90 h, and 240 h, respectively, (d) relative changes of local potential of the
metal surface along the y-direction, and (e) the corrosion rate distribution along the y-direction.
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Figure 10. Corrosion rates of different ductile iron samples after different periods of immersion.

3.2.2. Electrochemical Test

The polarization curve can accurately reflect the corrosion kinetics of the electrode. It is
able to express both the cathodic oxygen consumption and the anodic electrode dissolution.
It is widely used in metal corrosion studies [23,39–42]. The results are shown in Figure 11.
The figure shows that the two ductile iron samples exhibit the same electrochemical reaction
mechanism in different solution environments. The cathodic process primarily concerns the
consumption of oxygen, and the anodic process concerns the dissolution of the metal. Under
low oxygen dissolution conditions, the cathodic process is limited. It is worth noting that the
surface-treated ductile iron samples in solution no. 4 are always passivated after a certain
anodic potential polarization. The two materials also exhibit significant differences in their
corrosion kinetics at different immersion cycles when the water environment changes.
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Figure 11. Dynamic potential polarization curves of two types of ductile iron during different periods
of immersion in eight simulated water conditions, (a–c) are ductile iron without mechanical treatment;
(d–f) are ductile iron with mechanical treatment.

The polarization curve data in the range of±(100 to 125) mV, relative to the open circuit
potential, were intercepted to fit the icorr, and the results of the fit are shown in Table 2.
At 0 d, the icorr of the unsurfaced samples was higher than that of the surface-treated
samples in all simulated environments (Figure 12a). However, the icorr of the surface-
treated samples started to improve as the immersion time increased. By 10 d of immersion,
the icorr of the surface-treated samples in the No. 3, 5, 7, and 8 solutions had surpassed that
of the unsurfaced samples (Figure 12c). This verifies the hypothesis previously made in the
autoclave immersion experiment. The mechanical treatment eliminates the obvious defects
on the ductile iron surface; however, as the corrosion proceeds, uniform corrosion will
cause defects to gradually be exposed on the sample surface, accelerating the occurrence
of local corrosion. Overall, compared to the icorr average, the surface-treated ductile iron
samples showed significantly higher corrosion resistance in harsh water conditions than
the non-surface-treated samples.

To confirm the findings of the kinetic potential test, an electrochemical workstation was
used to perform EIS tests on both materials under the same conditions in solutions no. 2, 4, 5,
and 8. The nyquist plot (Figure 13a) shows that the EIS in solutions no. 8 and 7 appears to be
characterized by high frequency capacitive arcs and low frequency Warburg impedance.
It shows that there is a diffusion impedance for the electrochemical reaction under this
condition. The equivalent circuit in Figure 13h was used to fit the EIS data. Additionally,
only one capacitive arc exists for the EIS in solutions no. 3 and 5. The equivalent circuit
in Figure 13g was used to fit the EIS data [43]. R1 is the solution resistance, and R2 is the
equivalent resistance of the charge transfer impedance in the interface region. CPE1 is
the equivalent capacitance of the bilayer in the interface region, and W1 is the Warburg
impedance [44,45].
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Table 2. Fitting results of icorr by potentiodynamic linear polarization scanning.

Times(d) icorr without Mechanical Treatment(A/cm2)

1 2 3 4 5 6 7 8
0 8.3 16.8 8.7 15.6 15.4 14.8 17.4 4.6
3 6.8 5.9 5.1 6.7 5.0 9.6 11.1 6.3

10 6.9 7.6 9.7 9.2 5.2 9.1 4.2 3.1
Average 7.3 10.1 7.8 10.5 8.5 11.1 10.9 4.6

icorr with mechanical treatment(A/cm2)

1 2 3 4 5 6 7 8
0 6.2 2.9 7.2 0.2 13.3 11.8 7.7 2.6
3 3.9 5.8 6.2 0.6 4.2 10.8 4.8 4.2

10 5.9 4.7 10.2 2.1 6.7 3.6 19.2 4.5
Average 5.3 4.5 7.9 1.0 8.1 8.7 10.6 3.8
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Figure 12. Fitting results of the icorr values of different ductile iron samples (a–c).
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Figure 13. EIS test results. (a–c) are nyquist plots, (d–f) are bode plots and phase angles, (g,h) are the
equivalent circuits, (i,j) are the comparison fitting results of RP at 0 d and 10 d.
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The fitted results are shown in Table 3. It can be seen, the charge transfer resistance
of the surface-treated ductile iron samples is generally higher at the beginning of the
immersion process (Figure 13i). As the immersion time increases, the Rp of the surface-
treated ductile iron material starts to decrease at 10 d of corrosion. A weaker corrosion
inhibition effect was exhibited. This also explains the sudden increase in the icorr of the
surface-treated ductile iron at 10 d (Figure 12c).

Table 3. Fitting results of Rs, Rp, and WR by EIS.

