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Abstract: Self-passivating W alloys have excellent high temperature oxidation resistance and are
expected to be used as a key component in high temperature environment. In this study, a series
of W-Si-xY self-passivating alloys were fabricated by mechanical alloying (MA) and spark plasma
sintering (SPS). Effects of Y content on phase compositions, microstructures, and oxidation resistance
at high temperatures were investigated systematically. The results show that the oxidation resistance
of the alloys increases with the increase of Y content (0.0~5.0 wt.%), but the oxidation resistance of
the alloys deteriorates when the Y content reaches 9.6 wt.%. The alloy with 3.8 wt.% Y shows the best
oxidation resistance. The thickness of its oxide layer is ~249.1 µm when the oxidation time reaches
80 h, which is thinner than that of other alloys. Effects of Y content on the oxidation resistance are
revealed. During the oxidation process, Y can react with other elements to form molten-like W-Y-O
and Y2Si2O7 particles. It is found that these two phases play a key role in the oxidation resistance of
the alloys. When the Y content is in the range of 0~5.0 wt.%, a W-Y-O covering layer gradually forms
with the increase of Y content, which can prevent further oxidation of the alloy. In the meantime,
small Y2Si2O7 particles were formed and the microcracks formed around these particles were isolated,
which have little effect on the oxidation resistance of the alloys. However, when Y content reaches
9.6 wt.%, large Y2Si2O7 particles and extensive cracks around them are formed. These cracks are
interconnected to form penetrating channels for O2 from the environment to the alloy interior, which
deteriorates the oxidation resistance of the alloys.

Keywords: self-passivating; W alloy; Y addition; oxidation resistance

1. Introduction

Tungsten is a promising high-temperature material and can be used as some critical
components, including heaters and shields of furnaces [1], rocket nozzles [2], spallation
material in European Spallation Source (ESS) [3], and a candidate plasma-facing material
in fusion reactors [4,5].

Although W has a high melting point, high strength, and low thermal expansion
coefficient, its high-temperature oxidation resistance is poor. When the temperature reaches
or exceeds 700 ◦C, W can be oxidized to WO3, which volatilizes rapidly, resulting in the
damage of components composed of W [6–9]. Koch et al. proposed “W smart alloys” to
improve its oxidation resistance, in which alloying elements can form a dense oxide scale
on the surface, preventing W from oxidation and volatilization in accidental conditions [10].
In addition, they found W-Cr smart alloys exhibited excellent oxidation resistance because
alloying element Cr could create a dense Cr2O3 layer on the surface of the alloy [10,11].
Therefore, W-Cr binary and ternary alloys have received much attention [12–18]. Recently,
we prepared W-Si alloys and found they have good oxidation resistance [19]. The oxidation
rate of W-Si at 1000 ◦C in the air was about two orders of magnitude lower than that
of pure W, which was mainly due to the W5Si3 phase in the alloy. A dense WO3/SiOy
composite layer was formed on the alloy surface through the in-situ reaction of W5Si3
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with O2. However, the oxide layer at the top was porous because of the volatilization of
tungsten oxide. Then, the Y element was introduced to further improve the oxidation
resistance of the W-Si alloy [20]. It was found that a W-Y-O melt was formed, which could
cover the pores and promote the sintering of oxides in the oxide layer, thus enhancing the
oxidation resistance.

In our research, it was also found that the phase compositions and oxidation resistance
of the W-Si-Y alloys were closely related to the Y content. Thus, in this investigation, the
W-Si alloy doped with various Y contents were fabricated by MA and SPS. The composition,
microstructure, and oxidation resistance properties of the W-Si-xY alloys were studied. The
formation and evolution of the oxide film structure were investigated in detail, and the
effect of Y content on the oxidation resistance at high temperature was revealed.

