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Abstract: Weyl semimetal MoTe2 single crystal was grown by the chemical vapor transport method.
Electrical resistivity, magnetoresistivity, and Hall effect in MoTe2 were studied in detail. It was
shown that both the electrical resistivity in the absence of a magnetic field and the conductivity in
the field depend on temperature according to a quadratic law in a wide temperature range. It has
been suggested that the quadratic temperature dependence of the conductivity in a magnetic field at
low temperatures might be associated with the “electron-phonon-surface” interference scattering
mechanism. The analysis of data on the Hall effect in MoTe2 was carried out using single-band and
two-band models. Apparently, the two-band model is preferable in such systems containing different
groups of current carriers.
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1. Introduction

In recent years, topological materials have attracted a lot of attention because they have
a non-trivial topology of the electronic band structure and unusual electronic properties.
In addition to interest from the point of view of fundamental science, such materials are
actively studied due to the possibility of their practical application in micro-, nanoelectronic
and spintronic devices. Topological materials include topological semimetals [1,2] as well
as previously discovered topological insulators [3,4]. Topological insulators have an energy
gap in the bulk and topologically protected gapless surface states. At the same time,
topological semimetals have unusual states both on the surface and in bulk. Such materials
include Weyl semimetals [5]. In the bulk of a Weyl semimetal, two nondegenerate bands
with linear dispersion cross near the Fermi level, forming Weyl nodes, which always exist
in pairs with opposite chirality. Quasiparticles near such nodes behave such as massless
Weyl fermions in high-energy physics. Similar to topological insulators, Weyl semimetals
have topologically protected surface states called Fermi arcs. They are open curves in
momentum space that connect the projections of bulk Weyl nodes with opposite chirality
on the surface.

Weyl fermions can only be found in crystals in which either inversion symmetry or
time-reversal symmetry is broken. The existence of such quasiparticles was first experimen-
tally confirmed in TaAs in 2015 [6]. Soon, the authors of [7] predicted another type of band
crossing with a tilted Weyl cone. As a result, the Lorentz invariance is violated, and the cor-
responding quasiparticles are called type-II Weyl fermions. Instead of the point-like Fermi
surface in a type-I Weyl semimetal, the type-II Weyl node is the touching point between
electron and hole pockets. The authors of [7] also theoretically predicted that the WTe2
compound is a type-II Weyl semimetal. This was experimentally confirmed in [8,9]. By
analogy with WTe2, it was theoretically predicted [10] and experimentally confirmed [11]
that MoTe2 is also a type-II Weyl semimetal.

WTe2 and MoTe2 belong to a large group of materials, layered transition metal dichalco-
genides, with the general chemical formula MX2, where M is a transition metal atom, and X
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is a chalcogen atom [12]. However, unlike WTe2, for which the orthorhombic structure Td
is stable with temperature, MoTe2 can crystallize into one of three phases: hexagonal (2H),
monoclinic (1T’), or orthorhombic (Td) [13]. Depending on the synthesis conditions, MoTe2
can be obtained in the hexagonal (2H) or monoclinic (1T’) phase, which is also called the α-
and β-phase, respectively [14]. The 2H-phase (space group P63/mmc) is semiconducting.
Whereas the 1T’-phase is semimetallic and belongs to the centrosymmetric space group
P21/m. A temperature-induced phase transition from the high-temperature 1T’-phase
(β-MoTe2) to the low-temperature Td-phase of MoTe2 near 250 K was reported in [15]. The
Td-phase has a similar crystal structure in the layer plane as the 1T’-phase but has a vertical
(90◦) packing and belongs to the noncentrosymmetric space group Pmn21. It is in Td-phase
that MoTe2 is a type-II Weyl semimetal [10,11].