Times(d) Rs without Mechanical Treatment (Ω/cm2) Rp/WR without Mechanical Treatment (Ω/cm2)

3 8 5 7 3 8 5 7

0 112 58 327 31 2848 526/
3 967 100

/2

3 84 69 226 46. 989 139.4/0.5 821 163
/4

10 49 108 187 45 3149 193/ 1020 445
/0.2

Times(d) Rs with mechanical treatment (Ω/cm2) Rp/WR with mechanical treatment (Ω/cm2)

3 8 5 7 3 8 5 7

0 102 83 297 52 6222 4785 1493 171/
36

3 118 91 154 35 1409 366.1
/62 547 182

/14

10 58 109 133 47 58.26 150/1.1 650 220
/4.7

3.2.3. The Influence of Environmental Factors

In order to further quantify the influence of different water quality environmental
factors on the corrosion process of ductile iron with different treatments, the xgboost algo-
rithm was used to compare the influence of environmental factors (pH, Cl− concentration,
hardness, oxygen content, and temperature) on the corrosion ductile iron with different
surface states. The calculation results are shown in Figure 14.

As can be seen from Figure 14a, for the ductile iron material without surface mechanical
treatment, the presence of dissolved oxygen in the solution plays a major controlling
role among all environmental factors, contributing to 68.5% of the increase in icorr. The
remaining environmental factors were evenly distributed below 15% in terms of the degree
of influence on icorr [46,47]. It is noteworthy that the contribution of Cl− concentration to
icorr was only 2%. This is because the restricted oxygen levels caused a significant slowing of
local corrosion. At the same time, temperature also reduces the corrosion acceleration effect
of Cl− [39]. The contribution of each environmental factor to the elevated icorr under fully
oxygenated conditions is shown in Figure 14b. At this point, the Cl− [25] concentration
played a control role and contributed up to 85% of the increase of icorr. This indicates that
the acceleration effect brought about by Cl− can only occur under conditions of sufficient
oxygen. The study in 3.1 found that the corrosion of ductile iron intensified because of the
severe localized corrosion caused by the concentration cell effect, and the results of the
kinetic law analysis here also confirmed this. The continued dissolution of the anode under
conditions of sufficient oxygen causes Cl− to continue to diffuse into the slit between the
graphite and the cast iron, exacerbating the corrosion of the ductile iron. this is why the
icorr contribution is so high.

Figure 14c shows the contribution of environmental factors to the icorr of ductile iron
after eliminating obvious defects on the surface. It can be deduced that the influence effect
of each environmental factor becomes uniform. This means that, under this condition, the
effect of the deterioration of the water quality environment on the corrosion acceleration
of ductile iron is obviously weakened; moreover, the oxygen concentration is not a highly
influential environmental factor, but the contribution rate is still high. This may be the
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reason for the weakening of the local corrosion effect. Under fully oxygenated conditions,
the contribution of Cl− concentration to icorr suddenly decreases. This indicates that, as
the degree of local corrosion decreases, Cl− concentration is no longer the most important
environmental factor affecting icorr. However, pH and immersion time contributed to
the increase in icorr, which may be due to the fact, that the originally flat surface of the
mechanically treated ductile iron samples gradually exhibited more defects as the corrosion
progressed, leading to increased localized corrosion. However, it still corrodes less than
ductile iron without any surface treatment. For temperature and water hardness, the icorr
contribution did not change significantly before and after mechanical treatment under fully
oxygenated conditions. This indicates that an increase in temperature from 60 ◦C to 90 ◦C
does not bring about a significant increase in localized corrosion.

Figure 14. Analysis of the contribution of environmental factors to icorr. (a,c) show the contribution of
non-surface-treated ductile iron in all environments and in fully oxygenated conditions, respectively;
(b,d) show the contribution of the surface-treated ductile iron in all environments and in fully
oxygenated conditions, respectively.

4. Conclusions

(1) Defects such as pores and shrinkage generated in the process of producing ductile
iron easily become a gathering place for aggressive ions, which induce the dissolution of
graphite spheres and the matrix interface, and then induce serious local corrosion. After
surface mechanical treatment to eliminate holes and shrinkage, SEM observations and
CLSM statistics of the pits show that localized corrosion pits on the material surface are sig-
nificantly suppressed. The average icorr in the different solutions is lower and the corrosion
kinetic processes are inhibited. All of the results prove that surface treatment techniques
can improve the corrosion resistance of ductile iron, and inhibit localized corrosion.

(2) Simulations revealed that the solution around graphite spheres for defects such
as pores and shrinkage loosening is highly susceptible to acidification, whereby an acidifi-
cation autocatalytic cell effect is formed, accelerating the dissolution of the substrate and
reducing the corrosion resistance of the material.

(3) Electrochemical test results showed that changes in water quality have a greater
impact on the corrosion kinetic process of ductile iron. For unsurfaced ductile iron, the
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order of the relative weight of the environmental factors that affect corrosion resistance
in all environments is oxygen solubility > temperature > water hardness > immersion
time > pH > Cl− concentration. Under oxyfuel conditions, the order of the relative weight
of the environmental factors that affect corrosion resistance is Cl− concentration > water
hardness > immersion time > pH > temperature.

(4) For surface-treated ductile iron, with the removal of obvious defects from the
ductile iron’s surface, oxygen concentration is no longer the main factor in determining
the icorr value. Under oxyfuel conditions, the immersion time becomes the largest factor
affecting the icorr contribution, not Cl− or pH. This indicates that uniform corrosion emerges
as the dominant type of erosion as immersion time increases.
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