2. Experimental

W powder (99.9% purity, 1–5 µm), Si powder (99.9% purity, 1–5 µm), and Y powder
(99.9 % purity, ~15 µm) were used as raw materials. The preparation process is based
on our previous reports [20]. Specifically, the powders were weighed according to the
stoichiometric ratios of W-6.7Si-xY (x = 0, 1.3, 2.6, 3.8, 5.0, 9.6 wt.%). These powders with
ethanol (~5 wt.%) were sealed in stainless-steel vials. The vials were vacuumed and then
pumped into high purity Ar gas. Next, the powders were mechanically milled for 4 h in
a high-energy planetary ball mill (Nju Instrument, QM-3SP4, Nanjing, China) with the
rotation speed 250 rpm. The ball-to-material weight ratio was 15:1 and the gradation of
tungsten carbide balls was 1:3 (10 mm and 6 mm diameter, respectively). The as-milled
powders were dried at 60 ◦C in vacuum oven for 24 h. Finally, the powders were sintered on
the SPS equipment (SinterLand, LABOX-1575, Niigata, Japan). Bulk alloys were obtained
at 1550 ◦C for 5 min with 50 MPa pressure in vacuum (5–10 Pa).

The as-sintered alloys were cut into 4 mm × 4 mm × 4 mm cubes by wire cutting. All
the surfaces of these cubes were polished to 5 µm by using SiC paper and diamond suspen-
sion. Next, these cubes were immersed in ethanol, washed by ultrasonic for 10 min, and
dried in a vacuum. During cyclic oxidation tests, the cubes were hanged with Φ 0.1 mm-Pt
wires and oxidized at 1000 ◦C for 0~80 h in the air with a heating rate 10 ◦C/min (0 h
means power was switched off when the temperature reached and stabilized at 1000 ◦C for
3 min). In each oxidation test, three parallel cubes were used. Their average mass changes
were obtained by recording the weight of the cubes before and after oxidation using an
electronic balance with an accuracy of 0.1 mg.

The phase compositions were determined by X-ray diffraction (XRD, X’pert-PRO,
Almelo, The Netherlands), with Cu Kα at 40 kV and 30 mA. The chemical environment of
Si and Y was identified by using X-ray photoelectron spectroscopy (XPS, AXIS-ULTRA DLD-
600W, Tokyo, Japan). Morphologies and microstructures were observed by a field-emission
scanning electron microscope (FE-SEM, Nova NanoSEM 450, Amsterdam, The Netherlands)
equipped with energy dispersive X-ray Spectrometry (EDS) and a transmission electron
microscope (TEM, Tecnai G2 F30, Amsterdam, The Netherlands), respectively. The TEM
samples were processed by a focused ion beam system (FIB, Helios Nanolab G3 CX, Brno,
Czech Republic).

3. Results and Discussion
3.1. Phases and Microstructures of As-Sintered Alloys

Figure 1 presents the XRD spectra of as-sintered alloys. The diffraction peaks for the
W-Si-xY (x = 1.3~5.0) alloys are similar, so the spectra of W-Si-2.6Y and W-Si-3.8Y are not
shown here. It can be seen from Figure 1a that all W-Si-xY alloys contained phases of W,
W5Si3, and a small amount of SiO2. The formation of SiO2 is due to the reaction between
Si and the residual oxygen in powders during sintering. As the Y content increased to
9.6 wt.%, small Y2O3 peaks were also observed. In addition, it can be observed from
Figure 1b that the (110) diffraction peak of W shifted to a higher angle with the addition
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of Y, indicating that more Si (atomic radius 110 pm) and Y (180 pm) were dissolved in
tungsten (135 pm).
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Figure 1. XRD spectra of as-sintered W-Si-xY alloys: (a) 2θ = 20–90◦, (b) 2θ = 39–42◦.

The Si 2p and Y3d XPS spectra of the alloys were measured to identify the existence
form of Si and Y. Figure 2a,b present the Si 2p XPS spectra of the W-Si and W-Si-9.6Y alloys,
respectively. The peaks of Si 2p located at 101.9, 102.6 and 104.5 eV correspond to SiO,
Si2O3, SiO2, respectively. The peak at 99.6 eV is related to Si-W bonding in W5Si3. The Si 2p
XPS spectra of other W-Si-xY (x = 1.3~5.0) alloys are similar to those of W-Si and W-Si-9.6Y.
It indicates that all the alloys contain W5Si3 and SiOx (x = 1, 1.5, 2).
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Figure 2. Si 2p XPS spectra of (a) W-Si and (b) W-Si-9.6Y. Y 2p XPS spectra of (c) W-Si-1.3Y, (d) W-Si-
5.0Y, (e) W-Si-9.6Y. The solid lines are the as-recorded data. The dotted lines show various oxidation
states of Si and Y.