Due to the unusual topology of the electronic band structure, Weyl semimetals have
unique electronic transport properties. Such features of electronic transport include ex-
tremely large unsaturated magnetoresistance [16,17], negative longitudinal magnetore-
sistance [18], low effective mass and ultrahigh mobility of current carriers [19,20], the
intrinsic anomalous Hall effect, etc. In addition, quadratic temperature dependence of
the electrical resistivity was observed in MoTe2 [21–23] and WTe2 [24,25] single crystals
in a very wide temperature range. In particular, it was found in [21] that the electrical
resistivity of semimetallic MoTe2 depends on temperature according to a quadratic law in
the temperature range from 1.7 to 50 K. It was suggested (see [21] and references therein)
that, in addition to electron-electron scattering, other possible scattering mechanisms can
lead to the T2-dependence of the electrical resistivity of MoTe2; in particular, the contri-
bution proportional to T2 can be associated with electron-phonon scattering, as this was
shown for a semiconductor TiS2 compound [26]. However, further research is required
to understand the role of all scattering mechanisms in MoTe2. As we previously showed
for the WTe2 single crystal in [23], not only the electrical resistivity in the absence of a
magnetic field but also the conductivity in the field depends on temperature according to
a quadratic law in a wide temperature range from 12 K to ~70 K and ~55 K, respectively.
Therefore, it is of interest to determine how the resistivity (conductivity) of MoTe2 in a
magnetic field depends on temperature. In addition, when analyzing data on the Hall
effect in topological semimetals, a single-band [19] or two-band model [27,28] is usually
used. In [25], we showed that the estimates of the concentrations and mobilities of current
carriers in WTe2 obtained using these two models are in good agreement with each other
at 12 K. It is of interest to carry out such a comparison in a wider temperature range, in
particular, using MoTe2 as an example.

This paper is devoted to the study of the features of the electro- and magnetotransport
of the Weyl semimetal MoTe2 single crystal in order to establish the form of the temperature
dependence of the resistivity (conductivity) in a magnetic field, compare the results of
using single-band and two-band models to analyze its magnetotransport characteristics.

2. Materials and Methods

MoTe2 single crystal was grown by chemical vapor transport method [29] using
bromine as a transport agent. Powders of molybdenum and tellurium in a stoichiometric
ratio, as well as bromine, whose vapor density was 5 mg/cm3, were sealed into a quartz
ampoule evacuated to a residual pressure of ~10−4 atm. Then the ampoule was placed into
a horizontal tube furnace with a linear temperature gradient, where the temperatures T1
(“hot” zone) and T2 (“cold” zone) were 850 ◦C and 770 ◦C, respectively. The process of
growing a single crystal was carried out for 500 h, followed by slow cooling to room tem-
perature. It is known that MoTe2 undergoes a structural transition from the semiconductor
α-phase to the metallic β-phase at a temperature of 820 ◦C for tellurium-rich samples
and 880 ◦C for molybdenum-rich ones [14]. Therefore, the ampoule containing the grown
crystal and evacuated to 10−4 atm. was heated to 910 ◦C and held for 3 h. In order to obtain
the high-temperature phase, the quartz ampoule with crystal was rapidly cooled to room
temperature by water quenching.
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The grown crystal was investigated using X-ray diffractometer DRON-2.0 (Joint Stock
Company “Bourevestnik”, Saint Petersburg, Russia.) with CrKα radiation. Fragments of
the X-ray diffraction pattern taken from the surface of the sample immediately after growth,
as well as after quenching, are shown in Figure 1a. Since all peaks can be indexed as (00l),
the surface of the single crystal under study coincides with the (001) type plane. It can
be seen that the intensity ratio of the lines from the (00l) planes changed after quenching.
Note also that the lattice parameter c changed significantly from 13.93 ± 0.01 Å for the
as-grown crystal to 13.81 ± 0.01 Å for the quenched one. The value of the lattice parameter
c was estimated from the position of the (006) line. Figure 1b clearly shows the shift of the
(006) line towards larger angles for the quenched sample. The obtained values of c before
and after quenching are close to the values of lattice constant c for α-MoTe2 (hexagonal
lattice) and β-MoTe2 (monoclinic lattice), respectively [14,30,31]. These results indicate
a structural phase transition that occurred in MoTe2. The chemical composition of the
sample was studied by energy-dispersive X-ray microanalysis using an Quanta 200 Pegasus
scanning electron microscope (FEI Company, Eindhoven, the Netherlands) with an EDAX
attachment at the Collaborative Access Center “Testing Center of Nanotechnology and
Advanced Materials” of M.N. Mikheev Institute of Metal Physics of the Ural Branch of
the Russian Academy of Sciences (IMP UB RAS). The chemical composition of the single
crystal corresponds to stoichiometric MoTe2.
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Figure 1. Fragments of X-ray diffraction patterns taken from the surface of the MoTe2 single crystal:
(a) The as-grown single crystal corresponds to α-MoTe2; The single crystal quenched from 910 ◦C
corresponds to β-MoTe2; (b) Change of lattice parameter c of MoTe2 after quenching.

