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Abstract: As an important part of the human spine, the cervical spine has a complex structure and
easily suffers from diseases. Analysis of the biomechanical mechanism of cervical spine structure
using the finite element model is not only helpful for the diagnosis, treatment and prevention of
cervical spine diseases but also has positive significance for the performance evaluation of cervical
spine implants. In this paper, a method of establishing a cervical C2-C7 finite element model based
on CT image data is studied. Through the preprocessing of cervical CT images, the C2-C7 three-
dimensional finite element model of the cervical spine was established. The pure moment loads
of 0.33 Nm, 0.5 Nm, 1 Nm, 1.5 Nm and 2 Nm were applied to simulate flexion/extension, and the
moment of 1 Nm was used to simulate the left and right lateral bending and axial rotation of the
cervical spine. The relative range of motion (ROM) between each vertebral body was calculated. At
the same time, the stress on some segments under axial load was analyzed. The results were basically
consistent with the experimental data of in vitro studies, which verified the validity of the model.

Keywords: cervical spine; biomechanics; finite element model (FEM); range of motion (ROM)

1. Introduction

The spine consists of the cervical vertebra, the thoracic vertebra, the lumbar vertebra
and the sacrum. With its more complicated structure and larger ranges of motion compared
to the thoracic vertebra and lumbar vertebra, the cervical vertebra plays a significant role
in people’s daily lives. With the development of modern industry, the change in people’s
work and lifestyle as well as the population aging, the incidence of cervical spondylosis
has shown a rising trend year by year, which has brought great inconvenience to people’s
daily lives. The prevention of cervical spondylosis and the improvement of treatment
effectiveness have always been goals to strive for. The statistics of the motion tendency
and the stress distribution of the cervical vertebra under different loads can be obtained
through experiments in vivo and in vitro [1–5]. However, their applications are subject
to certain restrictions due to the exceptionality of the human body, resulting in high cost,
high risk, and specificity of experimental results. Belytschko et al. [6] and other researchers
established the two-dimensional finite element model early in 1974 to evaluate the material
attribute of the intervertebral disc and to predict its mechanical behavior under axial
loads. However, due to the complex anatomical structure of the cervical vertebra, the finite
element model developed slowly. Not until the 1990s did Bozic et al. [7] and Teo et al. [8],
along with their teams, accomplish the three-dimensional reconstruction of the vertebral
body using CT data and a three-dimensional digitizer. Based on this, the more lifelike
and fine-mesh finite element model of the single vertebra was constructed, although there
was still a great discrepancy between the model and the actual conditions, especially in
terms of less consideration given to soft tissue and the single material property. Since
then, with the development of computer software, hardware as well as the advancement
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of medical imaging technology, the finite element model of the cervical spine has also
developed from an initially single-level model to a multi-level one and has included the
entire cervical level [9–13]. The material model of intervertebral disc and ligament has also
been further refined.

The FEM of the cervical spine can be divided into dynamic analysis and static analysis
depending on the application scenario. With respect to dynamic analysis of the cervical
spine, Cronin’s project team [11,14,15] from Canada performed in-depth research covering
3D modeling, meshing, and material model constitution, and also analyzed the mechanism
of cervical spine soft tissue injury in frequent traffic accidents. Mustafy et al. [16] introduced
time and rate-dependent material laws in the finite element model of segments C2-C3
to simulate the mechanism of cervical ligament injury under complex loading. Meyer
et al. [17] simulated the forces and moments of the cervical spine segments in cases of a
frontal impact with an experimentally validated finite element model. As for static analysis,
Zhang et al. [18] built a finite element model of the complete cervical spine from C0 to C7
and compared the model with experimental results in terms of flexion/extension, lateral
bending and axial rotation under a load of 1.0 Nm. Limited by the conditions back then,
the material model settings were relatively simple, producing larger differences from the
experimental results in terms of lateral bending. Kallemeyn et al. [19] built a finite element
model of segments C2-C7 based on multiblock meshing techniques and specific specimen
data; the material properties of the model were then calibrated using the experimental
results of the specimens. Erbulut et al. [20] also built a finite element model of C2-T1
based on the multiblock meshing technique to study the effect of soft tissue on cervical
spine stability. To promote the exchange of scientific research on finite element models of
the cervical spine, Herron et al. [21] built the finite element models of the cervical spine
of females at different ages. They noticed that despite the same material properties and
boundary conditions, their biomechanical properties differed markedly, and the authors
considered that was because of differences in the morphology of the models.