Figure 2c–e gives the Y3d XPS spectra of the W-Si-xY alloys (x = 1.3, 5.0, 9.6). The
Y3d peaks at 157.9 eV and 155.9 eV are related to Y. The peaks at 159.0 eV and 157.0 eV
belong to Y2O3. The peaks at 160.2 eV and 158.2 eV correspond to Y-Si-O [21]. The results
showed that all W-Si-Y alloys contained Y, Y2O3, and Y-Si-O. In addition, it can be observed
that the content of Y-Si-O was higher than that of Y2O3 by comparing their peak areas in
the W-Si-9.6Y alloy, as shown in Figure 2e. However, the Y2O3 was observed in the XRD
pattern of W-Si-9.6Y alloy while Y-Si-O phase was absent (Figure 1). It can be inferred that
Y-Si-O is amorphous.

The oxygen contents in the W-Si-xY powders were about 12,000 ppm, which was
introduced mainly by a ball milling process. According to the calculation, when Y content
exceeded 1.3 wt.%, all these O elements could react with Y to form Y2O3 because Y has a
stronger affinity to O than Si. However, it was found that SiOx and Y-Si-O were formed
in addition to Y2O3 in all W-Si-Y alloys. This is because the formation of Si-containing
phases can be kinetic-related. Since the amount of Si (6.7 wt.%, equivalent to 32 at.% in the
alloy) was much higher than that of yttrium (1.3~9.6 wt.%, equivalent to 2~16 at.%) and the
diffusivity of Si is much higher than that of Y, especially during a solid phase sintering as
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SPS sintering, the reaction between Si and O had more chance to occur than that between
Y and O, leading to the simultaneous formation of SiOx, Y2O3, and Y-Si-O. When the Y
content increased to 9.6 wt.%, most of the oxygen could react with Y to form more Y2O3
and Y-Si-O phases.

The surface backscattered SEM (BSE-SEM) images of the alloys are manifested in
Figure 3. All the as-fabricated alloys were mainly composed of the gray phase (marked A),
the bright gray phase (marked B), and the black particles (marked C). The black particles
were dispersed in the matrix. When the Y content reached and exceeded 2.6%, some large
and irregular particles with light black contrast (marked D) appeared. The number of
irregular particles (D) increased with the increase of Y content. The corresponding EDS
compositions for each phase are listed in Table 1. Combining EDS, XRD, and XPS results, it
can be concluded that the gray phase (A) is W5Si3, the bright gray phase (B) is W, and the
irregular particles (D) are Y-Si-O. The black particles (C) are confirmed to be SiOx in the
W-Si alloy, while they are SiOx and yttrium-rich oxides (Y2O3 and Y) in the W-Si-Y alloys.
When the Y content reached 9.6 wt.%, the size of black particles, which was confirmed to be
mostly yttrium-rich oxides, increased greatly. The ratios of various phases were obtained
by counting the areas of corresponding phases in BSE-SEM images. The contents of W5Si3
(A), W (B), and oxide particles (C) in W-Si were about 59%, 26%, and 15%. The contents
of phase W5Si3 (A), W (B), and oxide particles (C and D) in W-Si-xY (x = 1.3~5.0) were
basically the same, ~70%, ~20%, and ~10%. However, when Y content reached 9.6 wt.%, the
content of W (B) decreased to ~12% and the content of oxide particles (C and D) increased
to ~18%. Sometimes C and D were difficult to distinguish, so they were counted together.
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Table 1. EDS compositions of the W-Si-xY alloys in Figure 3.

Alloys Position
Compositions/at %

Major Phase
W Si Y O

W-Si
A 66.73 33.27 - - W5Si3
B 97.24 2.76 - - W
C 6.34 33.25 - 60.41 SiOx

W-Si-5.0Y

A 65.15 34.85 - - W5Si3
B 100 - - - W

C1 10.77 25.75 19.92 43.55 SiOx, Y2O3
C2 7.51 7.37 33.96 51.16 Y-rich oxides
D 1.81 25.04 28.01 45.14 Y-Si-O