In this paper, we studied the quenched MoTe2 single crystal, which corresponded
to the β-phase at room temperature and had the shape of a thin plate with dimensions
~6 × 1 × 0.2 mm3. The resistivity and Hall effect were measured by the four-contact method
in the temperature range from 4.2 K to 290 K and in magnetic fields up to 9 T on a
PPMS-9 setup (Quantum Design, San Diego, CA, USA) at the Collaborative Access Center
“Testing Center of Nanotechnology and Advanced Materials” of IMP UB RAS. During
the measurements, the electric current flowed in the (001) type plane, and the magnetic
field was directed along the c axis, i.e., perpendicular to the plane of the plate. The
residual resistivity ratio (RRR) in our sample is ρ300 K/ρ4.2 K ≈ 15, which is comparable
to the RRR value in [21], but at the same time, much lower than the RRR in [27], which
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indicates a large number of defects in the crystal under study. For the convenience of
interpretation, some of the experimental results obtained are presented in the form of
conductivity σxx = [ρ(B) − ρ(0)]−1, where ρ(B) is the resistivity in magnetic field B.

3. Results and Discussion
3.1. Electrical Resistivity

The temperature dependence of the electrical resistivity ρ(T) of MoTe2, measured in
the temperature range from 4.2 K to 290 K, is shown in Figure 2. It can be seen that the
dependence ρ(T) has a “metallic” type, where ρ increases from 0.29 × 10−4 Ohm·cm to
4.2 × 10−4 Ohm·cm with increasing temperature. The ρ(T) curve shows a weak feature
at a temperature of ~260 K. A similar behavior of the electrical resistivity near 250 K was
observed in [21–23,27] and is associated with the structural phase transition from the
monoclinic 1T’-phase (β-MoTe2) to the orthorhombic Td-one, which was reported in [15].
The inset shows the dependence ρ = f (T2). It can be seen that in the temperature range from
4.2 K to 45 K, the dependence ρ(T) can be represented as ρ = ρ0 + AT2. The coefficient A is
2.8 × 10−8 Ohm·cm·K−2 in our case, which coincides in order of magnitude with the value
of 1.54 × 10−8 Ohm·cm·K−2 given in [21], where a quadratic temperature dependence
of the electrical resistivity of MoTe2 was also observed in the temperature range from
1.7 to 50 K. Such a dependence ρ(T) at temperatures below ~10–15 K is usually explained
by electron-electron scattering with a collision frequency proportional to T2. At higher
temperatures, the electron-phonon scattering mechanism usually dominates. In this case, at
T << ΘD (ΘD is the Debye temperature), the dependence ρ(T)~T5 can be observed, and at
temperatures comparable to ΘD, ρ(T) is linear. In [27,32], where the transport characteristics
of semimetallic MoTe2 were also studied, the data on the temperature dependence of the
electrical resistivity were fitted, and it was found that there is a contribution to the resistivity
proportional to T5. At the same time, for our crystal, as in [21–23], no contribution of ~T5

to the resistivity is observed at T << ΘD, where ΘD = 135 K was taken from [23].
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Figure 2. Temperature dependence of the electrical resistivity of MoTe2 in the temperature range
from 4.2 K to 290 K. The inset shows the dependence ρ = f (T2) at temperatures from 4.2 K to 60 K.