With the improvement of the finite element model, its applications in medical engi-
neering widen increasingly. By creating finite element models of different cervical spine
surgeries, the influence of different surgical methods on range of motion and intervertebral
disc stress can be evaluated [22–24]. Nishida [25] established three different models of
cervical soft tissue injury and analyzed the risk factors of cervical instability. In addition,
the cervical spine finite element model can also be used to analyze the biomechanics of
implanted medical devices and evaluate their performance [26,27]. In the field of tradi-
tional Chinese medicine, some researchers have also explored the application of finite
element model in the treatment of cervical spondylosis with traditional traction and other
conservative methods [28]. With the increasingly wide applications of the finite element
method in spine research, it has become urgent to find a quick and convenient establish-
ment of the finite element model for the spine. Targeting the cervical segments C2-C7, this
paper is meant to provide a feasible solution for the finite element analysis of the complex
spine structure based on the strong mesh processing function of the general pre-processing
software and the analysis function of the professional finite element software.

2. Materials and Methods
2.1. Finite Element Model Establishment

The experimental data were obtained from the medical image database. The CT layer
thickness was 0.625 mm, and the image resolution was 512 × 512 pixels, including the
entire cervical spine. Firstly, the CT data were imported into medical image processing
software, and the soft tissue images around the bone were removed using layer-by-layer
segmentation, and the CT images of each tomography were edited and processed to
complete the three-dimensional reconstruction of the cervical vertebra bone model. The
model was imported into the reverse engineering software Geomagic 2012 (3D Systems
Corporation, Rock Hill, SC, USA) in STL format, and the NURBS surface of the vertebral
body was fitted by its functions, such as accurate surface, which was saved as an IGES
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file. The IGES file of the vertebral body was imported into the general finite element
preprocessing software Hypermesh 13.0 (Altair Engineering Inc, Troy, MI, USA) to complete
the partition of the vertebral body mesh. Based on the physiological and anatomical
structure of cervical spine vertebra, the vertebral body is divided into the cortical bone,
cancellous bone, endplate and posterior structure of the vertebral body. The correct choice
of element for a particular simulation is vital if accurate results are to be obtained at
a reasonable cost. Due to the complex structure of the vertebral body, it is difficult to
mesh completely with hexahedrons. Therefore, tetrahedral elements may be necessary;
the cancellous bone and the posterior part of the vertebral body are divided into 4-node
tetrahedral elements, and the cortical bone and endplate are divided into 3-node shell
elements. Components of each vertebra are show in Figure 1.
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Figure 1. Components of each vertebra.

An intervertebral disc is a sealed body located between two adjacent vertebrae of the
human spine and is composed of cartilaginous endplate, peripheral annulus fibrosus and
central nucleus pulposus, in which the volume of nucleus pulposus accounts for about 44%
of the volume of the whole intervertebral disc [16]. The annulus fibrosus adopts a four-layer
hexahedral element from the outside to the inside, and a truss element with a cross-angle
close to ±35◦ and only tension is used to simulate the annulus fibrosus fiber [29].

The ligaments were simulated using nonlinear connecting elements, which can sim-
ulate the nonlinear stretching process of ligaments based on the force-displacement data
provided by the experimental data. This includes the anterior longitudinal ligament (ALL),
posterior longitudinal ligament (PLL), ligamentum flavum, (FL), interspinous ligament
(ISL) and capsular ligament (CL). The starting and ending positions of ligaments and the
number of elements were determined according to the anatomical structure of cervical
spine and related literature [30,31]. The contact behavior of the posterior facet joint was
defined by using contact pairs with Abaqus 6.14 (Dassault Systèmes Simulia Corp., Provi-
dence, RI, USA). The finite-sliding, surface-to-surface formulation was used in this model,
and the relationship between contact stress and clearance was set as an exponential. The
whole finite element model included 75,648 nodes and 319,184 elements. The detailed
data of element types and material properties are shown in Table 1, and the finite element
model of segments C2-C7 is shown in Figure 2a. The detailed model of segments C5-C6
and the intervertebral disc model are shown in Figure 2b,c, respectively. After completing
the finite element model using Hypermesh 13.0 software, the model was imported into
Abaqus software. The solution and post-processing were completed with Abaqus software.
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Table 1. Element types and mechanical properties of the FE model.