W-Si-9.6Y
C - - 49.52 50.48 Y-rich oxides
D - 32.74 28.15 39.11 Y-Si-O

3.2. Oxidation Behavior

The macro morphology of W-Si-xY alloy after oxidation for different times is shown
in Figure 4. The insert on the bottom right corner shows pure W oxidized for 2 h. Due to
the tip thermal effects [22], the edges of all cubes were preferentially oxidized. The edge
epitaxial growth of pure W oxidized for 2 h was serious and the cube was completely
destroyed. The color of the sample was yellow, indicating that it was completely oxidized
to pure WO3. The other W-Si-xY (x = 0~5.0 wt.%) alloys retained a cubic shape. The edge
epitaxial growth of W-Si alloy became obvious with the oxidation time increased. When
the oxidation time reached 40 h and above, the shape of the W-Si alloy was destroyed. On
the contrary, the W-Si-xY (x = 1.3~5.0 wt.%) alloys exhibited good dimensional stability
under the same oxidation conditions. Moreover, the higher the Y content, the more stable
the size of the cube is. It was also observed that their surface shifted in colors of gray, violet,
blue, and yellow with the oxidation time increasing, implying the presence of a range of
nonstoichiometric oxides (WO3-x) [3]. However, when the Y content reached 9.6%, the alloy
was severely oxidized after 2 h.
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The above results show that adding appropriate amount of Y can greatly improve the
high temperature oxidation resistance of W alloy.

Figure 5 shows the specific weight change of the W-Si-xY alloys oxidized for different
times. The weight gains of W-Si alloy increased from 5.4 ± 0.8 to 108.7 ± 23.1 mg·cm−2,
with an increase of oxidation time from 0 to 80 h, while the weight gains of W-Si-xY
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(x = 1.3~5.0) alloys increased firstly (0~20 h) and then decreased (20~80 h). The decrease
is because the weight gain by oxidation was less than the weight loss by volatilization
of tungsten oxides [20]. The weight gain of W-Si-9.6Y alloy increased rapidly. Since
this alloy was destroyed after oxidation for 10 h, no further oxidation experiment was
carried out. The oxidation rate of W-Si-xY alloys (x = 1.3~5.0) was found to be lower
than that of W-Si by comparing these curves, especially in the case of long oxidation
time. The average oxidation rates of W-Si-xY (x = 0~5.0) alloys before the occurrences
of weight losses were 7.08 × 10−4 mg·cm−2·s−1 (W-Si), 2.95 × 10−4 mg·cm−2·s−1 (W-
Si-1.3Y), 2.20 × 10−4 mg·cm−2·s−1 (W-Si-2.6Y), 1.59 × 10−4 mg·cm−2·s−1 (W-Si-3.8Y),
1.12 × 10−4 mg·cm−2·s−1 (W-Si-5.0Y). It is further shown that Y can improve the oxidation
resistance of the W-Si alloy.
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3.3. Phases and Microstructures of Oxidized Alloys

Figure 6a,b exhibit the XRD patterns of the surface of W-Si-xY alloys oxidized for
different times. For the W-Si-xY alloys oxidized for 0 h, as shown in Figure 6a, it can be
found that the surfaces of the alloys were mainly composed of WO3 and SiO2. When the
Y content increased to 3.8% and above, Y2Si2O7 and Y6W2O15 phases were also detected.
According to literature [23–25], Y2Si2O7 has excellent oxidation resistance at high temper-
atures because of its low thermal expansion coefficient (3.90 × 10−6 K−1), volatilization
rate, and oxygen permeability. As shown in Figure 6b, Y2Si2O7 and Y6W2O15 phases can
be found in the W-Si-xY (x = 1.3~5.0) alloys with the increase of the oxidation time to
10 h. Compared with the alloys oxidized for 0 h, the diffraction peak intensity of Y2Si2O7
increased obviously and that of WO3 decreased, which indicates the Y2Si2O7 formation
and growth and the WO3 volatilization. In the W-Si-9.6Y alloy oxidized for 10 h, weak
WO3, SiO2, Y2Si2O7, and unknown phase peaks were found, suggesting that the structure
of surface oxide scale changed.
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Figure 6c,d show the XRD patterns of the surface of W-Si-1.3Y and W-Si-5.0Y alloys
oxidized at 1000 ◦C for 10~80 h, respectively. The XRD patterns of W-Si-2.6Y and W-Si-3.8Y
are very similar to W-Si-5.0Y, so they are not shown here. These two XRD patterns show that
their phases were the same. All the samples contained WO3, SiO2, Y2Si2O7, and Y6W2O15.
The intensity of the WO3 diffraction peaks decreased with the increase of oxidation time,
indicating that WO3 continued to volatilize.