The quadratic temperature dependence of the electrical resistivity in a wide tempera-
ture range was also observed in pure metals. Thus, tungsten single crystals were studied
in the temperature range from 2 to 40 K in [33], where another mechanism was proposed
that leads to the T2-dependence ρ(T), called the “electron-phonon-surface” interference
scattering mechanism. In addition, the quadratic temperature dependence of resistivity
(conductivity) in a magnetic field was observed in tungsten single crystals under conditions
of the static skin effect [34]. In [25], we found that in the Weyl semimetal WTe2 single
crystal, both the electrical resistivity in the absence of a magnetic field and the conductivity
in a field depend on temperature according to a quadratic law in a wide temperature range
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from 12 K to ~70 K and ~55 K, respectively. By analogy with WTe2, it can be expected
that the quadratic dependence of the resistivity (conductivity) of MoTe2 should also be
observed in the presence of a magnetic field.

3.2. Resistivity (Conductivity) in Magnetic Field

Figure 3 shows the temperature dependence of the conductivity σxx = [ρ(B)− ρ(0)]−1 of
the MoTe2 single crystal in a magnetic field of 9 T in the temperature range from 4.2 to 60 K.
The inset shows the conductivity as σxx = f (T2). It can be seen that the value of σxx varies
with temperature according to the quadratic law σxx = const + CT2 in a wide temperature
range from 4.2 K to 60 K. In this case, two temperature ranges can be distinguished,
namely (4.2–20) K and (20–60) K, where the coefficient C is 32.6 Ohm−1·cm−1·K−2 and
79.2 Ohm−1·cm−1·K−2, respectively. A similar change in the coefficients at T2 was observed
by the authors of [33], where the electrical resistivity of tungsten single crystals was studied,
and it was shown that the quadratic-in-temperature contribution to the resistivity at low
temperatures is due to the scattering of conduction electrons by the sample surface, where
the “electron-phonon-surface” interference scattering mechanism takes place. In addition,
it was shown in [34] that in tungsten single crystals under conditions of a static skin effect,
the conductivity in the magnetic field depends on temperature according to a quadratic
law, which is also associated with the “electron-phonon-surface” scattering mechanism.
Therefore, it can be assumed that the quadratic temperature dependence of σxx observed at
temperatures from 4.2 K to 20 K in our single crystal might be associated with the “electron-
phonon-surface” interference scattering mechanism [30,31]. In order to verify this, further
studies are required, in particular, measurements of the resistivity of “sized” crystals (see,
for example, [35] and references therein). Whereas the T2-dependence of the conductivity
in a magnetic field from ~20 K to 60 K seems to be associated with contributions from
various scattering mechanisms, primarily from the specific electron-phonon scattering
process leading to T2.
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3.3. Hall Effect

The analysis of data on the Hall effect in the MoTe2 single crystal under study was
carried out in the framework of a single-band model. In order to calculate the Hall coeffi-
cient RH, concentration n, and mobility µ of main charge carriers, the following equations
were used.

RH =
ρH
B

, (1)
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n =
1

RH ·e
, (2)

µ =
RH
ρ

, (3)

where ρH is the Hall resistivity; B is the magnetic field induction; e is the electron charge; ρ
is the electrical resistivity in the absence of a magnetic field. Figure 4 shows the temperature
dependences of RH, n, and µ in the MoTe2 single crystal. Since RH is negative, electrons are
the majority of charge carriers. Their concentration and mobility at a temperature of 4.2 K
are 2.6 × 1020 cm−3 and 0.8 × 103 cm2/(V·s), respectively. The value of n slightly changes
with temperature. At the same time, the mobility µ decreases strongly with temperature,
which can be explained by an increase in the scattering efficiency.
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current carriers in MoTe2, obtained using the single-band model in a field B = 9 T. The red triangles
show the values of the Hall coefficient obtained on the basis of the two-band model.

At the same time, it is known that MoTe2 contains carriers of both electron and hole
types [10,11]. In such systems, the field dependences of the resistivity ρ in a magnetic field
and Hall resistivity ρH are usually analyzed using a two-band model. In this case, the
equations for ρ and ρH can be written in the form presented in [36]:

ρ =
1
e
(nhµh + neµe) + (nhµe + neµh)µhµeB2

(nhµh + neµe)
2 + (nh − ne)

2µ2
hµ2

e B2
, (4)

ρH =
B
e

(
nhµ2

h − neµ2
e
)
+ (nh − ne)µ2

hµ2
e B2

(nhµh + neµe)
2 + (nh − ne)