Component Element Type Young’s Modulus (MPa) Poisson’s
Ratio Reference

Cortical bone S3 12,000 0.29 [18]
Cancellous bone C3D4 100 0.29 [32]

Posterior
vertebra C3D4 3500 0.29 [18]

Articular
cartilage C3D6 10.4 0.4 [33]

Endplate S3 500 0.4 [18]
Nucleus
pulposus C3D8H Hyperelastic (C10 = 0.348,

D1 = 0.3) [34]

Annulus ground
substance C3D8R Hyperelastic (C10 = 0.12,

C01 = 0.09) [35]

Annulus fiber T3D2 358–550 0.3 [36]

ALL CONN3D2 Nonlinear
(Incompressible) [19,37]

PLL CONN3D2 - -
FL CONN3D2 - -
ISL CONN3D2 - -
CL CONN3D2 - -
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Figure 2. (a) Finite element model of segments C2-C7; (b) finite element model of segments C5-C6;
(c) intervertebral disc model.

2.2. Load and Boundary Conditions

Binding constraints were set between the upper and lower surfaces of the intervertebral
disc and the corresponding vertebral surfaces (endplates). Constraints were set on the
6 degrees of freedom of all nodes of the lower endplate of the C7 vertebral body. In order
to compare with the results of previous in vitro experiments and verify the validity of the
finite element model, the pure moment loads of 0.33 Nm, 0.5 Nm, 1 Nm, 1.5 Nm and 2 Nm
were applied for flexion (+) and extension (−), and 1 Nm was applied for the left and right
lateral bending and axial rotation. These loads also ensured that the range of motion of the
cervical spine was within the normal range. The range of motion and intervertebral disc
stress on each segment of the cervical spine under different load conditions were analyzed
using finite element analysis.
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3. Results
3.1. Range of Motion

By applying different flexion/extension loads to the model, the nonlinearity of cervical
spine motion is well simulated. The range of motion during flexion is slightly larger than
that during extension, which may be related to the effects of the facet joint on cervical
spine motion during extension. In different segments, the results are shown in Figure 3. In
flexion loading, the results of segments C2-C3, C4-C5 and C6-C7 were close to the values of
Wheeldon et al.’s [3] and Camacho et al.’s [38] experimental data. In segments C3-C4 and
C5-C6, the present study’s results were close to the value of Camacho et al.’s [38] but stiffer
than those of Wheeldon et al. [3] and Nightingale et al. [2], especially in segments C5-C6.
In segments C6-C7, the results of the model were more flexible than those of Nightingale
et al. [4] and Camacho et al. [38]. During the extension, the range of motion under different
load conditions was close to the results of Wheeldon et al. [3], except in segments C2-C3,
which was reduced by about 36% in comparison.

In Figures 4 and 5, the range of motion of lateral bending and axial rotation of different
segments were compared with those of Panjabi et al. [1] and Zhang et al. [18]. In lateral
bending, the results of segments C3-C4 and C4-C5 were smaller, different by about one
standard deviation compared to those of Panjabi et al. [1]. In the rest of the segments
(C2-C3, C5-C6 and C6-C7), the results and the mean value were in good agreement with the
experimental data. In axial rotation, the mean value and the ranges of motion of segments
C3-C4 and C5-C6 were close to the results of Panjabi et al. [1]. In segments C2-C3 and
C6-C7, the finite element model was more flexible.
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Figure 5. Comparison of ROM under axial rotation moment of 1.0 Nm (data from [1,18]).

3.2. Intervertebral Disc Stress

By applying different axial loads to simulate intervertebral disc compression, the
intervertebral disc stress level and variation trend of segments C4-C5 are consistent with
the relevant experimental results [39], as shown in Figure 6. In addition, in the process
of simulating forward flexion/extension movement with a preloaded 10 N axial load, the
stresses on the C3-C4 and C5-C6 intervertebral discs were smaller those the experimental
results of Pospiech et al. [40]. As shown in Figure 7, the results of the finite element model
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were reduced by about 46% in segments C3-C4 and by about 35% in segments C5-C6
in comparison.
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4. Discussion

By processing CT images to generate contour data of the vertebral body, the interver-
tebral disc was accomplished using general software to ensure the accuracy of the model
and convenience for follow-up processing. This opens up a new way for the finite element
analysis of complex structures. The selection of materials was further refined according to
the current references and the actual conditions. For example, the past finite element model
usually used uncompressed truss elements to simulate ligament tissues while the ligament
shows a strong nonlinearity in the process of stretching [31,41]. Therefore, the nonlinear
lconnecting element is used in this model to better present that feature. In addition, the
construction of the intervertebral disc model also plays a key role in the whole finite ele-
ment analysis. In this model, different hyperelastic materials were adopted to simulate
the nucleus pulposus and the base of annulus fibrosus with five diagonally intersected
layers of tensile-stressed truss elements from outside to inside with a ±35◦ distribution [29],
which guarantees the simulation of the intervertebral disc in both shape and structure.