Figure 7a1–d1 displays surface SEM images of W-Si-xY alloys oxidized for 0 h. For
the oxidized W-Si alloy, as presented in Figure 7a1, there were isolated particles (marked
E) with the average size of 2.5 µm on the surface of the oxide layer. The inset is the high-
magnification image of the red rectangle of the oxide layer, which exhibited a nano-porous
structure. The surface microstructure of the oxidized W-Si-Y alloys (Figure 7b1–d1) is
similar to the oxidized W-Si alloy. The oxide layers also exhibited nano-porous structures
(see the insets), where many particles were dispersed. These phases have been discussed in
our report [19,20]. The oxide layer was WO3(polycrystalline)/SiOy (amorphous) composite
oxides. The nano-porous oxide layer was formed because of the evaporation of WO3
particles in the WO3/SiOy composite. The E particles in the oxidized W-Si alloy were
confirmed to be W-Fe-O oxides and had no effect on the oxidation resistance of the alloys.
Fe was introduced from wear debris of the vial, and its content was 0.19~0.25 wt.% in W-Si-
xY powders by XRF. The particles in the W-Si-Y alloys were composed of the rod-shaped
W-Fe-O (marked E) and molten-like Y-W-O (marked F). With the increase of Y content, the
number of molten-like Y-W-O particles increased and the shape tended to be spherical. For
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the oxidized W-Si-9.6Y alloy, there were many micron-level cracks around the particles in
the oxide layer, which were not found in other alloys.
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Figure 7a2–d2 shows the corresponding cross-section BSE-SEM image of the oxidized
W-Si-xY alloys. The insets are the enlarged images of the red rectangles. The oxide scale
thickness of the alloys is listed in Table 2. As the addition of Y and its content increased,
the oxide layer thickness decreased firstly and then increased. The oxide layer thickness of
W-Si-3.8Y alloy was the smallest, about 38.1 µm, while that of W-Si-9.6Y alloy was 80.3 µm,
which was thicker than that of W-Si alloy (53.3 µm).

Table 2. The thickness of W-Si-xY alloys oxidized at 1000 ◦C for different times.

Alloys
Thickness (µm)

0 h 2 h 10 h 20 h 40 h 80 h

W-Si 53.3 ± 1.9 172.6 ± 1.2 342.2 ± 8.1 412.3 ± 11.9 Severe oxidation -
W-Si-1.3Y 41.3 ± 1.6 106.7 ± 7.0 198.3 ± 8.6 291.4 ± 9.6 366.6 ± 13.3 433.9 ± 14.1
W-Si-2.6Y 43.6 ± 1.7 101.6 ± 4.4 173.3 ± 5.9 198.2 ± 6.4 247.3 ± 7.1 309.2 ± 9.9
W-Si-3.8Y 38.1 ± 1.1 89.3 ± 6.7 147.9 ± 7.6 192.9 ± 8.5 204.0 ± 10.0 249.1 ± 10.5
W-Si-5.0Y 50.9 ± 1.9 107.8 ± 10.6 170.9 ± 9.1 194.1 ± 11.2 203.4 ± 11.5 257.2 ± 12.4
W-Si-9.6Y 80.3 ± 2.4 destroyed - - - -