2µ2
hµ2

e B2
, (5)

where ne (µe) and nh (µh) are the concentration (mobility) of electrons and holes, respectively.
Figure 5a shows the field dependences of the resistivity ρ(B) in a magnetic field and

Hall resistivity ρH(B) of the MoTe2 single crystal at temperatures of 4.2 K, 15 K, 25 K, and
50 K. The solid red lines correspond to fitting curves obtained using Equations (4) and (5)
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within the framework of the two-band model. It can be seen that the experimental data
are well described by the fitting curves. The obtained values of the concentrations and
mobilities of electrons and holes depending on the temperature are shown in Figure 5b.
The values of ne are of the order of 1020 cm−3 and vary slightly with temperature, which is
consistent with the data obtained within the single-band model (Figure 4). At the same time,
the hole concentration nh decreases drastically with increasing temperature above 25 K.
The electron mobility µe decreases with increasing temperature over the entire temperature
range studied, as in the case of the single-band model. Whereas the hole mobility µh
decreases with increasing temperature up to 25 K, at higher temperatures, an increase in
the value of µh is observed. At T = 4 K, the values of µe and µh are 1.10× 103 cm2/(V·s) and
0.58 × 103 cm2/(V·s), respectively. The geometric-mean mobility µ =

√
µeµh is in good

agreement with the carrier mobility obtained within the single-band model. It can be seen
that the values of the concentration ne and mobility µe of electrons mainly exceed the values
of nh and µh of holes. This means that electrons are the main type of carriers, which also
agrees with the single-band model. Note that, in our case, the carrier mobility, according to
the estimates made, is an order of magnitude lower than, for example, in [27]. Apparently,
this is due to a large number of defects in our crystal and a lower RRR. At the same time,
the qualitative behavior of the obtained ne (µe) and nh (µh) are in good agreement with
the results given in [22,27], where the two-band model was used. In addition, theoretical
calculations of the electronic structure at various temperatures were carried out in [22], and
it was shown that at temperatures below 35 K, electron-hole compensation is observed
in Td-MoTe2, whereas at higher temperatures, the Fermi surface is reconstructed mainly
due to a decrease in the volume of hole pockets. This agrees with our results presented in
Figure 5b, where at temperatures from 4.2 to 25 K ne ≈ nh, while at higher temperatures,
the hole concentration nh strongly decreases.
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MoTe2 at temperatures of 4.2 K, 15 K, 25 K, and 50 K. Open symbols are experimental data; solid
red lines are fitting curves obtained using the two-band model; (b) Temperature dependences of the
concentration and mobilities of electrons and holes obtained on the basis of the two-band model.

In [25], the concentrations and mobilities in WTe2 were also estimated using single-
band and two-band models. It was shown that the values of concentrations and mobilities
obtained using both models are in good agreement with each other. In [25] the Hall
coefficient was calculated using the two-band model. The obtained value of RH is in good
agreement with the value obtained from the experimental data based on the single-band
model. Therefore, the Hall coefficient was also calculated for MoTe2 using the two-band
model. The values obtained at temperatures of 4.2 K, 15 K, 25 K, and 50 K are plotted in
Figure 4. It can be seen that the Hall coefficients calculated for both models are in good
agreement. Apparently, this may indicate that the two-band model is applicable to systems
similar to MoTe2, containing different groups of charge carriers that differ in sign, mobility,
etc. Moreover, the two-band model is preferable to the single-band one.

4. Conclusions

1. The quadratic temperature dependence of the electrical resistivity of MoTe2 was
observed in a wide temperature range from 4.2 K to 45 K, which is consistent with the
experimental results previously reported.

2. The quadratic temperature dependence of the conductivity in a magnetic field was
found in a wide temperature range. Moreover, two intervals can be distinguished:
“low-temperature” and “high-temperature”. It has been suggested that in the low-
temperature range, the quadratic dependence of the conductivity in a magnetic
field might be associated with the “electron-phonon-surface” interference scatter-
ing mechanism.

3. The analysis of data on the Hall effect in MoTe2 was carried out using single-band and
two-band models. The values of concentration and mobility of current carriers were
estimated. The Hall coefficients calculated from both models are in good agreement.
Apparently, the two-band model is preferable in such systems containing different
groups of current carriers.
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