Due to the restrictions on the in vitro experiments, our research group conducted an
in-depth analysis of the relevant published in vitro experiments to verify the effectiveness
of the model. A couple well-accepted classic experiments were selected for reference.
Generally speaking, the range of motion and the variation trend resulting from the estab-
lished finite element model of segments C2-C7 of the cervical vertebra are consistent with
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the results of the in vitro experiments in terms of flexion/extension, lateral bending and
axial rotation. In the process of flexion, the finite element model analysis reproduces the
nonlinearity of cervical spine movement while the results of different segments fall in the
range of the different experimental results [2–4,38]. In the process of extension, the finite
element model shows a sound coherence with the experimental results of Wheeldon [3] and
Nightingale [2,4] in segments C3-C4, C4-C5 and C5-C6, with a generally higher stiffness.
In segments C2-C3 and C6-C7, the stiffnesses of the finite element model is higher than
those of the in vitro experiments. Although the results were within the range of a standard
deviation of the experimental data, the range of motion of segments C2-C3 was reduced by
36% compared to the experimental mean of Wheeldon et al. [3] and by about 50% compared
to the experimental mean of Camacho et al. [38]. We hold that the differences may be due
to the thickness and size of the posterior articular cartilage and the direction of contact
during extension. Relevant studies also showed that the orientation of the facet and the
settings of the contact parameters could lead to different analysis results [36,37]. In terms
of anatomical structure, the articular cartilage in C2-C3 and C6-C7 was thicker than those
in the other segments [42], of which the difference was not fully reflected in the finite
element modeling. In addition, to facilitate the finite element analysis (FEA) solution, a
large contact range is preferred when setting the articular contact surface, which could be
another cause for such results. In the process of lateral bending, the results of segments
C2-C3 and C5-C6 meet the experimental results [1], whereas those of segments C3-C5
are smaller and those of segments C6-C7 are larger. Moreover, the ranges of motion of
all segments are larger than the results of the finite element analysis from Zhang [18]. In
the analysis of axial rotational movement, the results of this model are in correspondence
with both the in vitro experiment from Panjabi [1] and the finite element analysis from
Zhang [18]. It is also found in the analysis that the direction in which a moment of force is
applied has a greater impact on the results of lateral bending and axial rotation than those
of flexion and extension. Therefore, the load applied in the model verification is consistent
with those of the in vitro experiments.

To further verify the effectiveness of the model, this research also targets intervertebral
disc stress. However, as the cervical vertebra is smaller and more complicated than the
lumbar vertebra in structure, this research only makes comparisons with the experimental
results in terms of intervertebral disc stress on partial segments under two different loads.
The results show that under the axial compressive load, the intervertebral disc stress
level and the trend of segments C4-C5 correspond with the experimental results. The
intervertebral disc stress on segments C3-C4 and C5-C6 under a flexion/extension moment
of 0.5 Nm with a pre-compression load of 10 N is lower than the average of the experimental
value. The intervertebral disc is an early and easily degenerated and aged organ in the
human body. In Pospiech et al.’s [40] experiment, the mean age of the selected specimens
was 44.3 (27 to 64); in the FEA, the material model could not fully simulate the actual
situation, which might be the main cause for the differences.

5. Conclusions

The three-dimensional finite element model of segments C2-C7 is proved to be conve-
nient and feasible through the comparison of the model with the in vitro experiments under
different load conditions. The model analysis has shown coherence with the results of the
in vitro experiments in terms of either the range of motion or intervertebral disc stress. The
model can be applied to analyze the biomechanical characteristics of the cervical spine,
providing a possibility for the study of the mechanism for cervical spine disease as well as
prosthesis implantation performance. However, due to the complex structure of cervical
spine, there are large deformations, material nonlinearity and contact nonlinearity in the
process of analysis. Although this model tries to make the setting of the shape and material
properties close to reality, some simplifications are inevitably adopted. The influence of
muscles, blood vessels and the spinal cord was ignored in the process of establishing the
finite element model, which still needs to be further improved in future analysis.
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