For the oxidized W-Si alloy, as shown in Figure 7a2, the bright gray phases in the oxide
layer were oriented WO3 grains, which originated from the oxidation of W grains in the
alloy. The dark gray phases were WO3/SiOy composites formed by the oxidation of W5Si3
phases. The black SiO2 particles came from the further oxidation of SiOxin the alloy. The
details have been discussed in the report [19]. The SiO2 particles, oriented WO3 grains,
and WO3/SiOy composite were also observed in the oxide layer of all the W-Si-Y alloys.
However, the content of black SiO2 particles decreased with the increase of Y. Additionally,
some phases with black edges marked by red dotted circles appeared in the oxide scale, as
shown in Figure 7c2. These phases were also observed by HRTEM and found to contain
nanoparticles, as shown in the inset. The corresponding SAED pattern indicated they
consisted of Y2Si2O7, so these phases were confirmed to be Y2Si2O7 aggregates, which have
been also discussed in the report [20]. The black edges were cracks due to the separation
of Y2Si2O7 aggregates and WO3/SiOy composite. This phenomenon shows that there is
a difference in thermal expansion between the Y2Si2O7 and WO3/SiOy composite oxide
layer. With the Y content increasing, more and larger Y2Si2O7 phases were generated, and
more interface separation occurred, especially in W-Si-9.6Y alloy (Figure 7d2). If these
micro-cracks are isolated, they have little effect on the oxidation resistance of the alloy.
When these micro-cracks penetrate each other, the oxygen in the atmosphere will penetrate
into the matrix through these cracks. It can be observed that there were many through
cracks in the oxidized W-Si-9.6Y alloy, and the crack width was approximately 145.7 nm.
These penetrating cracks resulted in an inferior oxidation resistance of W-Si-9.6Y alloy to
W-Si alloy.

Figure 8a1–d1 shows surface SEM images of the W-Si-xY (x = 0, 1.3, 3.8) alloys oxidized
at 1000 ◦C for 10 h and W-Si-9.6Y at 1000 ◦C for 2 h. The insets are the enlarged images
of the part of the oxide layer marked by the red rectangle. Compared with the alloys
oxidized for 0 h, the pore size of the nano-porous layer in the oxidized W-Si alloy for 10 h
became large because WO3 continued to volatilize with the extension of oxidation time.
For the oxidized W-Si-1.3Y and W-Si-3.8Y alloys, the amount and size of molten-like Y-W-O
particles increased with the oxidation time and Y content. Especially for W-Si-3.8Y, the
surface of oxidized alloys was almost completely covered by a continuous Y-W-O layer.
It was found that the nano-porous structure near the molten-like particles (the insets in
Figure 8b1,c1) was dense, indicating that the molten particles helped to close the pores by
covering the pores and promote the sintering of oxides in the oxide layer. On the surface of
the oxidized W-Si-9.6Y alloy (Figure 8d1), the continuous WO3/SiOy composite oxide layer
was not observed. The oxide layer was broken into pieces and mixed with oxide particles.
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The compositions of these oxide particles were analyzed by EDS. Combined with the EDS
and the above XRD, it was speculated that they were tungsten oxides and silicon oxides.
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Figure 8a2–d2 shows the corresponding cross-section BSE-SEM image of the oxidized
W-Si-xY alloys. Compared with the alloys oxidized for 0 h, the thickness of the oxide scale
for all the alloys increased, as shown in Table 2. Y2Si2O7 aggregated in the same component
alloys marked by red dotted circles increased with the extension of oxidation time. When
the W-Si-9.6Y alloy was oxidized at 1000 ◦C for 2 h, many Y2Si2O7 aggregated and cracks
were observed, which resulted in part of the oxide layer being separated from the alloy
(Figure 8d2) and destruction of the cube (as shown in Figure 4).

Figure 9 exhibits the cross-section BSE-SEM image of the oxidized W-Si-3.8Y alloy at
1000 ◦C for 10~80 h. The thickness of the oxide scale is increased from 147.9 to 249.1 µm
with the extension of time from 10 to 80 h. The thickness of oxide layers of other alloys vs.
time is also shown in Table 2. There was a thin (about several microns) loose oxide layer
(marked by red line) near the surface, which increased with the extension of oxidation time.
From the enlarged image (the inset in Figure 9a,d), it can be observed that there was a dense
layer on the outermost surface, which was the molten-like W-Y-O layer. Thus, from the
surface to the inside, the oxide layer was divided into three layers: dense molten-like W-Y-O
layer, loose WO3/SiOy composite oxide layer, and dense WO3/SiOy composite oxide layer.
This dense molten-like oxide layer also existed on the surface of the oxidized W-Si-2.6Y and
W-Si-5.0Y alloys, but it was not found in the oxidized W-Si-1.3Y and W-Si-9.6Y alloys. This
is because the number of molten-like particles generated in W-Si-1.3Y alloy is too small to
form a continuous W-Y-O layer. There were many cracks in the oxide layer of W-Si-9.6Y
alloy, and the melt could penetrate into these cracks, thus a continuous W-Y-O layer was
difficult to form.
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Figure 9. Cross-section BSE-SEM images of W-Si-3.8Y alloys oxidized at 1000 ◦C for different times:
(a) 10 h, (b) 20 h, (c) 40 h, (d) 80 h.

In addition, it is worth mentioning that with the extension of oxidation time, the
thickness of the molten-like dense layer changed minimally, but that of loose oxide layer
increased. The XRD (Figure 6c,d) patterns also show that the amount of Y6W2O15 did
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not change significantly from 10 to 80 h. It can be speculated that the W-Y-O layer may
be in a dynamic equilibrium during the long-term oxidation process at 1000 ◦C, that is,
it continuously decomposes and releases WO3 into the air and absorbs WO3 from the
following composite oxide layer to form molten materials. Therefore, the thickness of the
molten-like layer does not change significantly, but the thickness of the loose layer below
increases. There are minimal reports on the volatility of W-Y-O oxides, and their stability
needs further study.

3.4. Oxidation Resistance Mechanism

Based on the above results and previous studies [20], the effect of Y content on the
oxidation resistance of W-Si-Y can be clarified. The molten-like W-Y-O particles and Y2Si2O7
play a key role in the oxidation resistance of the alloys.

Figure 10 shows the schematic diagram of oxidation process. In the initial stage
of oxidation, as shown in Figure 10a, W grains and W5Si3 phases on the surface of the
alloys would be oxidized into oriented WO3 grains and WO3/SiOy composite oxide layer,
respectively. With the volatilization of WO3 near the surface, the composite oxide layer
close to the surface forms a nano-porous structure. Meanwhile, Y2Si2O7 and molten-like
particles containing Y6W2O15 are formed.
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The molten-like particles increased, and a W-Y-O covering layer gradually formed
with the Y content increasing and oxidation time extending, as shown in Figure 10b. The
molten particles can fill or close the pores by sintering and viscoplastic flow and hinder
the inward diffusion of oxygen into the alloys. Therefore, with the increase of Y content,
the oxidation resistance of the alloys was improved. However, during the oxidation
process, Y2Si2O7 particles also grow. Because of different thermal expansion of Y2Si2O7
and WO3/SiOy composite, cracks appear around Y2Si2O7 particles. For the alloys with
1.3~5.0 wt.% Y addition, the size and number of Y2Si2O7 particles are small, so there exists
a small number of cracks. These cracks are isolated and do not form penetrating cracks,
which have little effect on the oxidation resistance of the alloys. When the Y addition is
increased to 9.6 wt.%, there are many large Y2Si2O7 particles and cracks in the alloy. These
cracks are interconnected to form penetrating channels for O2 from the environment to
the alloy interior. The Y6W2O15 phase is not enough to fill these cracks or channels, so the
oxidation resistance of the alloy is greatly deteriorated.

4. Conclusions

A series of self-passivating W-Si-xY alloys were prepared by SPS. The effect of Y on
the oxidation resistance was revealed. It is found that oxidation resistance of W-Si-xY alloys
is improved by adding appropriate amount of Y (x = 1.3~5.0 wt.%). With the extension
of oxidation time, a three-layer oxide scale is formed on the surface of the alloy. From
the surface to the inside, the oxide layer is composed of dense molten-like W-Y-O layer,
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loose WO3/SiOy composite oxide layer, and dense WO3/SiOy composite oxide layer. The
dense W-Y-O layer can prevent the further oxidation of the alloy and effectively improve
its oxidation resistance. At the same time, Y2Si2O7 particles are formed in the oxidation
process, and they can cause micro-cracks because of their different thermal expansion with
WO3/SiOy composite oxide layer. These cracks are isolated and have little effect on the
oxidation resistance of the alloys. When the addition of Y is small, the molten-like W-Y-O
particles generated in the alloy are too few to form a continuous W-Y-O layer. When too
much Y is added, many Y2Si2O7 particles are formed, causing many cracks in the alloy.
These cracks are interconnected to form penetrating channels for O2 from the environment
to the alloy interior, which deteriorates the oxidation resistance of the alloys.
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